DIRECT SUMS AND PRODUCTS OF ISOMORPHIC ABELIAN GROUPS

JOHN D. O'NEILL

Introduction. Suppose G is a reduced abelian group and I and J are infinite sets. When can the direct product G^{I} equal the direct sum $A^{(J)}$ for some subgroup A ? If G is a torsion group, then G must be torsion by Corollary 2.4 in [3] and the answer is easy to determine. In Theorem 1 we provide an answer for all cases where $|G|$ or $|I|$ is nonmeasurable. We then present, in Example 2, a group decomposition $G^{I}=A^{(J)}$ where G is reduced and unbounded. There is another unusual decomposition of G^{I} which occurs whenever $|I|$ is measurable and seems worth mentioning. We do this in Example 3.
In this paper all groups are abelian. By G^{I} and $G^{(I)}$ we mean the direct product and direct sum respectively of copies of G indexed by I. If I is a set, then $|I|$ is measurable if there is a $\{0,1\}$-valued countably additive function μ on $P(I)$, the power set of I such that $\mu(I)=1$ and $\mu(\{i\})=0$ for each $i \in I$. The letter N denotes the set of natural numbers. Unexplained terminology may be found in [2].

Theorem 1. Let G be a reduced group and let I and J be infinite sets. If $|G|$ or $|I|$ is non-measurable, then $G^{I}=A^{(J)}$ for some subgroup A if and oniy if $G=B \oplus C$, where $B^{I} \cong T^{(J)}$ for some bounded subgroup T and $C^{I} \cong C^{(J)} \cong C^{k}$ for some positive integer k.

Proof. Sufficiency is clear so we assume $G^{I}=A^{(J)}$ and derive the stated conditions. Write $X=\prod_{I} G_{i}=\oplus_{J} A_{j}$ where $\phi_{i}: G_{i} \rightarrow G$ is an isomorphism for each i and $A_{J} \cong A$ for each j.
(A) Suppose $|G|$ is non-measurable. Let $f_{j}: X \rightarrow A_{j}$ be the obvious protection and let ($S,+, \cdot$) be the Boolean ring on $S=P(I)$. Also let $K=\left\{s \in S\right.$: there is an n_{s} in N such that $n_{s} f_{j}\left(\prod_{s} G_{i}\right)=0$ for almost all $j\}$ and set $H=\left\langle\Pi_{s} G_{i}: s \in K\right\rangle$. Clearly K is an ideal in S. Thus H consists of the elements in G with support in K. The crucial fact for our proof is that K is a γ-ideal in S (i.e., if $\left\{s_{n}: n \in N\right\}$ is an

