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F O U R IE R  T R A N S F O R M  F O R  IN T E G R A B L E  B O E H M IA N S

Introduction . The Fourier transform for Boehmians has been 
defined independently by J. Burzyk (oral communication) and D. 
Nemzer [5]. The definition given by J. Burzyk is very general and in this 
case the Fourier transform of a Boehmian is not necessarily a function 
(like the Fourier transform of a tempered distribution). D. Nemzer 
was particularly interested in the Fourier transform of Boehmians with 
compact support. This note will discuss basic properties of the so- 
called integrable Boehmians. In this case the Fourier transform is 
always a continuous function and has all basic properties of the Fourier 
transform in Ci- In particular, we will prove an inversion theorem 
which has the form of a classical theorem in

1. Integrable Boehm ians. A general construction of Boehmians 
was given in [2]. In this note we are interested in a special case of 
that construction. Denote by the space of complex valued Lebesgue 
integrable functions on the real line R. By || • || we mean the norm in 
£i (ll / l l  =  Í r  If{z)\dx). If / ,g E Ci then the convolution product f* g ,
i.e.,

is an element of Ci and ||/ * g|| <  ||/|| • ||̂||.
A sequence of continuous real functions 6n E t\  will be called a delta 

sequence if

Subject classification Primary 44A40, 42A38, Secondary 46F99
Key words and phrases: Convolution quotients, Boehmians, Fourier transform.
Received by the editors on July 12, 1985, and in revised form on October 23,

PIOTR MIKUSINSKI

A b s t r a c t . Basic properties of the Fourier transform for 
intgrable Boehmians are discussed. An inversion theorem is 
proved.

for every n E JV,
for some M  ER and all n E N,
for each e >  0.
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If (̂ n) and (i\pn) axe delta sequences, so is (fo * ^n). If /  E Ci and (6n) 
is a delta sequence, then ||/ * ¿n “  /|| —► 0 as n —► oo. Delta sequences 
are also called approximate identities or smnmability kernels.

A pair of sequences ( /n,Cn) is called a quotient of sequences, and 
denoted by / n/Cn, if fn E Ci(n =  1 ,2 , . . . ) ,  (̂ n) is a delta sequence, 
and fm * $n =  fn * ?m f°r all m, n E iV. Two quotients of sequences 
fn/$n and gn/i>n are equivalent if f n*^n =  9n*$n for every n E N. The 
equivalence class of a quotient of sequences will be called an integrable 
Boehmian. The space of all integrable Boehmians will be denoted by
Be

The space Bzi is a convolution algebra when the multiplication by 
scalar, addition, and convolution are defined as follows:

A[/n/fn] =  [A/n/fii],

[ /n /fn ]  +  [0 n M i]  =  [ { f n  * tin +  * ?n )/ín  * </>n],

[ / n / ín] *  [^ n /^ n ]  =  [fn  *  gn/$n *  ^ n ]*

A function f  E Ci can be identified with the Boehmian [ /  * Sn/6n] 
where (6n) is any delta sequence. It is convenient to treat Hi as a 
subspace of Bc1. Note that if F  =  [ /n/¿n], then F * 6 n =  / n and hence 
F  * 6n E Ci for every n E  N.

We say that a sequence of Boehmians Fn is A- convergent to a 
Boehmian F  (A -lim F n =  F) if there exists a delta sequence (6n) 
such that (Fn — F )* 6 n E Ci for every n E  N  and ||(Fn -  F) * 6n\\ —► 0 
as n —► oo. From a general theorem proved in [3] it follows that 8 ¿ l 
with A-convergence is a complete metric (quasi-normed) space.

In practice it is often more convenient to use other types of conver
gence in we say that a sequence of Boehmians Fn is 6-convergent 
to F(6-\imFn =  F) if there exists a delta sequence (¿n) such that 
Fn *6k E Ci and F*8k E Ci for every n,k  E N  and ||(Fn -F)*<5fc|| —► 0 
for each k E N. The following equivalence explains how these two types 
of convergence are related (see [3]).

(*) A -lim  Fn =  F  if and only if each subsequence of (Fn) contains a 
subsequence which is ¿-convergent to F.

The above fact can be used to prove the following: if A -lim F n =  F  
and A -lim G n =  G, then A -lim F n * Gn =  F  * G. If (6n) is a 
delta sequence, then 6n/6n represents an integrable Boehmian. Since
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the Boehmian [6n/8n] corresponds to the Dirac delta distribution, we 
denote it by 6. All derivatives of 6 are also integrable Boehmians. 
Since, there are delta sequences (5n) such that all functions 6n are 
infinitely differentiable and have bounded support, we can define the 
¿ —derivative of 6 by 6 ^  =  [5n*V^n]- It is easy to check that 6 ^  G Bgx 
for any k G N. The fc-th derivative of a Boehmian F  G Bzx can be 
defined as F ^  =  F  * From the continuity of the convolution in 
Bcí it follows that if A -lim F n =  F, then A-limFn*^ =  for any 
k e N .

