SOME JESSEN-BECKENBACH INEQUALITIES

JOSIP E. PEČARIĆ AND PAUL R. BEESACK

1. Introduction. In 1966 E.F. Beckenback [1] (see also [4, p.52] or [$5, \mathrm{p} .81]$ proved the following generalization of Hölder's inequality:

Let $a=\left(a_{1}, \ldots, a_{n}\right), b=\left(b_{1}, \ldots, b_{n}\right)$ be two n-tuples of positive real numbers, and p, q be real numbers such that $p^{-1}+q^{-1}=1(p>1)$. If $0<m<n$, then

$$
\begin{equation*}
\left(\sum_{1}^{n} a_{i}^{p}\right)^{1 / p}\left(\sum_{1}^{n} a_{i} b_{i}\right)^{-1} \geq\left(\sum_{1}^{n} \tilde{a}_{i}^{p}\right)^{1 / p}\left(\sum_{1}^{n} \tilde{a}_{i} b_{i}\right)^{-1} \tag{1}
\end{equation*}
$$

where

$$
\tilde{a}_{i}=a_{i}(1 \leq i \leq m), \quad \tilde{a}_{i}=\left\{b_{i} \sum_{j=1}^{m} a_{j}^{p} / \sum_{j=1}^{m} a_{j} b_{j}\right\}^{q / p}(m+1 \leq i \leq n)
$$

Equality holds in (1) if and only if $\tilde{a}_{i} \equiv a_{i}$. The inequality in (1) is reversed if $p<1, p \neq 0$. For $m=1$, (1) reduces to Hölder's inequality.

In this paper we shall give some generalizations of this result with \sum replaced by an isotonic linear functional. See especially Corollary 3, and Remark 4, below.
2. Main results. Let E be a nonempty set, let \AA be an algebra of subsets of E, and let L be a linear class of real-valued functions $g: E \rightarrow \mathbf{R}$ having the properties

L1: $f, g \in L \Rightarrow(a f+b g) \in L$ for all $a, b \in \mathbf{R}$;
L2: $1 \in L$, that is if $f(t)=1$ for $t \in E$, then $f \in L$;
L3: $f \in L, E_{1} \in A \Rightarrow f C_{E_{1}} \in L$,
where $C_{E_{1}}$ is the characteristic function of $E_{1}\left(C_{E_{1}}(t)=1\right.$ for $t \in E_{1}$, or 0 if $t \in E \backslash E_{1}$). It follows from L2, L3 that $C_{E_{1}} \in L$ for all $E_{1} \in \mathcal{A}$. Also note that L contains all constant functions by L1, L2.

We also consider isotonic linear functionals $A: L \rightarrow \mathbf{R}$. That is, we

[^0]suppose:
A1: $A(a f+b g)=a A(f)+b A(g)$ for $f, g \in L, a, b \in \mathbf{R}$;
A2: $f \in L, f(t) \geq 0$ on $E \Rightarrow A(f) \geq 0$ (A is isotonic).
Our main tool will be the following well-known result (see [2] for example).

Jessen's Inequality. Let L satisfy properties L1, L2 on a nonempty set E, and suppose ϕ is a convex function on an interval $I \subset \mathbf{R}$. If A is an isotonic linear functional with $A(1)=1$ then, for all $g \in L$ such that $\phi(g) \in L$ we have $A(g) \in I$ and

$$
\begin{equation*}
\phi(A(g)) \leq A(\phi(g)) \tag{2}
\end{equation*}
$$

We shall also make use of the fact that if L also satisfies $L 3$, then for each $E_{1} \in \AA$ such that $A\left(C_{E_{1}}\right)>0$, the functional A_{1} defined for all $g \in L$ by $A_{1}(g)=A\left(g C_{E_{1}}\right) / A\left(C_{E_{1}}\right)$ is an isotonic linear functional with $A_{1}(1)=1$. (See also Lemma $4\left(1^{\prime}\right)$ of [2].)

THEOREM 1. Let L satisfy properties L1, L2, L3 on a nonempty set E, and suppose ϕ is convex on a closed interval $I \subset \mathbf{R}$. Let A be an isotonic linear functional with $A(1)=1$, and let J be an interval such that $\phi(I) \subset J$, and $F: J^{2} \rightarrow \mathbf{R}$ be a nondecreasing function of its first variable. Given $E_{1} \in \AA$ such that $A\left(C_{E \backslash E_{1}}\right)>0$, then for any $g \in L$ such that $\phi(g) \in L$ we have

$$
\begin{equation*}
F[A(\phi(g)), \phi(A(g))] \geq \inf _{x \in I} F\left[A\left(\phi\left(g_{E_{1}, x}\right)\right), \phi\left(A\left(g_{E_{1}, x}\right)\right)\right] \tag{3}
\end{equation*}
$$

where

$$
g_{E_{1}, x}(t)=g(t) C_{E_{1}}(t)+x C_{E \backslash E_{1}}(t)
$$

Proof. For brevity, set $E_{2}=E \backslash E_{1}$; we are assuming $A\left(C_{E_{2}}\right)>0$. We clearly have both

$$
g=g C_{E_{1}}+g C_{E_{2}}, \phi(g)=\phi(g) C_{E_{1}}+\phi(g) C_{E_{2}}
$$

Also,

$$
\phi(A(g))=\phi\left(A\left(g C_{E_{1}}\right)+A\left(g C_{E_{2}}\right)\right)=\phi\left(A\left(g C_{E_{1}}\right)+\sigma z\right)
$$

where

$$
\sigma=A\left(C_{E_{2}}\right), z=A\left(g C_{E_{2}}\right) / A\left(C_{E_{2}}\right)
$$

