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REMARKS ON GLOBAL B O U N D S OF 
SOLUTIONS OF PARABOLIC EQUATIONS 

IN DIVERGENCE FORM 

TOMASZ DLOTKO 

Introduction. We want to examine certain properties of solutions 
(understood here as the trajectories in a suitable Banach space) of 
nonlinear parabolic equations, which could be of use in the study, 
among other things, of the long time behaviour of these problems. 
We start with the proof of a variant of the maximum principle (cf. [8; 
Theorems 2 and 5], [9; Theorem 2.7] for the linear case) obtained here 
as a limiting case (p —• oo) of the sub-exponential estimates of solutions 
in Lp. Next (§2) we prove a theorem concerning global boundedness of 
the spatial derivatives ux, first in the one dimensional case (n = 1) for 
equations with bounded perturbation f{t,x,u,ux,uxx,ut), then (§3) 
by different method (and with stronger assumptions) for the general 
n-dimensional case. The results obtained in this work are linked up by 
the method of proofs developed under the stimulus of Theorem 3.1 of 
[1], first used in a different context by J. Moser in [12]. 

Preliminaries. Notation. The following standard notation is used: 
(a) fi c Rn is a bounded domain with a suitable smooth boundary; 
(b) Ä+ = [0, oo), D = Ä+ x H, DT = {(*, x) : 0 < t < T, x <E H}, 
(c) (•, •) is the scalar product in fin, 
(d) |fi| is the Lebesgue measure of fi; and 
(e) for x e Rn we write ux = ( | ^ - , . . . , | £ ) ; and 
(f) use the usual notation for the LP and Sobolev spaces. By con

vention, all sums are taken from 1 to n, and integrals with unspecified 
domain are taken over fi. 

The following easy lemma is required several times. 

LEMMA 0. Let y e C 0 ^ ) , x e C 1 ^ ) , let a>0,ß,6,\>0 and 
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77 G [0,1) be real constants. IfO< Xx(t) < y(t) for t G R+, 

then 0 < x(t) < max{x(0),ri/A}, where r\ denotes the positive root of 
the equation a — ßr + Or11 = 0. 

PROOF. When x(t) > ri/A, then y(t) > 7*1 and the right side of the 
differential ineqaulity is negative, hence x is decreasing. 

1. We start with a version of the maximum principle for the non
linear parabolic equation in divergence form considered in [13]. Our 
assumptions are different and so are the method of proof and our re
sults. Consider the following Dirichlet problem 

(1) ut = Yiai(tixiuiux)xt + a(£,x,u,u : r)u + f(t,x), 
(2) u = 0 on dfi, u(0, x) is given, and assume that there exists a solu

tion u with ut,Au in L2(DT), uXx G C°(0,T;L2(fi)),z = l , . . . , n and 
u G C 1(0,T;L o o(n)) for all T > 0. Let f{t, •) be bounded in L°°(fi) 
for t G i? + ; moreover, a(t, x, ti, ux) < a0, ao > 0 and 

^Pûi^x,!*,^)^ >M5Z^»' 

We then have 

THEOREM l. The following estimate holds 
(3) 
Vo<t0<tlN*, *)IU°°(n) < (IN*o, •)IUoo(n)+M(^)(f-^))-exp(a0(^-f0)), 

w/iere M{i) = sups> t | | / ( s , -)IU«>(n)-

PROOF. Clearly it is sufficient to consider the case a < 0, otherwise 
we can use the transformation v(t, x) = u(t, x) exp(-a0£) and study the 
equation for v (with a(t, x, v, vx) — a(t, x, u, ux) —a0< 0). Multiplying 
(1) by u2m~l(m G N) and integrating the result over fi we obtain 

+ / a(t,x,u,ux)u
2mdx + j f{t,x)u2m~ldx. 
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Integrating by parts and using Holder's inequality (with p = 2m (2m -
1) 1, q = 2m) we then get {a < 0): 

—m / 2 m » / o m i \ ^ / \ / 

~r \ u ax < I u y ^aj{t,x,u, ux) cos(re,xx)do 

— (2m — 1) / ^ J a ^ , z,?/,-1^)1^1*2 ~2dx 

Then, by the ellipticity condition (denoting u2™ — v), 

jjv2dx < -M2m - l )2 2 - m | £<<f* 

+ M(i)2m|n|2_m-( fv7dxY~2 . 