Let F  =  [fn/6n] €  B¿i . Then for each n G iV we have fi*6n =  f n*61 . 
Since f R 6n(x)dx =  1 for each n G iV, we have also

This property allows as to define the integral of a Boehmian: if 
F  =  [fn/Sn] €  B tx then f R F (x)dx  =  f R f\{x)dx. For a function from 
Ci this integral is the same as the Lebesgue integral. However, there 
are functions which are inegrable as Boehmians but not integrable as 
functions. To see this, consider a continuously differentiable function 
from Ci such that its derivative is not in C\.

2. Fourier transform . To define the Fourier transform of an 
integrable Boehmian we will use Burzyk’s method.

LEM M A 1. If[fn/6n] €  Bclf then the sequence

converges uniformly on each compact set in R .

PROOF. If (6n) is a delta sequence, then (Sn) converges uniformly on 
each compact set to the constant function 1. Hence, for each compact 
K , ¿k >  0 on K  for almost all k G K  and

Jr Jr  Jr Jr
f fi(x )d x  =  f { f 1 *6n)(x )d x =  f (f n * 6 t)(x )d x =  f f n{x)dx.

i   i   (/n  * f̂c)   (/fc * ^n)   fk ¡
~  4  “  4  “  4  “  k  '

4 -¿ n on K. 
6k

In view of the above lemma, the Fourier transform of an integrable 
Boehmian F  =  [ /n/¿n] can be defined as the limit of ( / „ )  in the space



580 P. MIKUSINSKI

of continuous functions on R. Thus, the Fourier transform of an inte
grable Boehmian is a continuous function.

Theorem  2. Let F ,G  g  S£i . Then
(a) (AF) =  AF  (for any complex X) and (F  +  G) =  F  +  G,
(b) (F  * G) =  FG,
(c) {F(x  -  a)) =  e^ axF,
(d) =  {-4x)nF,
(e) If F  =  0, then F  =  0,
(f) If A -lim F n =  F, then Fn —> F  uniformly on each compact set.

PROOF. Properties (a) through (d) follow directly from the cor
responding properties for the Fourier transform in C\. (Note that 
F  E Bc1 implies F ^  E To prove (e) we can use uniqueness
of the Fourier transform in or Theorem 4. From (*) it follows, that
to prove (f) ir suffices to show that ¿ -lim F n =  F  implies Fn —► F  
uniformly on each compact set. Let (Sn) be a delta sequence such that 
Fn *6k,F*6k  E Ci for all n,k  E N  and ||(Fn — F) *5*|| —► 0 as n —► oo 
for each k E N  and let i f  be a compact set in R. Then 4  > 0 on K  
for some A; E N. Since 6k is a continuous function, it is enough to show 
that Fn -¿k —♦ F-¿k imiformly on K . But Fn '8k—F'8k =  ((Fn -F)*¿fc) 
and ||(Fn — F) * áfc|| —► 0 as n —► oo. The proof is complete.

To prove the inversion theorem we are going to use the following 
property of the Fourier transform in C\ (see, e.g., [1]).

Lemma 3. Let f  E C\ and

Mx)= l f y ~
Then (f n) converges to f  in the L\ norm.

Theorem  4. Let F  e 8 c l and

Mi)=i  £ (‘ -
Then <5-lim/n =  F  (hence also A -lim  f n =  F ).
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PROOF. Let F  =  [gn/ n̂] and k e  N. Then

( / n * 4 ) ( z ) =  f  fn{x ~ u)6k{u)du 
JR

=  h £ (‘ - 
= h i y - ® Y ’F' W dt-

Therefore, by Lemma 3, ||/n * — F  * <5fc|| —► 0 as n —► oo. Since k
is an arbitrary positive integer, we have proved that <5-lim f n =  F.

By (e) and (f) in Theorem 2, the family of linear continuous function
als on btx separates points. As a consequence we have the following

THEOREM 5. If a function 7{t) defined on the interval [0,1] with 
values in 8 c 1 is such that the derivative 7 '{t) exists and is equal to 0 
at each point, then 7  is a constant function.

PROOF. See [6, p. 155].

A similar problem for the field of Mikusinski operators instead of B c t 
is still open.

REM ARK. The space B c l contains some elements which are not 
Schwartz distributions. Some connections between Boehmians and 
other types of generalized functions are discussed in [31 and [4].

Another approach to the Fourier transform of convolution quotients 
is presented in [7] and [8].
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