COMPLETENESS PROPERTIES OF HYPERSPACES OF COMPACT FUZZY SETS

R. LOWEN AND P. MAES

0. Introduction. On an arbitrary uniform space there are two types of "compactlike" fuzzy sets which are widely used in applications: u.s.c. fuzzy sets with compact support (we denote this collection $\Phi_c(X)$) and u.s.c. fuzzy sets with compact levelsets (we denote this collection $\Phi_W(X)$) [2], [12]. Always $\Phi_c(X) \subset \Phi_W(X)$ but the converse holds only if X itself is compact.

In the first part of our paper we prove that for the global fuzzy hyperspace structure [8], [9] the completeness of X is equivalent to the completeness of $\Phi_c(X)$ and to either the completeness or the ultracompleteness of $\Phi_W(X)$ [6], [7].

In the second part we then prove the rather surprising result that the completion of $\Phi_c(X)$ [7] is isomorphic to $\Phi_W(\hat{X})$ where \hat{X} denotes the completion of X.

These results not only generalize K. Morita's results on hyperspace of compact subsets [11] to the setting of fuzzy hyperspaces of "compact-like" fuzzy subsets but moreover via the isomorphism of the uniform modification of $\Phi_c(X)$ and $\Phi_W(X)$ with hyperspaces of closed subsets of $X \times [0, 1]$ [9], they also include an extension of K. Morita's classical results to classes of closed subsets of $X \times [0, 1]$ which are in general not compact.

1. **Preliminaries.** In this section we shall recall notations and basic concepts which are used throughout the rest of the paper.

I denotes the unit interval, I_0 stands for [0, 1] and I_1 stands for [0, 1[. The characteristic function of a subset $Y \subset X$ is denoted 1_Y .

If X is a topological space then contrary to usual notation in hyperspace theory we shall put 2^X for all subsets of X and $\mathcal{F}(X)$ for all closed subsets of X [9].

For notations and basic results on prefilters and convergence we refer

Received by the editors on June 20, 1985.

Copyright ©1987 Rocky Mountain Mathematics Consortium

the reader to [3], [6]. We recall however that if (X, \mathfrak{U}) is a fuzzy uniform space [4] then a hyper-Cauchy prefilter is a prefilter \mathfrak{C} fulfilling

(HC1) $c(\mathfrak{C}) = 1;$ (HC2) $\forall \varepsilon \in I_0 \; \exists \nu \in \mathfrak{C} : \nu - \varepsilon \leq \mu \Rightarrow \mu \in \mathfrak{C};$ (HC3) $\forall \nu \in \mathfrak{U} \; \forall \varepsilon \in I_0 \; \exists \mu \in \mathfrak{C} : \mu \times \mu - \varepsilon \leq \nu \; (\text{see } [6]).$

The set of all minimal hyper-Cauchy prefilters is denoted $\mathcal{M}(X)$. If \mathfrak{C} and \mathfrak{G} are any two prefilters then we put $c(\mathfrak{C}, \mathfrak{G}) = 0$ if $\mathfrak{C} \vee \mathfrak{G}$ does not exist and $c(\mathfrak{C}, G) = c(\mathfrak{C} \vee \mathfrak{G})$ otherwise (for the definition of c and c^{-} too we refer [3], [5]).

A prefilter \mathfrak{F} is then called a Cauchy prefilter if it fulfills

$$\sup_{\mathfrak{C}\in\mathcal{M}(X)}\inf_{\mathfrak{G}\in\mathcal{P}_m(\mathfrak{F})}c(\mathfrak{C},\mathfrak{G})=c^-(\mathfrak{F}).$$

We recall from [6] that hyper Cauchy prefilters and convergent prefilters (i.e., prefilters \mathfrak{F} such that $\sup_{x \in X} \lim \mathfrak{F}(x) = c^{-}(\mathfrak{F})$) are Cauchy.

A fuzzy uniform space is called complete [6] if every Cauchy prefilter converges; it is called ultracomplete if every hyper-Cauchy prefilter contains a prefilter $\mathfrak{U}(x)$ for some $x \in X$.

Ultracomplete spaces are complete, the converse need however not be true [7].

A fuzzy uniform space is called weakly Hausdorff if it fulfils WT_2 [13], i.e., for any $x, y \in X$, $x \neq y$ there exists $\nu \in \mathfrak{U}$ such that $\nu(x, y) < 1$.

