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OF COMPACT FUZZY SETS 

R. LOWEN AND P. MAES 

0. Introduction. On an arbitrary uniform space there are two types 
of "compactlike" fuzzy sets which are widely used in applications: u.s.c. 
fuzzy sets with compact support ( we denote this collection $C(X)) 
and u.s.c. fuzzy sets with compact levelsets (we denote this collection 
*iv(X)) [2], [12]. Always $C(X) C $w(X) but the converse holds only 
if X itself is compact. 

In the first part of our paper we prove that for the global fuzzy hy-
perspace structure [8], [9] the completeness of X is equivalent to the 
completeness of $ c (X) and to either the completeness or the ultracom-
pleteness of $w (X) [6], [7]. 

In the second part we then prove the rather surprising result that the 
completion of $c(-^0 [7] is isomorphic to $jy (X) where X denotes the 
completion of X. 

These results not only generalize K. Morita's results on hyperspace of 
compact subsets [11] to the setting of fuzzy hyperspaces of "compact­
like" fuzzy subsets but moreover via the isomorphism of the uniform 
modification of $C(X) and $w (X) with hyperspaces of closed subsets 
of X x [0,1] [9], they also include an extension of K. Morita's classical 
results to classes of closed subsets of X x [0,1] which are in general not 
compact. 

1. Preliminaries. In this section we shall recall notations and basic 
concepts which are used throughout the rest of the paper. 

/ denotes the unit interval, Io stands for ]0,1] and I\ stands for [0,1[. 
The characteristic function of a subset Y C X is denoted l y . 
If X is a topological space then contrary to usual notation in hypers­

pace theory we shall put 2 X for all subsets of X and T(X) for all closed 
subsets of X [9]. 

For notations and basic results on prefilters and convergence we refer 
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the reader to [3], [6]. We recall however that if (X, il) is a fuzzy uniform 
space [4] then a hyper-Cauchy prefilter is a prefilter <£ fulfilling 

(HCl) c(€) = 1; 
(HC2) VeeI03i/e£:is-e<tJ,=> // e £; 
(HC3) V i / G i I V e G / 0 3 / i € C : / i X | i - e < i / (see [6]). 

The set of all minimal hyper-Cauchy prefilters is denoted M (X). If 
(£ and 0 are any two prefilters then we put c(<£, 0) = 0 if <£ V 0 does 
not exist and c(<£, G) = c(<£ V 0) otherwise (for the definition of c and 
c~ too we refer [3], [5]). 

A prefilter 5 is then called a Cauchy prefilter if it fulfills 

sup inf c(£,0) = c~($). 

We recall from [6] that hyper Cauchy prefilters and convergent pre­
filters (i.e., prefilters $ such that sup x € X lim$(x) = c~($)) are Cauchy. 

A fuzzy uniform space is called complete [6] if every Cauchy prefilter 
converges; it is called ultracomplete if every hyper-Cauchy prefilter 
contains a prefilter ii(x) for some x SX. 

Ultracomplete spaces are complete, the converse need however not be 
true [7]. 

A fuzzy uniform space is called weakly Hausdorff if it fulfils WT2 [13], 
i.e., for any x , | / 6 l , x ^ y there exists v G il such that v{x, y) < 1. 

In this work we shall be occupied mainly with the fuzzy uniform 
hyperspace of uppersemicontinuous fuzzy sets on a classical uniform 
space (X, I/), i.e., with the space $gi(X) [9]. Since we shall only work 
with the global structure and not with the horizontal structure of [8] 
we shall moreover always drop the suffix gl in our notations. Our main 
interest lies in two particular subspaces of $(X). First we consider 
the subspace $ c ( ^ ) of those fuzzy sets in ${X) which have compact 
support [2], i.e., 

$C(X) := {fi e ^(J\T)|>L*-1]0,1] compact}, 

and second we consider the subspace $w (X) of so-called Weiss-com­
pact fuzzy sets in $(X) [12], i.e., which have compact nonzero levelsets, 

&w{X) := {/i e $(X)|Va € J0 : A*-1^, 1] compact}. 
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Finally we recall that if U € U and a E Io then we put 

Ba:={{s,t)\\s-t\\<a} 

U ® Ba := {{(x,s),(y,t))\{x,y) eU,(s,t) e Ba}. 

As in [9] if U is an entourage on a basic space then U denotes the in­
duced entourage on the hyperspace and as in [1] U denotes the induced 
entourage on the completion. 