In addition,

$$
\begin{aligned}
A(\phi(g)) & =A\left(\phi(g) C_{E_{1}}+\phi(g) C_{E_{2}}\right)=A\left(\phi(g) C_{E_{1}}\right)+A\left(\phi(g) C_{E_{2}}\right) \\
& \geq A\left(\phi(g) C_{E_{1}}\right)+\sigma \phi(z)
\end{aligned}
$$

on using the remark following (2), but with E_{1} replaced by E_{2}.
Now, $z \in I$ because if $I=[\alpha, \beta]$ then $\alpha \leq g(t) \leq \beta$ for $t \in E$ since $\phi(g)$ is in L (hence is defined). Thus $\alpha C_{E_{2}}(t) \leq g(t) C_{E_{2}}(t) \leq \beta C_{E_{2}}(t)$ for all $t \in E$, whence $\alpha A\left(C_{E_{2}}\right) \leq A\left(g C_{E_{2}}\right) \leq \beta A\left(C_{E_{2}}\right)$ so $\alpha \leq z \leq \beta$. A simple modification shows that $z \in I$ if either $\alpha=-\infty$ or $\beta=+\infty$. It now follows from the above inequality and the nondecreasing character of $F(., y)$ that

$$
\begin{aligned}
F[A(\phi(g)), \phi(A(g))] & \geq F\left[A\left(\phi(g) C_{E_{1}}\right)+\sigma \phi(z), \phi\left(A\left(g C_{E_{1}}\right)+\sigma z\right)\right] \\
& \geq \inf _{x \in I} F\left[A\left(\phi(g) C_{E_{1}}\right)+\sigma \phi(x), \phi\left(A\left(g C_{E_{1}}\right)+\sigma x\right)\right] \\
& =\inf _{x \in I} F\left[A\left(\phi\left(g_{E_{1}}, x\right)\right), \phi\left(A\left(g_{E_{1}}, x\right)\right)\right]
\end{aligned}
$$

since

$$
\begin{aligned}
A\left(g_{E_{1}}, x\right) & =A\left(g C_{E_{1}}\right)+x A\left(C_{E_{2}}\right)=A\left(g C_{E_{1}}\right)+\sigma x \\
\phi\left(g_{E_{1}}, x\right)(t) & =\phi\left(g(t) C_{E_{1}}(t)+x C_{E_{2}}(t)\right)=\phi(g(t)) C_{E_{1}}(t)+\phi(x) C_{E_{2}}(t)
\end{aligned}
$$

REMARK 1. There are clearly many variations and generalizations of Theorem 1 which have essentially the same proof. For example, if $F(., y)$ is nonincreasing for each $y \in J$, then in place of (3) we have

$$
F[A(\phi(g)), \phi(A(g))] \leq \sup _{x \in I} F\left[A\left(\phi\left(g_{E_{1}, x}\right)\right), \phi\left(A\left(g_{E_{1}, x}\right)\right)\right]
$$

This also follows from (3) just by replacing F there by $F_{1}=-F$.
For another, more extensive, generalization suppose $E_{1} \in \AA$ for $1 \leq i \leq n$ with $E_{i} \cap E_{j}=\emptyset(i \neq j)$ and $E=\bigcup_{1}^{n} E_{i}$. By setting $\sigma_{i}=A\left(C_{E_{1}}\right), z_{i}=A\left(g C_{E_{1}}\right) / A\left(C_{E_{i}}\right)$ (where we assume all $\sigma_{i}>0$), we find under the hypotheses of Theorem 1 that if $x=\left(x_{1}, \ldots, x_{n}\right)$,

$$
\begin{equation*}
F[A(\phi(g)), \phi(A(g))] \geq \inf _{x \in I^{n}} F\left[\sum_{1}^{n} \sigma_{i} \phi\left(x_{i}\right), \phi\left(\sum_{1}^{n} \sigma_{i} x_{i}\right)\right] \tag{4}
\end{equation*}
$$

If we set

$$
g_{E_{1}, \ldots E_{n}, x}(t)=\sum_{i=1}^{n} x_{i} C_{E_{i}}(t)
$$

the right-hand side of (4) can be written as

$$
\inf _{x \in I^{n}} F\left[A\left(\phi\left(g_{E_{1}, \ldots, E_{n}, x}\right)\right), \phi\left(A\left(g_{E_{1}, \ldots, E_{n}, x}\right)\right)\right]
$$

Note, however, that this value is independent of the function g and so provides a lower bound for the left-hand side of (4) which is valid for all admissible $g \in L$. Similarly, if $F(., y)$ is nonincreasing, then instead of (4) we have

$$
F[A(\phi(g)), \phi(A(g))] \leq \sup _{x \in I^{n}} F\left[\sum_{1}^{n} \sigma_{i} \phi\left(x_{i}\right), \phi\left(\sum_{1}^{n} \sigma_{i} x_{i}\right)\right]
$$