In this work we shall be occupied mainly with the fuzzy uniform hyperspace of uppersemicontinuous fuzzy sets on a classical uniform space (X, \mathcal{U}) , i.e., with the space $\Phi_{gl}(X)$ [9]. Since we shall only work with the global structure and not with the horizontal structure of [8] we shall moreover always drop the suffix gl in our notations. Our main interest lies in two particular subspaces of $\Phi(X)$. First we consider the subspace $\Phi_c(X)$ of those fuzzy sets in $\Phi(X)$ which have compact support [2], i.e.,

$$\Phi_c(X) := \{ \mu \in \Phi(X) | \overline{\mu^{-1} | 0, 1} \text{ compact} \},\$$

and second we consider the subspace $\Phi_W(X)$ of so-called Weiss-compact fuzzy sets in $\Phi(X)$ [12], i.e., which have compact nonzero levelsets,

$$\Phi_W(X) := \{ \mu \in \Phi(X) | \forall \alpha \in I_0 : \mu^{-1}[\alpha, 1] \text{ compact} \}.$$

Finally we recall that if $U \in \mathcal{U}$ and $\alpha \in I_0$ then we put

$$B_{\alpha} := \{(s,t) ||s-t|| < \alpha\}$$

$$U \otimes B_{\alpha} := \{ ((x, s), (y, t)) | (x, y) \in U, (s, t) \in B_{\alpha} \}.$$

As in [9] if U is an entourage on a basic space then \tilde{U} denotes the induced entourage on the hyperspace and as in [1] \hat{U} denotes the induced entourage on the completion.

2. Completeness properties of $\Phi_c(X)$ and $\Phi_W(X)$. We begin by stating the theorem which we intend to prove in this section

THEOREM 2.1. The following are equivalent:

(1) X is complete;

(2) $\Phi_W(X)$ is ultracomplete;

- (3) $\Phi_W(X)$ is complete;
- (4) $\Phi_c(X)$ is complete.

For clarity we shall scatter the proof of this theorem over a number of propositions.

In order to prove the first of these propositions we have to make some notational conventions and preliminary observations.

We know that the uniform modification of $\Phi(X)$ is isomorphic to a closed subspace of the uniform hyperspace of all closed sets in $X \times I$ (Theorem 5.2 [9]) and it will be advantageous to exploit this isomorphism. It is given by the map

$$\mathcal{G}: \Phi(X) \to \mathcal{F}(X \times I)$$
$$\mu \to \mathcal{G}(\mu)$$

where $\mathcal{G}(\mu) := \{(x,t) | t \leq \mu(x)\}$ and where $\mathcal{F}(X \times I)$ is equipped with the Hausdorff-Bourbaki hyperspace structure on closed sets [10]. Now if Ψ is a filter on $\mathcal{G}(\Phi_W(X))$ then we shall associate with it a filter on $X \times I$ in the following way.

Put

$$\sum : 2^{\mathcal{G}(\Phi_W(X))} \to 2^{X \times I}$$
$$\mathbf{F} \to \sum (\mathbf{F}) := \bigcup_{F \in \mathbf{F}} F$$

and define

$$\Sigma(\Psi) := \left[\left\{ \Sigma(\mathbf{F}) | \mathbf{F} \in \Psi \right\} \right].$$

That $\Sigma(\psi)$ is indeed a filter on $X \times I$ is an easy verification which we leave to the reader.

We shall also require a measure of the extent to which ψ contains "vertically" small members. Hereto we define

$$t(\Psi) := \sup \Big\{ \varepsilon \in I_0 | X \times [0, \varepsilon] \notin \Sigma(\Psi) \Big\}.$$

Remark that if \mathfrak{F} is the prefilter on $\Phi_W(X)$ corresponding to Ψ then actually $t(\Psi) = s(\mathfrak{F})$ as in [9].

Finally we shall also adhere to the following notational convention. If $A \subset X \times I$ and $\alpha \in I_0$ then

$$A^{\alpha} := \{ x \in X | \exists t \ge \alpha : (x, t) \in A \}.$$

In case A is the endograph of some fuzzy set μ then A^{α} is nothing else than $\mu^{-1}[\alpha, 1]$.

PROPOSITION 2.2. If X is complete then $\Phi_W(X)$ is ultracomplete.

REMARK. The proof of this result is heavily inspired by the paper [11] of K. Morita.

PROOF. By Theorem 5.2 [9] is suffices to prove that $\mathcal{G}(\Phi_W(X))$ is complete.

Let Ψ be a Cauchy filter on $\mathcal{G}(\Phi_W(X))$.

Case 1. $t(\Psi) = 0$. Fix $U \in {}_{s}\mathcal{U}$ and $\alpha \in I_{0}$. Then we can find $\mathbf{F} \in \Psi$ such that $\Sigma(\mathbf{F}) \subset X \times [0, \alpha]$

$$\subset (U \otimes B_{\alpha})(X \times \{0\})$$

which implies that for all $F \in \mathbf{F}$

$$(F, X \times \{0\}) \in \widetilde{U \otimes B_{\alpha}}.$$

646

By arbitrariness of $U \in {}_{s}\mathcal{U}$ and $\alpha \in I_0$ this proves that $\Psi \to X \times \{0\}$. Note that $t(\Psi) = 0$ obviously already implies that Ψ is Cauchy.

Case 2. $t(\psi) > 0$.