2. Completeness properties of 4>C(X) and 4>w(X). We begin 
by stating the theorem which we intend to prove in this section 

THEOREM 2.1. The following are equivalent: 
(1) X is complete; 
(2) $w{X) is ultracomplete; 
(3) $w{X) is complete; 
(4) $c{X) is complete. 

For clarity we shall scatter the proof of this theorem over a number 
of propositions. 

In order to prove the first of these propositions we have to make some 
notational conventions and preliminary observations. 

We know that the uniform modification of ${X) is isomorphic to 
a closed subspace of the uniform hyperspace of all closed sets in 
X x I (Theorem 5.2 [9]) and it will be advantageous to exploit this 
isomorphism. It is given by the map 

g : *(X) - 7{X x /) 

where £(/*) := {(x,t)\t < ß{x)} and where 7{X x / ) is equipped with 
the Hausdorff-Bourbaki hyperspace structure on closed sets [10]. Now 
if # is a filter on §($w(X)) then we shall associate with it a filter on 
X x J in the following way. 

Put 
y^ :2s(*iv(x)) _ > 2 X x / 

F - £(F) := [J F 
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and define 
E ( * ) : = [ { E ( P ) | F € * } ] . 

That E(^) is indeed a filter on X x J is an easy verification which we 
leave to the reader. 

We shall also require a measure of the extent to which xp contains 
"vertically" small members. Hereto we define 

*(¥) := sup [s G I0\X x [0,e] £ E ( ¥ ) } . 

Remark that if # is the prefilter on $w (X) corresponding to ¥ then 
actually *(¥) = a($) as in [9]. 

Finally we shall also adhere to the following notational convention. 
If A C X x / and a € I0 then 

Aa := {x G X\3t >a:{x,t)e A}. 

In case A is the endograph of some fuzzy set /i then Aa is nothing else 
than /i_1[a, 1]. 

PROPOSITION 2.2. If X is complete then $w(X) is ultracomplete, 

REMARK. The proof of this result is heavily inspired by the paper 
[11] of K. Morita. 

PROOF. By Theorem 5.2 [9] is suffices to prove that 9(®w(X)) is 
complete. 

Let ¥ be a Cauchy filter on Q{$W{X)). 

Case 1. t(9) = 0. Fix U G 3U and a G I0. Then we can find F G ^ 
such that 

E ( F ) c X x [ 0 , a [ 

C ( C / 0 ß a ) ( I x { O } ) 

which implies that for all F G F 

{F,Xx{0})eUr®Ba. 
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By arbitrariness of U G aU and a £ Jo this proves that $ - ^ I x {0}. 
Note that t(^f) = 0 obviously already implies that \£ is Cauchy. 

Case 2. t{rß) > 0. 

Assertion 1. For any e < £(#), any ultrafilter finer than £ (# ) which 
does not contain X x [0, e] is Cauchy. 

From the fact that X x [0, e] & £ (# ) it is clear that an ultrafilter, say 
M, fulfilling the suppositions exists. We shall prove M is Cauchy. Let 
U G sli and a E Io be fixed, put 

and choose W,V € SU such that 

WoW CU 

VoVcW 

Take F € # such that 
F x F c F ® 5 ^ 

and take F e F . Then 

(2.1) X{F)cV ®Bß(F) 

and consequently 

(2.2) V ® B 0 ( F ) € E ( ¥ ) c M 

Since (F2 /? x [2/?, 1])DF is compact it contains a finite subset S such 
that 

(F2f3x{2ß,l])nFc (J VOB/KM) 
(x,t)€5 

which implies 

{x,t)es 

and consequently 

(2.3) F ® B ^ F ) C ( ( J W (8) fla/*(s, 0 ) U {X x [0,3/?]). 
(x,t)€5 
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Since X x [0, Sß] <£ M it follows from (2.2) and (2.3) that there exists 
(x, t) G S such that 

W®B2ß(x,t) G M 

Finally since 

W 0 B2ß{x, t)xW® B2ß{x, t)cU®Ba 

and by the arbitrariness of U G 3U and a E Io this proves X is indeed 
Cauchy. 

Assertion 2. K := C\LG^(^) ^ G 5(*w(-X"))-

That üf is an endograph is easily seen so that we only need to show 
it has compact "levelsets." 

Let 6 G Io be fixed. Then in order to show this it will suffice to prove 
that (K6 x [6,1]) Ci K is compact which, in turn, by completeness of 
X x I and the obvious fact that (K6 x [6,1]) n K is closed means it is 
sufficient to show precompactness. 