There are other variations which are intermediate between (3) and (3'). For example, if $1 \leq m<n$, and we set $\tilde{x}_{m}=\left(x_{m+1}, \ldots, x_{n}\right)$ and

$$
g_{E_{1}, \ldots, E_{n}, \tilde{x}_{m}}(t)=\sum_{i=1}^{m} g(t) C_{E_{i}}(t)+\sum_{j=m+1}^{n} x_{j} C_{E_{j}}(t)
$$

then we can prove under the hypotheses of Theorem 1 that

$$
\begin{gather*}
F[A(\phi(g)), \phi(A(g))] \leq \sup _{\tilde{x}_{m} \in I^{n-m}} F\left[A\left(\phi\left(g_{E_{1}, \ldots, E_{n}, \tilde{x}_{m}}\right)\right),\right. \tag{5}\\
\left.\phi\left(A\left(g_{E_{1}, \ldots, E_{n}, \tilde{x}_{m}}\right)\right)\right]
\end{gather*}
$$

Finally, we observe that in (3), (4) or (5) the lower bounds on the right-hand sides depend on the subsets $E_{i} \subset E$ (with $E_{i} \in$ Я), and a possible larger bound (hence a better result) might be obtained by allowing the sets E_{i} to vary. For example, by (3) we have
(6) $F[A(\phi(g)), \phi(A(g))] \geq \sup _{E_{1} \in A_{1}}\left\{\inf _{x \in I} F\left[A\left(\phi\left(g_{E_{1}, x}\right)\right), \phi\left(A\left(g_{E_{1}, x}\right)\right)\right]\right\}$,
where $A_{1}=\left\{E_{1} \in A: A\left(C_{E \backslash E_{1}}>0\right\}\right.$.
We now give an upper bound for $F[A(\phi(g)), \phi(A(g))]$ which, unlike that in (3^{\prime}), holds under the same hypotheses on F as in Theorem 1.

TheOrem 2. Let all the conditions of Theorem 1 be satisfied, but with $I=[m, M]$ a compact interval, so $m \leq g(t) \leq m$ for all $t \in E$. Then if $\sigma=A\left(C_{E \backslash E_{1}}\right)>0$,

$$
\begin{align*}
& F[A \phi(g)), \phi(A(g))] \leq \sup _{0 \leq \theta \leq \sigma} F\left[A\left(\phi(g) C_{E_{1}}\right)\right. \tag{7}\\
& \left.+\theta \phi(m)+(\sigma-\theta) \phi(M), \phi\left(A\left(g C_{E_{1}}\right)+\theta m+(\sigma-\theta) M\right)\right] .
\end{align*}
$$

Proof. As in the proof of Theorem 1 we set $E_{2}=E \backslash E_{1}$. Now let $d(t)=(M-g(t)) /(M-m)$, so $g(t)=m d(t)+M(1-d(t))$, and set $\beta=A\left(d C_{E_{2}}\right)$. Then

$$
\begin{aligned}
\phi(A(g)) & =\phi\left(A\left(g C_{E_{1}}\right)+A\left[(m d+M(1-d)) C_{E_{2}}\right]\right) \\
& =\phi\left(A\left(g C_{E_{1}}\right)+m \beta+M(\sigma-\beta)\right) .
\end{aligned}
$$

Also, using the convexity of ϕ on I,

$$
\begin{aligned}
A(\phi(g)) & =A\left[\phi(g) C_{E_{1}}+\phi(g) C_{E_{2}}\right] \\
& =A\left[\phi(g) C_{E_{1}}+\phi(m d+M(1-d)) C_{E_{2}}\right] \\
& \leq A\left[\phi(g) C_{E_{1}}+\{d \phi(m)+(1-d) \phi(M)\} C_{E_{2}}\right] \\
& =A\left(\phi(g) C_{E_{1}}+\phi(m) A\left(d C_{E_{2}}\right)+\phi(M) A\left((1-d) C_{E_{2}}\right)\right. \\
& =A\left(\phi(g) C_{E_{1}}\right)+\beta \phi(m)+(\sigma-\beta) \phi(M) .
\end{aligned}
$$

Since $0 \leq d(t) \leq 1$, we have $0 \leq \beta=A\left(d C_{E_{2}}\right) \leq A\left(C_{E_{2}}\right)=\sigma$. The result (7) now follows from this, the nondecreasing character of $F(., y)$, and the last two displayed results.

COROLLARY 1. If $F(., y)$ is nonincreasing on J for each $y \in J$, but all other conditions of Theorem 2 are satisfied, then

$$
\begin{align*}
& F[A(\phi(g)), \phi(A(g))] \geq \inf _{0 \leq \theta \leq \sigma} F\left[A\left(\phi(g) C_{E_{1}}\right)\right. \\
& \quad+\theta \phi(m)+(\sigma-\theta) \phi(M), \phi\left(A\left(g C_{E_{1}}\right)+\theta m+(\sigma-\theta) M\right]
\end{align*}
$$

where $\sigma=A\left(C_{E \backslash E_{1}}\right)$
This follows by applying (7) to the function $F_{1}=-F$.
We note that the special case $E_{1}=\emptyset$ of Theorem 2 was proved as Theorem 1 in [6]. If we note that $\sigma=\sigma_{E_{1}}$ and denote the right-hand
side of (7) by $H\left(E_{1}\right)$, we obtain the best (least) upper bound for $F[A(\phi(g)), \phi(A(g))]$ under the hypotheses of Theorem 2 as

$$
F[A(\phi(g)), \phi(A(g))] \leq \inf _{E_{1} \in \mathcal{A}_{1}} H\left(E_{1}\right),
$$

where $A_{1}=\left\{E_{1} \in A: A\left(C_{E \backslash E_{1}}\right)=\sigma_{E_{1}}>0\right\}$.
A generalization of Jessen's inequlaity for convex functions of several variables was given in 1937 by E.J. McShane [3].