Assertion 1. For any $\varepsilon < t(\Psi)$, any ultrafilter finer than $\Sigma(\Psi)$ which does not contain $X \times [0, \varepsilon]$ is Cauchy.

From the fact that $X \times [0, \varepsilon] \notin \Sigma(\Psi)$ it is clear that an ultrafilter, say \mathcal{M} , fulfilling the suppositions exists. We shall prove \mathcal{M} is Cauchy. Let $U \in {}_{s}\mathcal{U}$ and $\alpha \in I_{0}$ be fixed, put

$$4\beta := \alpha \wedge \varepsilon$$

and choose $W, V \in {}_{s}\mathcal{U}$ such that

$$W \circ W \subset U$$
$$V \circ V \subset W$$

Take $\mathbf{F} \in \Psi$ such that

 $\mathbf{F} \times \mathbf{F} \subset \widetilde{V \otimes B_{\beta}}$

and take $F \in \mathbf{F}$. Then

(2.1) $\Sigma(\mathbf{F}) \subset V \otimes B_{\beta}(F)$

and consequently

(2.2)
$$V \otimes B_{\beta}(F) \in \Sigma(\Psi) \subset \mathcal{M}$$

Since $(F^{2\beta} \times [2\beta, 1]) \cap F$ is compact it contains a finite subset S such that

$$(F^{2\beta} \times [2\beta, 1]) \cap F \subset \bigcup_{(x,t) \in S} V \otimes B_{\beta}(x, t)$$

which implies

$$F \subset \left(\bigcup_{(x,t)\in S} V \otimes B_{\beta}(x,t)\right) \cup (X \times [0,2\beta]),$$

and consequently

(2.3)
$$V \otimes B_{\beta}(F) \subset \left(\bigcup_{(x,t) \in S} W \otimes B_{2\beta}(x,t)\right) \cup (X \times [0,3\beta]).$$

Since $X \times [0, 3\beta] \notin M$ it follows from (2.2) and (2.3) that there exists $(x, t) \in S$ such that

$$W \otimes B_{2\beta}(x,t) \in \mathcal{M}$$

Finally since

$$W\otimes B_{2eta}(x,t) imes W\otimes B_{2eta}(x,t)\subset U\otimes B_{lpha}$$

and by the arbitrariness of $U \in {}_{s}\mathcal{U}$ and $\alpha \in I_{0}$ this proves \mathcal{M} is indeed Cauchy.

Assertion 2.
$$K := \bigcap_{L \in \Sigma(\Psi)} \overline{L} \in \mathcal{G}(\Phi_W(X)).$$

That K is an endograph is easily seen so that we only need to show it has compact "levelsets."

Let $\delta \in I_0$ be fixed. Then in order to show this it will suffice to prove that $(K^{\delta} \times [\delta, 1]) \cap K$ is compact which, in turn, by completeness of $X \times I$ and the obvious fact that $(K^{\delta} \times [\delta, 1]) \cap K$ is closed means it is sufficient to show precompactness.

Let $U \in {}_{s}\mathcal{U}$ and $\alpha \in I_{0}$ be fixed, choose $\varepsilon < t(\Psi) \land \delta$ and let $\beta \in I_{0}$, $V, W \in {}_{s}\mathcal{U}, \mathbf{F} \in \Psi, F \in \mathbf{F}$ and $S \subset (F^{2\beta} \times [2\beta, 1]) \cap F$ be as in the proof of Assertion 1. Then we have from (2.1) and (2.3)

$$\begin{split} K \subset \overline{\Sigma(\mathbf{F})} \subset \overline{V \otimes B_{\beta}(F)} \\ \subset \Big(\bigcup_{(x,t) \in S} \overline{W \otimes B_{2\beta}(x,t)}\Big) \cup (X \times [0,3\beta]). \end{split}$$

Since $\varepsilon < \delta$ this implies

$$(K^{\delta} \times [\delta, 1]) \cap K \subset \bigcup_{(x,t) \in S} \overline{W \otimes B_{2\beta}(x,t)}$$
$$\subset \bigcup_{(x,t) \in S} U \otimes B_{\alpha}(x,t),$$

which proves the second assertion.

Assertion 3. $\Psi \to K$.

Let again $U \in {}_{s}\mathcal{U}$ and $\alpha \in I_{0}$ be fixed and $V \in {}_{s}\mathcal{U}$ be such that $V \circ V \subset U$. Put $2\beta := \alpha$. Since Ψ is Cauchy we can find $\mathbf{F} \in \Psi$ such that for all $F \in \mathbf{F}$

$$\Sigma(\mathbf{F}) \subset V \otimes B_{\beta}(F),$$

which in turn implies that for all $(x, s) \in \Sigma(\mathbf{F})$ and for all $F \in \mathbf{F}$ there exists $(y, t) \in F$ such that $((x, s), (y, t)) \in V \otimes B_{\beta}$.