Let U G SU and a € Jo be fixed, choose e < t(&) A 6 and let ß G Io, 
V, W € sii, F G # , F G F and S C (F2/? x [2/?, l ] ) n f be as in the proof 
of Assertion 1. Then we have from (2.1) and (2.3) 

KcZ{F)cV®Bß(F) 

C ( ( J W®B2ß{x,t)) U (X x [0,30\). 
(xtt)es 

Since € < 6 this implies 

(K6 x[6,l])DKc ( J W ® B 2 / ? ( M ) 
(rc,t)6S 

C ( J U®Ba(x,t), 
(x,t)es 

which proves the second assertion. 

Assertion 3. % -+ K. 
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Let again U G SU and a G IQ be fixed and V G sli be such that 
V o V C £7. Put 2/? := a. Since * is Cauchy we can find F G f such 
that for all F G F 

E ( P ) C V « B ^ ) , 

which in turn implies that for all (x, s) G E (F) and for all F G F there 
exists (y, t) E F such that ((x, 5), (y, t)) G V" (8) JB/?. 

Now llx(x,s) G E(F) then for any L G # choosing F G F fi L we 
thus have 

FnV®Bß(x,s)^Q 

and consequently 
E ( L ) n V r ( 8 ) ^ ( x , s ) ^ 0 . 

Together with the obvious fact that for any L, K G # : E(L) H E(K) = 
E(L U K), this proves that 

7 (x , s ) := [{E(L)nV®B/?(a; ,«) |LG*}] 

is a well defined filter o n l x / , which by construction is moreover finer 
than E(*) . 

The adherence of this filter is nonempty; indeed if s < ß then 
obviously 

(x,0) € p | E ( L ) n V « B ^ ( x , a ) 

so that we may now suppose s > ß. In that case since for any 
(y,t) G V ® Bß(xis) we have |£ — s\ < ß it follows that if we put 
e := s - ß then X x [0, e] £ 7(x, s). 

If M is an ultrafilter finer than 7(x, s) and which does not contain 
X x [0,£] then since also M D E(\I>) it follows from Assertion 1 that 
M is Cauchy and thus by completeness of X x J it has a nonempty 
adherence. Since J(x, s) C M this proves our claim. 

Consequently for any (x, s) G E(F) we now have 

Kf)V®Bß(x,s) = ( f | L)f)V®Bß(x,s) 

L€£(*) 

and consequently for any (x, s) G E(F): 

Üfn l7®ßa(z , s ) 7*0, 
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which in turn implies that for any F G F: 

(2.5) FcU®Ba(K). 

On the other hand by (2.4) and also for any F G F 

KcW)cV9Bß(F) 

cU®Ba(F). 

Together (2.5) and (2.6) prove that for all F G F: 

(K,F)eU'®Ba 

which by the arbitrariness of U G 8U and a G Jo shows \I> —• K. 
This ends the proof of the proposition. 

PROPOSITION 2.3. If$w(X) is complete then $C(X) is complete. 

PROOF. Let 5 be a Cauchy prefilter on $C(X) and let ($) denote 
the prefilter which it generates on $w(X). We leave it to the reader 
to verify that this prefilter is again Cauchy (on $ j y P 0 ) a n d that 
c~(< $ >) = c~(3r). This goes by straightforward verification. If 
c~ (£) = 0 there is nothing to prove. 

Let c~(Sr) > 0 and let e G]0, C~($)[. By completeness of $w(X) we 
can find /i G $w {X) such that 

l i m < £ > (//) >c-($)-e. 

Now in case sup/z < e put /ie := 0 and in case sup/i > s put 
/ i e : = fi A l M - i [ £ , i ] . 

In both cases /ie G $ c p 0 and e(/i,/ie) < £. Consequently from 
Lemma 4.9 [9] and Remark (2) following the proof of Theorem 4.3 (c) 
[9], it follows that first 

l imw(t( (5)) ) (M)>c-(»)-e 

and consequently that second 

lim(3)(jie) = c"(5) Alimw(t((5)))(M€) 
> c"( î) A limu;(i«3)))(/i) A (1 - e(//,/ie)) 

> c"(5) A (c"(S) - e) A (1 - e) = (T(3) - e. 



HYPERSPACES OF COMPACT FUZZY SETS 651 

Since obviously lim^/ig) = lim(Sr)(/ie) this proves that 

sup lim 5 ( 0 = c-(3) 

and thus $ C P 0 is complete. 

In the next proposition we shall denote <p the canonical injection of 
X into ^c(X), i.e., <p(x) := l ^ j (see also [9]). 

PROPOSITION 2.4. If$c(X) is complete then X is complete. 