McShane's Inequality. Let ϕ be a convex function on a closed, convex set $U \subset \mathbf{R}^{n}$. Let L satisfy properties L1, L2 on a nonempty set E, and let $A: L \rightarrow \mathbf{R}$ be an isotonic linear functional with $A(1)=1$. Set $\tilde{L}=\left\{G=\left(g_{1}, \ldots, g_{n}\right): g_{i} \in L\right.$ for $\left.1 \leq i \leq n\right\}$, and define $\underline{A}: \tilde{L} \rightarrow \mathbf{R}^{n}$ by $\underline{A}(G)=\left(A\left(g_{1}\right), \ldots, A\left(g_{n}\right)\right)$. Then \underline{A} is a linear operator on the linear class \tilde{L}. For any $G \in \tilde{L}$ for which $\phi(G) \in L$ we have $\underline{A}(G) \in U$, and

$$
\begin{equation*}
\phi(A(G)) \leq A(\phi(G)) . \tag{8}
\end{equation*}
$$

Theorem 3. Let L satisfy properties L1, L2, L3 on a nonempty set E, and let $\phi, A, \underline{A}, G$ be as in McShane's Inequality, and J be an interval such that $\phi(U) \subset J$ and $F: J^{2} \rightarrow \mathbf{R}$ be a nondecreasing function of its first variable. Given $E_{1} \in \AA$ such that $A\left(C_{E \backslash E_{1}}\right)>0$ then, for any $G \in \tilde{L}$ such that $\phi(G) \in L$, we have

$$
F[A(\phi(G)), \phi(\underline{\mathrm{A}}(G))] \geq \inf _{\underline{\mathrm{x}} \in U} F\left[A\left(\phi\left(G_{E_{1}, \underline{\mathrm{x}}}\right)\right), \phi\left(\underline{\mathrm{A}}\left(G_{E_{1}, \underline{\mathrm{x}}}\right)\right)\right],
$$

where $G_{E_{1}, \underline{x}}(t)=G(t) C_{E_{1}}(t)+\underline{x} C_{E \backslash E_{1}}(t)$.
Proof. The proof is similar to the proof of Theorem 1, and we merely outline the differences. Set $E_{2}=E \backslash E_{1}$ and $\sigma=A\left(C_{E_{2}}\right)$. Then

$$
\begin{aligned}
& \phi(\underline{\mathrm{A}}(G))=\phi\left(\underline{\mathrm{A}}\left(G C_{E_{1}}\right)+\sigma \underline{\mathrm{z}}\right), \underline{\mathrm{z}}=\underline{\mathrm{A}}\left(G C_{E_{2}}\right) / A\left(C_{E_{2}}\right), \\
& A(\phi(G))=A\left(\phi(G) C_{E_{1}}\right)+A\left(\phi(G) C_{E_{2}}\right) \geq A\left(\phi(G) C_{E_{1}}\right)+\sigma \phi(\underline{\mathrm{z}}),
\end{aligned}
$$

since $A_{1}(g)=A\left(g C_{E_{2}}\right) / A\left(C_{E_{2}}\right)$ is an isotonic linear functional on L with $A_{1}(1)=1$; hence McShane's inequality (8) applies to the operator $\underline{\mathrm{A}}_{1}: \tilde{L} \rightarrow \mathbf{R}^{n}$ defined by $\underline{\mathrm{A}}_{1}(G)=\left(A_{1}\left(g_{1}\right) \ldots, A_{1}\left(g_{n}\right)\right)=$ $\underline{\mathrm{A}}\left(G C_{E_{2}}\right) / \hat{A}\left(C_{E_{2}}\right)$. Moreover, by McShane's result, we have $\underline{z}=$
$\underline{\mathrm{A}}_{1}(G) \in U$. The rest of the proof remains unchanged except for notation.
3. Some applications. First we shall give four applications of Theorem 1.

Corollary 2. Let L satisfy properties L1, L2, L3 on a nonempty set E and let A be an isotonic functional on L. Suppose $E_{1} \in A$ has $A\left(C_{E_{2}}\right)>0$, where $E_{2}=E \backslash E_{1}$. Then for each nonnegative $g \in L$ such that $g^{p} \in L(p>1)$ and $A\left(g C_{E_{1}}\right)>0$ we have

$$
\begin{equation*}
A\left(g^{p}\right)^{1 / p} / A(g) \geq A\left(g_{E_{1}}^{p}\right)^{1 / p} / A\left(g_{E_{1}}\right) \tag{9}
\end{equation*}
$$

where

$$
g_{E_{1}}(t)=g(t) C_{E_{1}}(t)+\left\{A\left(g^{p} C_{E_{1}}\right) / A\left(g C_{E_{1}}\right)\right\}^{1 /(p-1)} \cdot C_{E_{2}}(t) .
$$