Now $11x(x,s) \in \Sigma(\mathbf{F})$ then for any $\mathbf{L} \in \Psi$ choosing $F \in \mathbf{F} \cap \mathbf{L}$ we thus have

$$F \cap V \otimes B_{\beta}(x,s) \neq \emptyset$$

and consequently

$$\Sigma(\mathbf{L}) \cap V \otimes B_{\beta}(x,s) \neq \emptyset.$$

Together with the obvious fact that for any $\mathbf{L}, \mathbf{K} \in \Psi : \Sigma(\mathbf{L}) \cap \Sigma(\mathbf{K}) = \Sigma(\mathbf{L} \cup \mathbf{K})$, this proves that

$$\mathcal{F}(x,s) := ig[ig\{ \Sigma(\mathbf{L}) \cap V \otimes B_{eta}(x,s) | \mathbf{L} \in \Psi ig\} ig]$$

is a well defined filter on $X \times I$, which by construction is moreover finer than $\Sigma(\Psi)$.

The adherence of this filter is nonempty; indeed if $s \leq \beta$ then obviously

$$(x,0)\in igcap_{\mathbf{L}\in \mathbf{\Psi}}\overline{\Sigma(\mathbf{L})\cap V\otimes B_{eta}(x,s)}$$

so that we may now suppose $s > \beta$. In that case since for any $(y,t) \in V \otimes B_{\beta}(x,s)$ we have $|t-s| < \beta$ it follows that if we put $\varepsilon := s - \beta$ then $X \times [0,\varepsilon] \notin \mathcal{F}(x,s)$.

If \mathcal{M} is an ultrafilter finer than $\mathcal{F}(x, s)$ and which does not contain $X \times [0, \varepsilon]$ then since also $\mathcal{M} \supset \Sigma(\Psi)$ it follows from Assertion 1 that \mathcal{M} is Cauchy and thus by completeness of $X \times I$ it has a nonempty adherence. Since $\mathcal{F}(x, s) \subset \mathcal{M}$ this proves our claim.

Consequently for any $(x, s) \in \Sigma(\mathbf{F})$ we now have

$$\begin{split} K\bigcap\overline{V\otimes B_{\beta}(x,s)} &= (\bigcap_{L\in\Sigma(\Psi)}\overline{L})\bigcap\overline{V\otimes B_{\beta}(x,s)}\\ \supset \bigcap_{L\in\Sigma(\Psi)}\overline{L\cap V\otimes B_{\beta}(x,s)} \neq \emptyset, \end{split}$$

and consequently for any $(x, s) \in \Sigma(\mathbf{F})$:

$$K \cap U \otimes B_{\alpha}(x,s) \neq \emptyset,$$

which in turn implies that for any $F \in \mathbf{F}$:

(2.5)
$$F \subset U \otimes B_{\alpha}(K).$$

On the other hand by (2.4) and also for any $F \in \mathbf{F}$

(2.6)
$$K \subset \overline{\Sigma(\mathbf{F})} \subset \overline{V \otimes B_{\beta}(F)} \\ \subset U \otimes B_{\alpha}(F).$$

Together (2.5) and (2.6) prove that for all $F \in \mathbf{F}$:

$$(K,F)\in U\otimes B_{\alpha}$$

which by the arbitrariness of $U \in {}_{s}\mathcal{U}$ and $\alpha \in I_{0}$ shows $\Psi \to K$.

This ends the proof of the proposition.

PROPOSITION 2.3. If $\Phi_W(X)$ is complete then $\Phi_c(X)$ is complete.

PROOF. Let \mathfrak{F} be a Cauchy prefilter on $\Phi_c(X)$ and let $\langle \mathfrak{F} \rangle$ denote the prefilter which it generates on $\Phi_W(X)$. We leave it to the reader to verify that this prefilter is again Cauchy (on $\Phi_W(X)$) and that $c^-(\langle \mathfrak{F} \rangle) = c^-(\mathfrak{F})$. This goes by straightforward verification. If $c^-(\mathfrak{F}) = 0$ there is nothing to prove.

Let $c^{-}(\mathfrak{F}) > 0$ and let $\varepsilon \in]0, c^{-}(\mathfrak{F})[$. By completeness of $\Phi_{W}(X)$ we can find $\mu \in \Phi_{W}(X)$ such that

$$\lim < \mathfrak{F} > (\mu) \ge c^{-}(\mathfrak{F}) - \varepsilon.$$

Now in case $\sup \mu \leq \varepsilon$ put $\mu_{\varepsilon} := 0$ and in case $\sup \mu > \varepsilon$ put $\mu_{\varepsilon} := \mu \wedge 1_{\mu^{-1}[\varepsilon,1]}$.