This may be rewritten using a version of the Poincaré inequality 
(A = A(n,n)),i.e., 

(4) V^gtf^njAIMI^n) < IKIIi*(n). 

in the following manner (am = (ßX)(2m-l)22-m,ßm(t) = M(t)\n\2'"'): 

(5) | l H I Î 2 ( n ) < - « m l M | | 2 ( n ) + / ? m ( 0 2 m ( | ^ | l î 2 ( n ) ) 1 - 2 " m 

A differential inequality of this kind is easily explicitly integratable: 

IK«. Olli*«,) <(Mt0, -iWl^â) exp(<*m2-mt0) 

+ f ßm(z) exp(am2"-Tn z)dzfm exp(-am<). 
•/to 

The function ßm is decreasing, hence finally we arrive at the estimate 

Olli2"1 (n) exp(am2 mt0) 

(6) + /Sm(<0)(exp(am2^"*) 
2rn 

- exp(a m 2- m t 0 ) )—)exp(-a„ ,2 _ m *)-
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We are now interested in passing to the limit in (6) with m to oo. 
Clearly (cf. [15; 1.3, Theorem 1]) 

IN*,-)IU~(n) = lim \Htr)\\L2m{Q) 

< lim {\\u(t0,')\\L2rniü)exp(-am2~™t-to) 
m—>oo v ' 

( 7 ) + ßm(to)(l - exp(-am2-^(t - t0)))—) 

= ( \\u(t0, -)IU-(n) + M(t0){t - t0) for t < oo, 
IO for t — oo. 

REMARK 1. If / = 0 and a0 = 0 the estimate (7) is the usual version 
of the maximum principle. 

REMARK 2. Under the more restrictive hypothesis a; = a°(t, x, u)uXi 

(with a° strictly positive) our proof remains valid also for the third 
boundary problem (for uXii = 1 , . . . n, continuous). Let dQ = Ti |J T2 

with |Ti| > 0 (the (n — 1)-dimensional measure), and consider (1) with 
the boundary condition 

(f) U = 0, o n T i X Ä + , 
K } \p(t,x)l%+q(t,x)u = 0, o n r 2 x Ä + , 

p, q > 0, p + q = 1. Under such assumptions (cf. [11; Theorem 3.6.4, 
p.82]) there exists a constant /i depending on n, Ti, and dQ (which is 
assumed to be Lipschitz, see [11], such that 

^veCHQ)^! y2(ix ^ I \vx\2dx. 

From this estimate, and using (2') for v = u2™ l, v = 0 on I \ x # + , 
we have 

P(t,x)^ = (2m - l)(-q(t,x))u2m-l=-(2m - l)q(t,x)v 

on r 2 x i ? + . After normalization, 

p{t, x) dv q{t,x) ^ = 0 

1 + (2m - 2)q(t, x)dn 1 + (2m - 2)q(t, x) 
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The constant /i is the same for both powers of u. Also the boundary 
integral is non-positive: 

/ u2 ~1}^a0(t,x,u)uXtcos(n,Xi)dô 
Jan ^ 

The rest of the proof remains unchanged. 

REMARK 3. If instead of the component a(£,x, u, ux)u, we take 
dò 
du b(t, x, u, ux) with l £ < 0, b(t, x, 0, ux) = 0, then 

2m - i _ ru* ~ «. ». \ - h(4 ~ n .. u . ,2 m - i b(t, x, u, ux)u = (b(t, x, u, ux) — b(t, x, 0, ux))u 
db om 

— (t,x,u,ux)u
z < 0 , 

C7U 

and the proof remains valid. 

2. We deal now with the problem of global in t boundedness of spatial 
derivative of solutions of the problem 

(8) ut = uxx + f(t, x, u, ux, uxx, tit), 
(9) ux = 0 on dfi, given u(0, x), 

x G fi = (a, /?) C Ä, with bounded perturbation / , | / | < M. Assume 
there exists a classical solution u of this problem with uxx,utx G 
L2(DT) for all T > 0. Then, clearly (compare [10]), 

dt 
fu2

x
kdx = 2 /\uk) t{uk)dx = 2k J utxu

2
x
k-ldx. 

We have the following theorem. 

THEOREM 2. The derivative ux is bounded globally in time in both 
Lp(fi),2 < p < oo, by constants depending only on fi, M, and on 
11^(0, -)llLP(n), respectively. 
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PROOF. Multiplying (8) by (ux)x,p = 1, 2 , 3 . . . , and integrating over 
H, we get 

/ ut{ux)xdx= / uxx(ux)xdx + / f(uv
x)xdx. 