[^0]orthogonal family in S, then $\sum_{n>k} s_{n} \in K$ for some k in N). For a proof of this fact, based on the work of S. Chase, see Theorem 1.5 in [3]. From Theorem 1.5 and Lemma 1.2 in [3] then we deduce: (a) S / K is finite and there are orthogonal elements u_{1}, \ldots, u_{k} in S which map onto the atoms of S / K; (b) if $\left\{s_{m}: m \in M\right\}$ is a set of orthogonal elements in S and $|M|$ is non-measurable, then $\sum_{M^{\prime}} s_{m} \in K$ for some cofinite subset M^{\prime} of M; (c) if $K=\cup_{n} K_{n^{\prime}}$ where $K_{1} \subseteq K_{2}, \subseteq \ldots$, then $K=K_{k}$ for some k. From (c) we conclude that $m H \subseteq \oplus_{J_{1}} A_{j}$ for some m in N and some finite subset J_{1} in J. For each u_{n} in (a) above let $L_{n}=\left\{x_{n}(g): g \in G\right\}$ where $x_{n}(g)=\sum_{u_{n}} \phi_{i}^{-1}(g)$. Plainly L_{n} is a subgroup of X isomorphic to G. We claim $X=L_{1} \oplus \cdots \oplus L_{k} \oplus H$. Let $x=\sum_{I} x_{i}$ be an element in X and write $x=\sum_{G}\left(\sum_{s_{g}} x_{i}\right)$ where $s_{g}=\left\{i \in I: \phi_{i}\left(x_{i}\right)\right\}=g$. Since the family $\left\{s_{g}: g \in G\right\}$ partitions I by (b) above $\sum_{G^{\prime}}\left(\sum_{s_{g}} x_{i}\right) \in H$ for some cofinite subset G^{\prime} in G. Moreover, for $g \in G \backslash G^{\prime}, s_{g}=\sum a_{n} u_{n}+v$ with $a_{n}=0$ or 1 and $v \in k$; thus $\sum_{s_{g}} x_{i}=\sum_{n} a_{n} x_{n}(g)+\sum_{v} x_{i}-\sum_{n} a_{n}\left(\sum_{u_{n} v} x_{i}\right)$, which is in $\sum L_{n}+H$. Therefore $x \in \sum L_{n}+H$ and $X=\sum L_{n}+H$. Suppose that $y_{1}+\cdots+y_{k}+z=0$ where each y_{n} is in L_{n} and z is in H. Since u_{n} is not in K but the support of z is in K, there is an i_{n} in u_{n} at which z has 0 component. Since the u_{n} are orthogonal, the definition fo L_{n} implies each Y_{n} is 0 . Therefore $z=0$ also and $X=L_{1} \oplus \cdots \oplus L_{k} \oplus H$, as desired. Let I_{1} be a set of k elements, one from each u_{n}. Then $X=\oplus_{1}^{k} L_{n} \oplus \prod_{I \backslash I_{1}} G_{i}=\oplus_{1}^{k} L_{n} \oplus H$ so $H \cong \prod_{I \backslash I_{l}} G_{i}$. We may then assume $m \prod_{I \backslash I_{l}} G_{i} \subseteq \oplus_{J_{1}} A_{j}$. Let $r=\left|J_{1}\right|$ and let $G=B \oplus C$ and $A=T \oplus U$ where B and T are maximal m-bounded direct summands of G and A. We can now write
(1) $X=B^{I} \oplus D \oplus E=T^{(J)} \oplus V \oplus W$ where $D \cong C^{k}, E \cong C^{I}, V \cong$ $U^{r}, W \cong U^{(J)}$ and $m E \subseteq W$.

Now B^{I} and $T^{(J)}$ are maximal m-bounded summands of X so
(2) $B^{I} \cong T^{(J)}$ and $C^{I} \cong U^{(J)}$. By the Exchange Property (Theorem 72.1 in [2]) for maximal m-bounded summands $B^{I} \oplus D \oplus E=B^{I} \oplus$ $V \oplus W$. We may assume (replace $D \oplus E$ by its projection to $V \oplus W$) that $D \oplus E$ equals $X \oplus W$. Since $m E$ is still in W, by Lemma 1.7 in [3] we have $D \oplus E=V \oplus W^{\prime}$ where $W \cong W^{\prime} \subseteq D$. By the modular law,
(3) $D=D \cap V \oplus W^{\prime}$ and $V=K \oplus D \cap V$ for some K.

By (1) and (3) we obtain
(4) $C^{k} \cong D \cap V \oplus U^{(J)} \cong D \cap V \oplus V^{(J)}=D \cap V \oplus(K \oplus D \cap V)^{(J)} \cong$ $V^{(J)} \cong U^{(J)} \cong\left(U^{(J)}\right)^{(J)} \cong\left(C^{k}\right)^{(J)} \cong C^{(J)}$.
Now (2) and (4) yield $C^{I} \cong C^{(J)} \cong C^{k}$.
(B) Suppose $|I|$ is non-measurable. By Corollary 1.9 in $[3]$ there are positive integers k and r and decompositions $G=B \oplus C, A=T \oplus U$ with B bounded such that: $B^{I} \cong T^{(J)}, C^{I} \cong U^{(J)}$, and $U^{r}=K \oplus L$ where $C^{k} \cong L \oplus U^{(J)}$. We can show, as in (3) of part (A), that $C^{k} \cong U^{(J)} \cong C^{(J)}$ and the proof is complete.