In both cases $\mu_{\varepsilon} \in \Phi_c(X)$ and $e(\mu, \mu_{\varepsilon}) \leq \varepsilon$. Consequently from Lemma 4.9 [9] and Remark (2) following the proof of Theorem 4.3 (c) [9], it follows that first

$$\lim \omega(\iota(\langle \mathfrak{F} \rangle))(\mu) \ge c^{-}(\mathfrak{F}) - \varepsilon$$

and consequently that second

$$\begin{split} \lim \langle \mathfrak{F} \rangle (\mu_{\varepsilon}) &= c^{-}(\mathfrak{F}) \wedge \lim \omega(\iota(\langle \mathfrak{F} \rangle))(\mu_{\varepsilon}) \\ &\geq c^{-}(\mathfrak{F}) \wedge \lim \omega(\iota(\langle \mathfrak{F} \rangle))(\mu) \wedge (1 - e(\mu, \mu_{\varepsilon})) \\ &\geq c^{-}(\mathfrak{F}) \wedge (c^{-}(\mathfrak{F}) - \varepsilon) \wedge (1 - \varepsilon) = c^{-}(\mathfrak{F}) - \varepsilon. \end{split}$$

Since obviously $\lim \mathfrak{F}(\mu_{\varepsilon}) = \lim \langle \mathfrak{F} \rangle(\mu_{\varepsilon})$ this proves that

$$\sup_{\xi\in\Phi_c(X)}\lim\mathfrak{F}(\xi)=c^-(\mathfrak{F})$$

and thus $\Phi_c(X)$ is complete.

In the next proposition we shall denote φ the canonical injection of X into $\Phi_c(X)$, i.e., $\varphi(x) := \mathbb{1}_{\{x\}}$ (see also [9]).

PROPOSITION 2.4. If $\Phi_c(X)$ is complete then X is complete.

PROOF. If \mathcal{F} is a Cauchy filter on X then a straightforward verification shows that $\omega(\widetilde{\varphi}(\mathcal{F}))$ is hyper Cauchy and consequently Cauchy on $\Phi_c(X)$. Thus we have

 $\sup_{\boldsymbol{\xi}\in\Phi_c(X)}\lim\omega(\widetilde{\varphi}(\boldsymbol{\mathcal{F}}))(\boldsymbol{\xi})=1.$

By Theorem 6.1 [9] this implies there exists $\xi \in \Phi(X)$ such that

$$\lim \omega(\widetilde{\varphi}(\mathcal{F}))(\xi) = 1.$$

Again staightforward verification shows this is equivalent to

$$\lim \omega(\varphi(\mathcal{F}))(\xi) = 1$$

(actually this equivalence holds in any fuzzy neighborhood space) and consequently by Theorem 4.2 [9] we have

$$\varphi(\mathcal{F}) \to \xi \text{ in } \iota_u(\Phi(U)).$$

But since $1_{\varphi(X)} \in \varphi(\mathcal{F})$ and $\varphi(X)$ is $\iota_u(\Phi(U))$ -closed it follows that $\xi \in \varphi(X)$, i.e., there exists $x \in X$ such that $\xi = 1_{\{x\}}$. Clearly $\mathcal{F} \to x$.

3. Completion of $\Phi_{\mathbf{C}}(\mathbf{X})$. In the previous section we have seen that $\Phi_c(X)$ is complete if and only if X is complete. However since a complete space need not be ultracomplete and since the completion

constructed in [7] is automatically ultracomplete, the question-even for a complete X-poses itself whether we can describe the completion of $\Phi_c(X)$ in a concise concrete way. That this is indeed the case shall be shown in this section

Let X be arbitrary, i.e., not necessarily complete and let \hat{X} be its completion.

From the elementary fact that compactness is absolute, i.e., independent of the superspace, the following map is well defined

$$i: \Phi_c(X) \to \Phi_W(\hat{X}),$$

where $\iota(\mu)(x) = \mu(x)$ if $x \in X$ and $i(\mu)(x) = 0$ if $x \notin X$. Remark moreover that actually $i(\Phi_c(X)) \subset \Phi_c(\hat{X})$ and that *i* is an embedding; in particular for any $U \in {}_{s}\mathcal{U}$ and $\alpha \in I_0$ we have

$$(i \times i)^{-1}(\omega_{(\hat{U},\alpha)}) = \omega_{(U,\alpha)}.$$

THEOREM 3.1. In the category of fuzzy uniform spaces and maps the pair $(i, \Phi_W(\hat{X})$ is universal for $\Phi_c(X)$ with respect to the full subcategory of weakly Hausdorff ultracomplete spaces, *i.e.*,

$$\Phi_c(X) \approx \Phi_W(\hat{X}).$$

REMARK. That the first claim of the theorem implies the isomorphism between $\widehat{\Phi_c(X)}$ and $\Phi_W(\hat{X})$ is a purely categorical result which follows immediately from the results of [7].

PROOF. In order to verify this first claim let (Y, \mathfrak{U}) be a weakly Hausdorff ultracomplete fuzzy uniform space and let

$$\Phi_c(X) \xrightarrow{f} Y$$

be a uniformly continuous map.