Proof. First observe that $A(g) \geq A\left(g C_{E_{1}}\right)>0$ and $A\left(g_{E_{1}}\right)>$ $A\left(g C_{E_{1}}\right)>0$, so both sides of (9) are well-defined. Apply Theorem 1 with A replaced by $A_{1}(g)=A(g) / A(1), F(x, y)=x^{1 / p} / y^{1 / p}, \phi(x)=x^{p}$, with $I=J=[0, \infty)$. Then (3) reduces to

$$
\begin{equation*}
A\left(g^{p}\right)^{1 / p} / A(g) \geq \inf _{x \in I} A\left(g_{E_{1}, x}^{p}\right)^{1 / p} / A\left(g_{E_{1}, x}\right) \tag{10}
\end{equation*}
$$

where

$$
g_{E_{1}, x}(t)=g(t) C_{E_{1}}(t)+x C_{E_{2}}(t) .
$$

Hence

$$
g_{E_{1}, x}^{p}(t)=g^{p}(t) C_{E_{1}}(t)+x^{p} C_{E_{1}}(t) .
$$

By elementary calculus one finds that the minimum value of

$$
k(x)=\left\{A\left(g^{p} C_{E_{1}}\right)+x^{p} A\left(C_{E_{2}}\right)\right\}^{1 / p} /\left\{A\left(g C_{E_{1}}\right)+x A\left(C_{E_{2}}\right)\right\}
$$

for $x \geq 0$ occurs for $x=\left\{A\left(g^{p} C_{E_{1}}\right) / A\left(g C_{E_{1}}\right)\right\}^{1 /(p-1)}$, whence (9) follows from (10).

Remark 2. As an example of (4) of Remark 1 for the case of Corollary 2, we take $n=2$. Under the additional assumption that $\sigma_{1}=A_{1}\left(C_{E_{1}}\right)>0$ (with $A_{1}=A / A(1)$), (4) reduces to

$$
A\left(g^{p}\right)^{1 / p} / A(g) \geq \inf _{x_{1}, x_{2} \geq 0} \frac{\left\{A\left(C_{E_{1}}\right) x_{1}^{p}+A\left(C_{E_{2}}\right) x_{2}^{p}\right\}^{1 / p}}{A\left(C_{E_{1}}\right) x_{1}+A\left(C_{E_{2}}\right) x_{2}} .
$$

For $x_{1}=0$, the term on the right-hand side has the value $A\left(C_{E_{2}}\right)^{-1 / q}$, where $q^{-1}+p^{-1}=1$. For $x_{1}>0$, by setting $x=x_{2} / x_{1}$, we are concerned with

$$
\inf _{x \geq 0}\left\{A\left(C_{E_{1}}\right)+A\left(C_{E_{2}}\right) x^{p}\right\}^{1 / p}\left\{A\left(C_{E_{1}}\right)+A\left(C_{E_{2}}\right) x\right\}
$$

By a comparison with $k(x)$ above, this infimum is attained for $x=1$, and has the value $A(1)^{1 / p} / A(1)=A(1)^{-1 / q}$. Since $A(1) \geq A\left(C_{E_{2}}\right)$ we can conclude that

$$
\begin{aligned}
A\left(g^{p}\right)^{1 / p} / A(g) & \geq A(1)^{-1 / q} \\
& \text { or } \\
A(g) & \leq A\left(g^{p}\right)^{1 / p} \cdot A(1)^{1 / q}
\end{aligned}
$$

This is, of course, just a special case of the generalized Hölder inequality given in [2;Th. 7].

COROLLARY 3. Let L satisfy properties L1, L2, L3 on a nonempty set E, and let A be an isotonic linear functional on L. Suppose the nonnegative functions $f, g: E \rightarrow \mathbf{R}$ are such that $f^{p}, g^{q}, f g \in L$, where $p>1, p^{-1}+q^{-1}=1$. Suppose also that $E_{1} \in A$ has $A\left(f g C_{E_{1}}\right)>0$ and $A\left(g^{q} C_{E_{2}}\right)>0$ where $E_{2}=E \backslash E_{1}$. Then

$$
\begin{equation*}
A\left(f^{p}\right)^{1 / p} / A(f g) \geq A\left(\tilde{f}_{E_{1}}^{p}\right)^{1 / p} / A(\tilde{f} g) \tag{11}
\end{equation*}
$$

where

$$
\tilde{f}_{E_{1}}(t)=f(t) C_{E_{1}}(t)+\left\{g(t) A\left(f^{p} C_{E_{1}}\right) / A\left(f g C_{E_{1}}\right)\right\}^{q / p} \cdot C_{E_{2}}(t)
$$

Proof. We shall apply Corollary 2 to the functional $A_{1}\left(g_{1}\right)$ defined, for certain $g_{1}: E \rightarrow \mathbf{R}$ by $A_{1}\left(g_{1}\right)=A\left(k g_{1}\right) / A(k)$, with $k=g^{q} \in L$. We have $A(k) \geq A\left(g^{q} C_{E_{2}}\right)>0$. By Lemma $4\left(1^{\prime}\right)$ of [2], with $\phi(u)=u^{p}$ convex on $I=[0, \infty]$, we have

$$
\left\{A\left(g^{q} g_{1}\right) / A\left(g^{q}\right)\right\}^{p} \leq A\left(g^{q} g_{1}^{p}\right) / A\left(g^{q}\right)
$$

for all functions $g_{1}: E \rightarrow \mathbf{R}$ for which $g^{q} g_{1} \in L$ and $g^{q} g_{1}^{p} \in L$. We note that this is precisely the inequality corresponding to (2) for the functional $A_{1}\left(g_{1}\right)$ and $\phi(u)=u^{p}$, and this in turn implies the validity of Theorem 1 , hence also of Corollary 2 for A_{1}. We may thus apply

Corollary 2 with the function g replaced by $g_{1}=f g^{-q / p}$ since we do have $A_{1}\left(g_{1} C_{E_{1}}\right)>0$ and $A_{1}\left(C_{E_{2}}\right)>0$ as required
Now $g^{q} g_{1}=f g$ and $g^{q} g_{1}^{p}=f^{p}$, so

$$
A_{1}\left(g_{1}^{p}\right)=A\left(f^{p}\right) / A\left(g^{q}\right), A_{1}\left(g_{1}\right)=A(f g) / A\left(g^{q}\right)
$$