PROOF. If 7 is a Cauchy filter on X then a straightforward verification 
shows that u){ip{7)) is hyper Cauchy and consequently Cauchy on 
$C(X). Thus we have 

sup limcj(<p(7))(£) = 1. 
€€*cP0 

By Theorem 6.1 [9] this implies there exists £ G ${X) such that 

l ima ; (^>) ) (0 = l. 

Again staightforward verification shows this is equivalent to 

l imu/(p( /))(0 = 1 

(actually this equivalence holds in any fuzzy neighborhood space) and 
consequently by Theorem 4.2 [9] we have 

<p(7) - £ in tumU)). 

But since l ^ x ) € <p{7) and £>(X) is t,u($(U))-closed it follows that 
£ G <£>P0, i.e., there exists x € X such that £ = 1{X}. Clearly J —• x. 

3. Completion of <I>c(X). In the previous section we have seen 
that *c(-X") is complete if and only if X is complete. However since 
a complete space need not be ultracomplete and since the completion 
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constructed in [7] is automatically ultracomplete, the question-even for 
a complete X-poses itself whether we can describe the completion of 
$c{X) in a concise concrete way. That this is indeed the case shall be 
shown in this section 

Let X be arbitrary, i.e., not necessarily complete and let X be its 
completion. 

From the elementary fact that compactness is absolute, i.e., indepen­
dent of the superspace, the following map is well defined 

i:*c{X)^*w(X), 

where i(ß){x) = ß{x) if x E X and i{ß){x) = 0 if x &. X. Remark 
moreover that actually i($c{X)) C &C(X) and that i is an embedding; 
in particular for any U € SU and a G Jo we have 

( i x i r 1 ( w ( M ) = w ( M ' 

THEOREM 3.1. In the category of fuzzy uniform spaces and maps 
the pair (i,$w{X) is universal for $C{X) with respect to the full 
subcategory of weakly Hausdorff ultracomplete spaces, i.e., 

REMARK. That the first claim of the theorem implies the isomor­
phism between $C(X) and $w{X) is a purely categorical result which 
follows immediately from the results of [7]. 

PROOF. In order to verify this first claim let (y,ii) be a weakly 
Hausdorff ultracomplete fuzzy uniform space and let 

*c(X)±Y 

be a uniformly continuous map. 
We shall prove that there exists a unique uniformly continuous fac­

torization / over $w(X), i.e., such that / oi = f. 

Step 1. Construction of f. 
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Let fi G $w [X) be fixed. 

Assertion 1. For any U G aU and a G Io there exists fi(u,a) £ $ c P 0 
such that W/£)a)(i(M(i/,a))>/-0 = 1. Indeed in case // - 1[a, 1] = 0 put 
P(u,a) : = 0- Then 

"{û^^iu,«)),») > (1 - e(i(/i(t/,a))>M) + a) A 1 = 1. 

In case /i_1[a, 1] ^ 0, for any & G No put 

Cfc—jT1 [fa*. (* + !)«[ 

and let 

K:={keNo\Ck^0}. 

Choose V E 8U such that V o V C (7. Then by the precompactness 
of Ck we can find a finite set of distinct points 

xl > • • • > xn(A:) € ^ 

such that 
n(fc) 

ftc[J *(*£). 

Since X is Hausdorff we can find W G SU, W C V such that 

W(s)rw(*) = 0 

for all 8 , t e U/b€K'{xi' • • • »xn(k)}is ^ *• ^y denseness of X we can 
then pick y^ G W(x^) for each y G { 1 , . . . , n(fc)} and k e K. 

It follows that all points yj are distinct and that for each k G K 

n(k) 

3 = 1 

Consequently the following fuzzy set 

W,a)\ ) | 0 e l s e w ] elsewhere on X 
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is well defined and clearly belongs to $C(X). Now if x £ \JkeKÌVj \J ~ 
1, . . . ,n(k)} then 

Ì(V(U,a)) -Oi<0<lù<fi> (x), 

whereas if x = y* for some k G K and j G { 1 , . . . , n(k)} then 

i{Hu,*))(ykj) - or < ß(x)) A lt/0^,2/*) 

< l*M(l£), 
which shows that i{p(u,a)) ~ a < ^ ( M ) - O n the other hand if 
x £ fjT1 [a, 1] then 

t*(x)-a<0< %(/ i ( ( / , a ) ) , 

whereas if x G /i -1[a, 1] then, taking k E K such that a; G Cfc, we can 
find j G { 1 , . . . , n(fc)} such that also x G f7(2/*0 and it follows that 

fi(x) — a <ka < nix*) 

= i(»(u,«)){yj) A l#(y*,z) < lf>(z(/i(c/,a)))W, 

which shows that also fi - a < ljj(i(fji(uia))). This proves Assertion 1. 