We shall prove that there exists a unique uniformly continuous factorization \hat{f} over $\Phi_W(\hat{X})$, i.e., such that $\hat{f} \circ i = f$.

Step 1. Construction of \hat{f} .

Let $\mu \in \Phi_W(\hat{X})$ be fixed.

Assertion 1. For any $U \in {}_{s}\mathcal{U}$ and $\alpha \in I_{0}$ there exists $\mu_{(U,\alpha)} \in \Phi_{c}(X)$ such that $\omega_{(\hat{U},\alpha)}(i(\mu_{(U,\alpha)}),\mu) = 1$. Indeed in case $\mu^{-1}[\alpha,1] = \emptyset$ put $\mu_{(U,\alpha)} := 0$. Then

$$\omega_{(\hat{U},\alpha)}(i(\mu_{(U,\alpha)}),\mu) \ge (1-e(i(\mu_{(U,\alpha)}),\mu)+\alpha) \wedge 1 = 1.$$

In case $\mu^{-1}[\alpha, 1] \neq \emptyset$, for any $k \in \mathbb{N}_0$ put

$$C_k := \mu^{-1}[k\alpha, (k+1)\alpha[$$

and let

$$K := \{k \in \mathbf{N}_0 | C_k \neq 0\}.$$

Choose $V \in {}_{s}\mathcal{U}$ such that $V \circ V \subset U$. Then by the precompactness of C_k we can find a finite set of distinct points

$$x_1^k,\ldots,x_{n(k)}^k\in C_k$$

such that

$$C_k \subset \bigcup_{j=1}^{n(k)} \hat{V}(x_j^k).$$

Since \hat{X} is Hausdorff we can find $W \in {}_{s}\mathcal{U}, W \subset V$ such that

$$\hat{W}(s) \cap \hat{W}(t) = \emptyset$$

for all $s, t \in \bigcup_{k \in K} \{x_1^k, \dots, x_{n(k)}^k\}, s \neq t$. By denseness of X we can then pick $y_i^k \in \hat{W}(x_i^k)$ for each $j \in \{1, \dots, n(k)\}$ and $k \in K$.

It follows that all points y_i^k are distinct and that for each $k \in K$

$$C_k \subset \bigcup_{j=1}^{n(k)} \hat{U}(y_j^k).$$

Consequently the following fuzzy set

$$\mu_{(U, lpha)}(x) := egin{cases} \mu(x_j^k) & x = y_j^k \ 0 & ext{elsewhere on } X \end{cases}$$

is well defined and clearly belongs to $\Phi_c(X)$. Now if $x \notin \bigcup_{k \in K} \{y_j^k | j = 1, \ldots, n(k)\}$ then

$$i(\mu_{(U,\alpha)}) - lpha \leq 0 \leq 1_{\hat{U}} < \mu > (x),$$

whereas if $x = y_j^k$ for some $k \in K$ and $j \in \{1, \ldots, n(k)\}$ then

$$egin{aligned} &i(\mu_{(U, lpha)})(y_j^k) - lpha &\leq \mu(x_j^k) \wedge 1_{\hat{U}}(x_j^k, y_j^k) \ &\leq 1_{\hat{U}} \langle \mu
angle(y_j^k), \end{aligned}$$

which shows that $i(\mu_{(U,\alpha)}) - \alpha \leq 1_{\hat{U}} \langle \mu \rangle$. On the other hand if $x \notin \mu^{-1}[\alpha, 1]$ then

$$\mu(x) - \alpha \le 0 \le 1_{\hat{U}} \langle \mu_{(U,\alpha)} \rangle,$$

whereas if $x \in \mu^{-1}[\alpha, 1]$ then, taking $k \in K$ such that $x \in C_k$, we can find $j \in \{1, \ldots, n(k)\}$ such that also $x \in \hat{U}(y_i^k)$ and it follows that

$$\begin{split} \mu(x) &- \alpha \leq k\alpha \leq \mu(x_j^k) \\ &= i(\mu_{(U,\alpha)})(y_j^k) \wedge 1_{\hat{U}}(y_j^k, x) \leq 1_{\hat{U}} \langle i(\mu_{(U,\alpha)}) \rangle(x), \end{split}$$

which shows that also $\mu - \alpha \leq 1_{\hat{U}} \langle i(\mu_{(U,\alpha)}) \rangle$. This proves Assertion 1.

Now for any $W \in {}_{s}\mathcal{U}$ and $\theta \in I_0$ let

$$F^{\mu}_{(W,\theta)} := \{\mu_{(U,\alpha)} | U \subset W, \alpha \le \theta\}$$

and put

$$\mathcal{F}(\mu) := [\{F^{\mu}_{(W,\theta)} | W \in {}_{s}\mathcal{U}, \theta \in I_{0}\}].$$

Assertion 2. $\omega(\widetilde{\mathcal{F}}(\mu))$ is a hyper Cauchy prefilter on $\Phi_c(X)$.