It is easy to verify that (9), with A, g replaced by A_{1}, g, reduces to

$$
\begin{equation*}
A\left(f^{p}\right)^{1 / p} / A(f g) \geq A\left(g^{q} \tilde{g}_{E_{1}}^{p}\right)^{1 / p} / A\left(g^{q} \tilde{g}_{E_{1}}\right) \tag{12}
\end{equation*}
$$

where

$$
\tilde{g}_{E_{1}}(t)=g_{1}(t) C_{E_{1}}(t)+\left\{A\left(f^{p} C_{E_{1}}\right) / A\left(f g C_{E_{1}}\right)\right\}^{1 /(p-1)} \cdot C_{E_{2}}(t)
$$

Hence, using the fact that $1 /(p-1)=q-1=q / p$, we find that

$$
\begin{aligned}
& g^{q} \tilde{g}_{E_{1}}=g\left\{f C_{E_{1}}+\left[g A\left(f^{p} C_{E_{1}} / A\left(f g C_{E_{1}}\right)\right]^{q / p} C_{E_{2}}\right\}=g \tilde{f}_{E_{1}},\right. \\
& g^{q} \tilde{g}_{E_{1}}^{p}=f^{p} C_{E_{1}}+\left[g A\left(f^{p} C_{E_{1}}\right) / A\left(f g C_{E_{1}}\right)\right]^{q} C_{E_{2}}=\tilde{f}_{E_{1}}^{p}
\end{aligned}
$$

so (11) follows from (12).
REmARK 3. As in Remark 2, the inequality (4) for the case $n=2$, reduces in this case to

$$
A\left(f^{p}\right)^{1 / p} / A(f g) \geq \inf _{x_{1}, x_{2} \geq 0} A\left(g^{q} \tilde{g}_{E_{1}, E_{2}, x}\right)^{1 / p} / A\left(g^{q} \tilde{g}_{E_{1}, E_{2}, x}\right),
$$

with

$$
\tilde{g}_{E_{1}, E_{2}, x}=x_{1} C_{E_{1}}+x_{2} C_{E_{2}}
$$

Again, the infimum is attained for $x_{1}=x_{2}$, and now has the value $A\left(g^{q}\right)^{1 / p} / A\left(g^{q}\right)=A\left(g^{q}\right)^{-1 / q}$. The inequality thus reduces to the generalized Hölder inequality

$$
A(f g) \leq A\left(f^{p}\right)^{1 / p} \cdot A\left(g^{q}\right)^{1 / q}
$$

REMARK 4. Beckenback's inequality (1) is the special case of Corollary 3 corresponding to the choice $E=\{1,2, \ldots, n\}, E_{1}=\{1,2, \ldots, m\}$ (where $1 \leq m<n$), $L=\mathbf{R}^{n}$, the vector space of all real n-vectors $a=\left(a_{1}, \ldots, a_{n}\right)$, and $A(a)=\sum_{1}^{n} a_{i}$.

COROLLARY 4. Let the conditions of Corollary 2 be satisfied, except that now $A\left(g C_{E_{1}}\right)=0$ may hold. Given $p>1, q=p /(p-1)$, and $\beta \geq 0$ such that $A\left(C_{E_{2}}\right) \beta^{q}<1$ we have

$$
\begin{equation*}
A\left(g^{p}\right)^{1 / p}-\beta A(g) \geq A\left(\tilde{g}_{E_{1}}^{p}, \beta\right)^{1 / p}-\beta A\left(\tilde{g}_{E_{1}, \beta}\right) \tag{13}
\end{equation*}
$$

where
$\tilde{g}_{E_{1}, \beta}=G C_{E_{1}}+x_{\beta} C_{E_{2}}$ with $x_{\beta}=\left\{\beta^{q} A\left(g^{p} C_{E_{1}}\right) /\left[1-\beta^{q} A\left(C_{E_{2}}\right)\right]\right\}^{1 / p}$.
The right-hand side of (13) equals $A\left(g^{p} C_{E_{1}}\right)^{1 / p}\left[1-\beta^{q} A\left(C_{E_{2}}\right)\right]^{1 / q}-$ $\beta A\left(g C_{E_{1}}\right)$.

Proof. We apply Theorem 1 to the isotonic linear functional $A_{1}(g)=$ $A(g) / A(1)$, with $F(x, y)=x^{1 / p}-\beta A(1)^{1 / q} y^{1 / p}, \phi(x)=x^{p}, I=J=$ $[0, \infty)$. The inequality (3) reduces to

$$
\begin{equation*}
A\left(g^{p}\right)^{1 / p}-\beta A(g) \geq \inf _{x \geq 0}\left\{A\left(g_{E_{1}, x}^{p}\right)^{1 / p}-\beta A\left(g_{E_{1}, x}\right)\right\} \tag{14}
\end{equation*}
$$

where $g_{E_{1}, x}=g C_{E_{1}}+x C_{E_{2}}$, so $g_{E_{1}, x}^{p}=g^{p} C_{E_{1}}+x^{p} C_{E_{2}}$. The expression in curly brackets is

$$
K(x)=\left\{A\left(g^{p} C_{E_{1}}\right)+x^{p} A\left(C_{E_{2}}\right)\right\}^{1 / p}-\beta\left\{A\left(g C_{E_{1}}\right)+x A\left(C_{E_{2}}\right)\right\}
$$

By elementary calculus, in case $0 \leq \beta<A\left(C_{E_{2}}\right)^{-1 / q}$, we find that the minimum value of $K(x)$ for $x \geq 0$ occurs for $x=x_{\beta}$, proving (13). This minimum value reduces, after some computation, to that stated in the final sentence of the Corollary.