Now for any W G SU and ÖG/o let 

and put 

TO-KF^Iwe.MeJo}]. 

Assertion 2. u;(/(//)) is a hyper Cauchy prefilter on $C(X). 

Indeed, that W(7(A0) is a prefilter and that both (HCl) and (HC2) 
are fulfilled is clear by construction. 

To prove (HC3) let U G SU and a G I0 and take V €3U,V oV CU 
and 2/? := a. 

If MCV',/?')' ^(v,£") £ ^rv/?) t n e n ^ f°H°ws fr°m Assertion 1 and the 
remarks following the definition if i that 

U{y,oL){ß{V',/?')' V(V",/?")) 

= LÜ(U,a)(i(lJ'(V'iß'))ii{V>(V",ß"))) 

> ^ivìß)(i^(vt,ßn^)Au\v,ß)(^i(^i(v,',ß,,))) =1 
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and thus 

which proves Assertion 2. 

lF(v,ß)XlFtv,ß)-^U^ 

Now by the uniform continuity of / and the fact that (Y,il) is a 
weakly Hausdorff ultracomplete space it follows from Proposition 5.4 
[7] that 

is hyper Cauchy on Y that there exists a unique point y^ € Y such 
that 

il(2/M) C /(«(J(M))) 

or by Lemma 8.1 [7] equi valent ly, such that 

adh/(W(?M))(j /M) = l. 

Define 

Step 2. foi = f. 

Let jj, G $c(X) then based on the remarks following the definition of 
i and applying Assertion 1 once again we find that 

adh <47«M)))(/i) 

Welfo «I/o € € « c W V.*> 

- j ^ u u¥u S U P W W « ) ( * ( M ) ( V , 7 ) I M ) 
W€aU t/€ a t i VCWnU 
0€I0 a € / 0 ^ < 9 A Q 

- viïPu JjKi S U P W(^,a)(i(«(M)(V,7))>*(M)) 

= 1. 

By continuity of / it then follows that also 

a d h / M ^ / / ) ) ) ) ( / ( M ) ) = l, 

which by the construction of / , the fact that Y is weak Hausdorff and 
upon applying Corollary 8.2 [7] implies that /(/z) = f(i(ß)). 
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Step 3. f is uniformly continuous 

Let v Gii ,s G IQ and choose f G H such that 

€ * - , < " 

Then choose V e sZi, ß e io such that 

and finally take [/ € sZi, C/3 C V and 3a := ß. Fix p, ce &w{X). 

Assertion 3. There exist W e sZi, W C U, 7 e Io, 7 < a such that 

e(/(M),/(A*(HVY)))>l-e/2, 

e ( / ( 0 , / ( f W l ) ) ) > l - e / 2 . 

Indeed, from the construction of / it follows that we can find D G 8U 
and 6 € Io such that 

«/(/*)> > / ( l F ( - D i i ) ) - e / 2 , 

e ( / ( 0 ) > / ( l ^ D 6 ) ) - £ / 2 . 

The reader can easily verify that W := DnU and 7 := £ A a fulfill the 
claim of the assertion. 

Applying once again the remarks following the definition of i, Asser­
tions 1 and 3 we then have 

> tCf(P)J{l*(W,S))) A Ç(f(H(W,6)),f{Ç(W,6))) 

Ae(/(fw«)),/W)-e/2 
> (1 - e/2) A ( / x / r^OWwvri . f f lv . i ) ) - e/2 

> W(v,/J)(^(JV,-r)»f(lV,-y)) ~ £ 

^ W(t/,a) ( « V i ) ). /*) A W(û,a) (A*, ?) 

Aw (&:Q)(?,i(Ç(w,7)))-£ 

= w(&,a)0*'f)-e . 



HYPERSPACES OF COMPACT FUZZY SETS 657 

By Corollary 2.6 [4] this proves / is indeed uniformly continuous. 

Step 4. / is unique. 

Let h : $w{X) —» Y be a continuous extension of / and let 
ß 6 3>w(X) be fixed. Then by a calculation similar to the one of 
Step 2 we find 

adht(«(?-(/i)))M) = 1. 

Since h is continuous and extends / this implies 

adh/(«(?fr)))(Ä(M)) = l, 

which by the construction of / finally yields h(/j,) = f(ß). 

This ends the proof of the theorem. 
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