Indeed, that $\omega(\widetilde{\mathcal{F}(\mu)})$ is a prefilter and that both (HC1) and (HC2) are fulfilled is clear by construction.

To prove (HC3) let $U \in {}_{s}\mathcal{U}$ and $\alpha \in I_{0}$ and take $V \in {}_{s}\mathcal{U}, V \circ V \subset U$ and $2\beta := \alpha$.

If $\mu_{(V',\beta')}, \mu_{(V'',\beta'')} \in F^{\mu}_{(V,\beta)}$ then if follows from Assertion 1 and the remarks following the definition if *i* that

$$\begin{split} \omega_{(U,\alpha)}(\mu_{(V',\beta')},\mu_{(V'',\beta'')}) \\ &= \omega_{(\hat{U},\alpha)}(i(\mu_{(V',\beta')}),i(\mu_{(V'',\beta'')})) \\ &\ge \omega_{(\hat{V},\beta)}(i(\mu_{(V',\beta')},\mu) \wedge \omega_{(\hat{V},\beta)}(\mu,i(\mu_{(V'',\beta'')})) = 1 \end{split}$$

and thus

$$1_{F^{\mu}_{(V,\beta)}} \times 1_{F^{\mu}_{(V,\beta)}} \leq \omega_{(U,\alpha)},$$

which proves Assertion 2.

Now by the uniform continuity of f and the fact that (Y, \mathfrak{U}) is a weakly Hausdorff ultracomplete space it follows from Proposition 5.4 [7] that

$$f(\omega(\widetilde{\mathcal{F}}(\mu)))$$

is hyper Cauchy on Y that there exists a unique point $y_{\mu} \in Y$ such that

$$\mathfrak{U}(y_{\mu}) \subset f(\omega(\widetilde{\mathcal{F}}(\mu)))$$

or by Lemma 8.1 [7] equivalently, such that

$$\operatorname{adh} f(\omega(\mathcal{F}(\mu)))(y_{\mu}) = 1.$$

Define

$$f(\mu) := y_{\mu}$$

Step 2. $\hat{f} \circ i = f$.

Let $\mu \in \Phi_c(X)$ then based on the remarks following the definition of i and applying Assertion 1 once again we find that

$$\begin{array}{l} \operatorname{adh} \omega(\mathcal{F}(i(\mu)))(\mu) \\ &= \inf_{\substack{W \in_{\mathfrak{S}^{U}} \\ \theta \in I_{0}}} \inf_{\substack{U \in_{\mathfrak{S}^{U}} \\ \alpha \in I_{0}}} \sup_{\xi \in \Phi_{C}(X)} \mathbf{1}_{F_{(W,\theta)}^{i(\mu)}}(\xi) \wedge \omega_{(U,\alpha)}(\xi,\mu) \\ &\geq \inf_{\substack{W \in_{\mathfrak{S}^{U}} \\ \theta \in I_{0}}} \inf_{\substack{U \in_{\mathfrak{S}^{U}} \\ \alpha \in I_{0}}} \sup_{\substack{V \subset W \cap U \\ \gamma \leq \theta \wedge \alpha}} \omega_{(U,\alpha)}(i(\mu)_{(V,\gamma)},\mu) \\ &\geq \inf_{\substack{W \in_{\mathfrak{S}^{U}} \\ \theta \in I_{0}}} \inf_{\substack{U \in_{\mathfrak{S}^{U}} \\ \gamma \leq \theta \wedge \alpha}} \sup_{\psi \in_{\mathfrak{S}^{U}}} \omega_{(\hat{V},\alpha)}(i(i(\mu)_{(V,\gamma)}),i(\mu)) \\ &= 1. \end{array}$$

By continuity of f it then follows that also

$$adh f(\omega(\mathcal{F}(i(\mu))))(f(\mu)) = 1,$$

which by the construction of \hat{f} , the fact that Y is weak Hausdorff and upon applying Corollary 8.2 [7] implies that $f(\mu) = \hat{f}(i(\mu))$.

Step 3. \hat{f} is uniformly continuous

Let $\nu \in \mathfrak{U}, \varepsilon \in I_0$ and choose $\xi \in \mathfrak{U}$ such that

$$\xi^3 - \frac{\varepsilon}{2} \le \nu.$$

Then choose $V \in {}_{s}\mathcal{U}, \beta \in I_{0}$ such that

$$\omega_{(V,\beta)}|_{\Phi_c(X)} \le (f \times f)^{-1}(\xi)$$

and finally take $U \in {}_{S}\mathcal{U}, U^{3} \subset V$ and $3\alpha := \beta$. Fix $\mu, \varsigma \in \Phi_{W}(\hat{X})$.