By proceeding as in Remark 2 (using (4) with $n=2$), we also find that

$$
\begin{aligned}
& A\left(g^{p}\right)^{1 / p}-\beta A(g) \geq 0 \text { if } \beta^{q} A(1) \leq 1 \\
& A\left(g^{p}\right)^{1 / p}-\beta A(g) \geq A\left(C_{E_{1}}\right)^{1 / p}\left\{\left[1-\beta^{q} A\left(C_{E_{2}}\right)\right]^{1 / q}-\beta A\left(C_{E_{1}}\right)^{1 / q}\right\}(<0)
\end{aligned}
$$

if $\beta^{q} A\left(C_{E_{2}}\right)<1 \leq \beta^{q} A(1)$. A noted following (4) the above lower bounds are valid for all $g \in L$ satisfying the corresponding hypotheses.

COROLLARY 5. Let the conditions of Corollary 3 be satisfied except that now $A\left(f g C_{E_{1}}\right)=0$ may hold. If $0<\beta^{q} A\left(g^{q} C_{E_{2}}\right)<\dot{A}\left(g^{q}\right)$, then

$$
\begin{equation*}
A\left(f^{p}\right)^{1 / p} A\left(g^{q}\right)^{1 / q}-\beta A(f g) \geq A\left(\tilde{f}_{E_{1}, \beta}^{p}\right)^{1 / p} A\left(g^{q}\right)^{1 / q}-\beta A\left(g \tilde{f}_{E_{1}, \beta}\right) \tag{15}
\end{equation*}
$$

where

$$
\begin{aligned}
\tilde{f}_{E_{1}, \beta} & =f C_{E_{1}}+x_{\beta} g^{q / p} C_{E_{2}}, \text { with } \\
x_{\beta} & =\left\{\beta^{q} A\left(f^{p} C_{E_{1}}\right) /\left[A\left(g^{q}\right)-\beta^{q} A\left(g^{q} C_{E_{2}}\right)\right]\right\}^{1 / p}
\end{aligned}
$$

The right-hand side of (15) equals

$$
A\left(f^{p} C_{E_{1}}\right)^{1 / p}\left[A\left(g^{q}\right)-\beta^{q} A\left(g^{q} C_{E_{2}}\right)\right]^{1 / q}-\beta A\left(f g C_{E_{1}}\right)
$$

Proof. Corollary 5 follows from Corollary 4, in precisely the same way as did Corollary 3 from Corollary 2 (and Lemma $4\left(1^{\prime}\right)$ of [2]) by using $A_{1}\left(g_{1}\right)=A\left(g^{q} g_{1}\right) / A\left(g^{q}\right)$ with $g_{1}=f g^{-q / p}$. We omit the details.

REMARK 5. In case $A\left(C_{E_{2}}\right)<1$ (which holds if $A(1)=1$ and $A\left(C_{E_{1}}\right)>0$) we may take $\beta=1$ in Corollaries 4 and 5. Then (13) and (15) reduce to

$$
\begin{aligned}
& A\left(g^{p}\right)^{1 / p}-A(g) \geq A\left(g^{p} C_{E_{1}}\right)^{1 / p} \cdot A\left(C_{E_{1}}\right)^{1 / q}-A\left(g C_{E_{1}}\right) \\
& \text { and } \\
& A\left(f^{p}\right)^{1 / p} A\left(g^{q}\right)^{1 / q}-A(f g) \geq A\left(f^{p} C_{E_{1}}\right)^{1 / p} A\left(g^{q} C_{E_{1}}\right)^{1 / q}-A\left(f g C_{E_{1}}\right)
\end{aligned}
$$

respectively. The second of these inequalities is a genuine refinement of the generalized Hölder inequality [2; Th. 7] for isotonic functionals since

$$
A\left(f g C_{E_{1}}\right)=A\left(f C_{E_{1}}, g C_{E_{1}}\right) \leq A\left(f^{p} C_{E_{1}}\right)^{1 / p} A\left(g^{q} C_{E_{1}}\right)^{1 / q}
$$

holds, by [2; Th. 7]. Similarly, the right-hand side of the first inequality is also nonnegative. For the case $A(f)=\int_{E} f d \mu$, the above inequalities are weak versions of inequalities of W.N. Everitt (see, for example, [4; pp. 54, 86]).
We conclude by giving an application of Theorem 2, namely
COROLLARY 6. Let L satisfy properties L1, L2, L3 on a nonempty set E, and suppose ϕ is a differentiable function on $I=[m, M](-\infty<$ $m<M<\infty)$ such that ϕ^{\prime} is strictly increasing on I. Let A be an isotonic linear functional on L with $A(1)=1$, and let $E_{1} \in A$ satisfy $A\left(C_{E_{2}}\right)>0$ where $E_{2}=E \backslash E_{1}$. If $m \leq g(t) \leq M$ for $t \in E$, where $g \in L, \phi(g) \in L$, and we set $\sigma=A\left(C_{E_{2}}\right), \mu=(\phi(M)-\phi(m)) /(M-m)$, then we have either
(a) $A\left(g C_{E_{1}}\right)_{1}+m \sigma \leq{\phi^{\prime}}^{-1}(\mu) \leq A\left(g C_{E_{1}}\right)+M \sigma$, or
(b) $m<{\phi^{\prime}}^{1}(\mu)<A\left(g C_{E_{1}}\right)+m \sigma$, or
(c) $A\left(g C_{E_{1}}\right)+M \sigma<{\phi^{\prime}}^{-1}(\mu)<M$.