We now show that G need not be bounded to satisfy the conditions of Theorem 1.

Example 2. If I and J are infinite sets, there exists a reduced unbounded group G such that $G \cong G^{I} \cong G^{(J)}$.

Proof. Consider the cartesian product $(I \times J)^{N}$ with typical element $\left(i_{1}, j_{1}, i_{2}, j_{2}, \ldots\right)$. Let H be any unbounded reduced group. Let G be the set of all functions $f:(I \times J)^{N} \rightarrow H$ such that, for each k and each fixed $i_{1}, j_{1}, \ldots, i_{k}, f\left(i_{1}, j_{1}, \ldots, i_{k}, j_{k}, i_{k+1}, j_{k+1}, \ldots\right)=0$ for almost all j_{k} (one can think of G as $\Pi_{I} \oplus_{J} \Pi_{I} \oplus_{J} \ldots H$). Now G is a group under component-wise addition and it is easy to see that $G \cong\left(G^{(J)}\right)^{I}$. But this implies $G \cong G^{I} \cong G^{(J)}$.
If $|I|$ is measurable, then G^{I}, for any group G, has an unusual decomposition we would like to mention. This decomposition generalizes examples found on page 184 in [1] and page 161, vol. II, of [2].

Example 3. Let I be a set of measurable cardinality and let G be a group. There is a decomposition $G^{I}=L \oplus M$ where $L \cong G$ and $G^{(I)} \varsubsetneqq M \cong G^{I}$.

Proof. Write $G^{I}=\prod_{I} G_{i}$ where $\phi_{i}: G_{i} \rightarrow G$ is an isomorphism for each i. Let $\mu: P(I) \rightarrow\{0,1\}$ be a countably additive function such that $\mu(I)=1$ and $\mu(\{i\})=0$ for each $i \in I$. If $x=\sum_{I} x_{i}$ is an element in G^{I}, write $x=\sum_{G}\left(\sum_{s_{g}} x_{i}\right)$ where $s_{g}=\left\{i \in I: \phi_{i}\left(x_{i}\right)=g\right\}$. The s_{g} 's partition I and $\mu\left(s_{g}\right)=1$ for at most one g. Define $f: G^{I} \rightarrow G$ by $f(x)=\sum_{G} \mu\left(s_{g}\right) g$ for each x in G^{I}. If two subsets of $P(I)$ have measure 1 , so does their intersection. It follows that, for each x, y in $G^{I}, f(x+y)=f(x)+f(y)$ so f is a homomorphism. Let M be the kernel of f and let $L=\left\{\sum_{I} \phi_{i}^{-1}(g): g \in G\right\}$, the diagonal subgroup of G^{I}. It is easy to see that $G^{I}=L \oplus M, L \cong G$ and $G^{(I)} \nsubseteq M$. If $j \in I$, then $G^{I}=L \oplus \prod_{i \neq j} G_{i}$ and $M \cong \prod_{i \neq j} G_{i} \cong G^{I}$.

I would like to thank Professor R.S. Pierce for his many helpful com-
ments on an earlier version of this paper.

References

1. M. Dugas and B. Zimmenmann-Huisgen, Iterated direct sums and products of modules, Lecture Notes in Mathematics 874, Springer-Verlag, N.Y., 1982.
2. L. Fuchs, Infinite Abelian Groups, Academic Press, N.Y., Vol. I (1970), Vol. II (1973).
3. J.D. O'Neill, On direct products of modules, Comm. in Algebra 12 (1984), 13271342.

University of Detroit, Detroit, MI 48221.

[^0]: Received by the editors on July 12, 1983, and in revised form on September 25, 1985