Assertion 3. There exist $W \in {}_{s}\mathcal{U}, W \subset U, \gamma \in I_{0}, \gamma \leq \alpha$ such that

$$\begin{split} &\xi(\widehat{f}(\mu), f(\mu_{(W,\gamma)})) \geq 1 - \varepsilon/2, \\ &\xi(\widehat{f}(\xi), f(\varsigma_{(W,\gamma)})) \geq 1 - \varepsilon/2. \end{split}$$

Indeed, from the construction of \hat{f} it follows that we can find $D \in {}_s \mathcal{U}$ and $\delta \in I_0$ such that

$$egin{aligned} &\xi\langle\hat{f}(\mu)
angle \geq f(1_{F^{\mu}_{(D,\delta)}}) - arepsilon/2, \ &\xi\langle\hat{f}(\xi)
angle \geq f(1_{F^{\varsigma}_{(D,\delta)}}) - arepsilon/2. \end{aligned}$$

The reader can easily verify that $W:=D\cap U$ and $\gamma:=\delta\wedge\alpha$ fulfill the claim of the assertion.

Applying once again the remarks following the definition of i, Assertions 1 and 3 we then have

$$\begin{split} \nu(\hat{f}(\mu), \hat{f}(\varsigma)) \\ &\geq \xi(\hat{f}(\mu), f(\mu_{(W,\delta)})) \wedge \xi(f(\mu_{(W,\delta)}), f(\varsigma_{(W,\delta)})) \\ &\wedge \xi(f(\varsigma_{(W,\delta)}), \hat{f}(\varsigma)) - \varepsilon/2 \\ &\geq (1 - \varepsilon/2) \wedge (f \times f)^{-1}(\xi)(\mu_{(W,\gamma)}, \varsigma_{(W,\gamma)}) - \varepsilon/2 \\ &\geq \omega_{(V,\beta)}(\mu_{(W,\gamma)}, \varsigma_{(W,\gamma)}) - \varepsilon \\ &\geq \omega_{(\hat{U},\alpha)}(i(\mu_{(W,\gamma)}), \mu) \wedge \omega_{(\hat{U},\alpha)}(\mu, \varsigma) \\ &\wedge \omega_{(\hat{U},\alpha)}(\varsigma, i(\varsigma_{(W,\gamma)})) - \varepsilon \\ &= \omega_{(\hat{U},\alpha)}(\mu, \varsigma) - \varepsilon. \end{split}$$

By Corollary 2.6 [4] this proves \hat{f} is indeed uniformly continuous.

Step 4. \hat{f} is unique.

Let $h : \Phi_W(\hat{X}) \to Y$ be a continuous extension of f and let $\mu \in \Phi_W(\hat{X})$ be fixed. Then by a calculation similar to the one of Step 2 we find

$$\operatorname{adh} i(\omega(\mathcal{F}(\mu)))(\mu)) = 1.$$

Since h is continuous and extends f this implies

$$\operatorname{adh} f(\omega(\widetilde{\mathcal{F}}(\mu)))(h(\mu)) = 1,$$

which by the construction of \hat{f} finally yields $h(\mu) = \hat{f}(\mu)$.

This ends the proof of the theorem.

References

1. N. Bourbaki, Topologie Générale, Hermann, Paris (1965).

2. P.E. Kloeden, Compact supported endographs and fuzzy sets, Fuzzy sets and Systems 4 (1980), 193-201.

3. R. Lowen, Convergence in fuzzy topological spaces, General Topology Appl. 10 (1979), 147-160.

4. — , Fuzzy uniform spaces, J. Math. Anal. Appl. 83 (1981), 370-385.

5. ——, Fuzzy neighborhood spaces, Fuzzy Sets and Systems 7 (1982), 165-189.

6. ——, P. Wuyts, Completeness, compactness and precompactness in fuzzy uniform spaces, Part I J. Math. Anal. Appl. 90 (1982), 563-581.

7. ____, ____, Completeness, compactness and precompactness in fuzzy uniform spaces, Part II J. Math. Anal. Appl. 92 (1983), 342-371.

8. R. Lowen, I^X the hyperspace of fuzzy sets, a natural non topological fuzzy topological space, Trans. Amer. Math. Soc. 278 (1983), 547-564.

9. —, Hyperspaces of fuzzy sets, Fuzzy Sets and Systems 9 (1983), 287-311.

10. E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182.

11. K. Morita, Completion of hyperspaces of compact subsets and topological completion of open-closed maps, General Topology Appl. 4 (1974), 217-233.

12. M.D. Weiss, Fixed points, separation and induced topologies for fuzzy sets, J. Math. Anal. Appl. 50 (1975), 142-150.

13. P. Wuyts, R. Lowen, On separation axioms in fuzzy topological spaces, fuzzy neighborhood spaces, and fuzzy uniform spaces J. Math. Anal. Appl. 93 (1983), 27-41.

UNIVERSITY OF ANTWERP, R.U.C.A., DIENST WISKUNDIGE ANALYSE, GROENEN-BORGERLAAN 171, ANTWER[EN 2020, BELGIUM