Moreover, either
(16)

$$
\begin{aligned}
A(\phi(g)) & -\phi(A(g)) \leq A\left(\phi(g) C_{E_{1}}\right)+\sigma \phi(M)-\mu\left[A\left(g C_{E_{1}}\right)+\sigma M\right] \\
& +\mu \phi^{\prime^{-1}}(\mu)-\phi\left(\phi^{\prime-1}(\mu)\right)
\end{aligned}
$$

in case (a); or

$$
\begin{equation*}
A(\phi(g))-\phi(A(g)) \leq A\left(\phi(g) C_{E_{1}}\right)+\sigma \phi(m)-\phi\left(A\left(g C_{E_{1}}\right)+\sigma m\right) \tag{17}
\end{equation*}
$$

in case (b); or

$$
\begin{equation*}
A(\phi(g))-\phi(A(g)) \leq A\left(\phi(g) C_{E_{1}}\right)+\sigma \phi(M)-\phi\left(A\left(g C_{E_{1}}\right)+\sigma M\right) \tag{18}
\end{equation*}
$$ in case (c).

Proof. We apply Theorem 2 to $F(x, y)=x-y$ for $(x, y) \in \mathbf{R}^{2}$. By (7) we obtain

$$
A(\phi(g))-\phi(A(g)) \leq \sup _{0 \leq \theta<\sigma} H(\theta)
$$

where
$H(\theta)=A\left(\phi(g) C_{E_{1}}\right)+\theta \sigma(m)+(\sigma-\theta) \phi(M)-\phi\left(A\left(g C_{E_{1}}\right)+\theta m+(\sigma-\theta) M\right)$.
First we observe that if $h(\theta)=A\left(g C_{E_{1}}\right)+\theta m+(\sigma-\theta) M$, then $A\left(g C_{E_{1}}\right)+m \sigma \leq h(\theta) \leq A\left(g C_{E_{1}}\right)+M \sigma$ for $0 \leq \theta \leq \sigma$. Moreover $A\left(g C_{E_{1}}\right)+M \sigma \leq A\left(M C_{E_{1}}\right)+M A\left(C_{E_{2}}\right)=M A(1)=M$, and similarly $A\left(g C_{E_{1}}\right)+m \sigma \geq m$. In addition by the strictly increasing character of ϕ^{\prime} we have $\phi^{\prime}(m)<\mu<\phi^{\prime}(M)$, so $m<{\phi^{\prime}}^{-1}(\mu)<M$. It follows that ${\phi^{\prime}}^{-1}(\mu)$ must lie in precisely one of the three intervals listed as alternatives (a), (b), (c) in the statement of the Corollary.
In case $A\left(g C_{E_{1}}\right)+m \sigma \leq{\phi^{\prime}}^{-1}(\mu) \leq A\left(g C_{E_{1}}\right)+M \sigma$, we find $H^{\prime}(\theta)=0$ precisely when $\phi^{\prime}(h(\theta))=\mu$, that is when $\theta=\theta_{o}$ where

$$
(M-m) \theta_{o}=A\left(g C_{E_{1}}\right)+\sigma M-{\phi^{\prime}}^{-1}(\mu)
$$

Moreover $H(\theta) \leqq H\left(\theta_{o}\right)$ then holds. This leads to the bound in (16).
In case $m<\phi^{\prime=1}(\mu)<A\left(g C_{E_{1}}\right)+m \sigma(\leq h(\theta)$ for $0 \leq \theta \leq \sigma)$, we have $H^{\prime}(\theta)>0$ for $0 \leq \theta \leq \sigma$, so $H(\theta) \leq H(\sigma)$ and this leads to the bound
in (17). Similarly if $A\left(g C_{E_{1}}\right)+M \sigma<{\phi^{\prime}}^{-1}(\mu)<M$, we have $H^{\prime}(\theta)<0$ for $0 \leq \theta \leq \sigma$, so $H(\theta) \leq H(0)$ and we obtain the bound in (18).

REMARK 6. In the same way we could give generalizations of Theorem 35 and Corollaries 36, 37 from [5, pp. 136-138].

References

1. Beckenbach, E.F., On Hölder's inequality, J. Math. Anal. Appl. 15 (1966), 21-29.
2. Beesack, P.R. and Pečaric, J.E., On Jessen's inequality for convex functions, J. Math. Anal. Appl. 110 (1985), 536-552.
3. McShane, E.J., Jessen's inequality, Bull. Amer. Math. Soc. 43 (1937), 521-527.
4. Mitrinovic, D.S. (In coorperation with P.M. Vasic), Analytic Inequalities, Springer, Berlin-Heidelberg-New York, 1970.
5. Mitrinovic, D.S., Bullen, P.S., and Vasic, P.M., Means and their inequalities (Serbocroatian), Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 600 (1977), 1-232.
6. Pecaric, J.E. and Beesack, P.R., On Knopp's inequality for convex functions, Canad. Math. Bull. Vol. 30(3), 1987.

Faculty of Civil Engineering University of Beograd, Bule-var Revolucije 73, 1100 Beograd, Jugoslavia
Department of Mathematics \& Statistics, Carleton Univer-sity, Ottawa, Ontario, Canada K1S 5B6

[^0]: Received by the editors on November 26, 1985.