Transforming the components, i.e., 

/ ut(u
p
x)xdx — utu

p
x\x=OLiß - I utxu

v
xdx 

p+ldt J x 

/ uxx{uv
x)xdx = p {uxx)

2ux~
ldx 

and using the Holder inequality 

/ f(uv
z)xdx = p fuxx(ux)

v~ldx = —— / fux
2 (ux

2 )xdx 

we have 

d_ 

do) dt 
J ux

+1dx<- ^ t . j[{v^)x]
2dx 

+ 2pM[f\ux\
p-1dx)i[f[(u^1)x]

2dxY, 

remembering that | / | < M. Inequality (10) allows us to estimate 
inductively the norms of ux in Lp+1, p = 1,3,5, Clearly, (10) with 
p = 1 has the form 

^ IKI l£» ( n) < - 2 | K x | l L ( n ) +2M|n |4 | | u x x | | L 2 ( n) . 

Hence, by (4) and Lemma 0, we get the estimate 

(11) / ux(t,x)dx < m a x ( / ul(0,x)dx; — |ft|M =mx. 
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Having the estimate of J u g ldx < mp_i (p-odd number), from (10) 
we conclude that 

(12) dt 

d jul^dxK-^-Jiiu^^fdx 

+ 2pM(mp-1)ì(J((u?X)xfdx)Ì. 

Hence, via (4) with w = Ux and Lemma 0, we get the estimate 
(13) 

j'u^(t,x)dx<msx{j' u^(0,x)dx;(MiP
2

+1})21^-} =mp+1, 

which together with (11), allows us to estimate globally in time wx's 
norms in both LP(Q) (the p root is increasing): 

(14) \ux{t, -)llLP(n) < max {||ux(0, -)IUp(n); ( - ^ - m p _ 2 ) P }, 

for even p. For odd p = 2k -f 1 we will use 

IML? Ä r<((/t,3*dx)*(|t ,a*+»dx)* 
2T+T 

The proof is finished. 

REMARK 4. Observe that the simple exemplary problem ut = 
uxx -f l,i*i = 0 on dfl, u(0, x) given, satisfies all assumptions of The
orem 2. Even though its solution u is clearly unbounded, ux remains 
bounded (by ||tix(0, Oilcan)) f° r a ^ t i m e - Note also that the usual 
way to get the estimate of ux for the nonlinear problems is to find first 
the bound for u (compare [9, 11, 6]), and then for ux with the use of 
one of several known methods (following [9;Theorem, 5.1 Chapter VI., 
§5], [6], or by using the variation of constants formula and studying it 
from the analytical point of view - through fractional powers of elliptic 
operators - [7, p.24]). 

REMARK 5. Similar to our Theorem 2, compare Theorems 5.1 and 
5.2 of [3] concerning the Cuachy problem (also for n = 1). 
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3. We are interested now in the result analogous to Theorem 2 for 
the n-dimensional case: 

(15) ut = Au + f(t,x,H(u)(t)), 

du 
(16) — = 0 on dfi, given u(0,:r), 

on 

where H : L°°(iì) —• R is a continuous and bounded functional. For 
example, 

(u)(t) = Ju H(u)(t)= / u (t,x)dx, H(u)(t) = ess. sup|u(£, x)|. 
y n 

Assume f,§£-,i = 1 , . . . ,n, to be bounded in L°°(fi) independently 
on t and let there exist a classical solution u of (15)-(16) with uXxXjXk 

in L2{DT), uXtXj in C°(0,T;L°°(n)) for all T > 0. We need also the 
following version (see [9; Remark 2.1, Chapter II., §2]) of the Nirenberg-
Gagliardo interpolation inequality: for every v G Wlì2(Q) with zero 
average | n | - 1 f v(x)dx, 

(!7) IMU*(n) < c l lv l l^ i^^Hvl l iT^) , 

with 0 = (n+2) ' c = c ( n
5 ö , H ) . With the help of Young's inequality 

(with m = 0 _ 1 , see [9]), from (17), we can get (as in [1, p. 209]) the 
estimate (valid for any e G (0,1)) 

(18) \\v\\lHn)<e\\vx\\Ì2{n)^C£\\v\\l1{u) 

Ce = const e~%. We are now able to show 

THEOREM 3. Let the solution u o/(15), (16) be globally bounded (by 
M) in L°°(Q) for t > 0. Then 

max|u x | < const , ose (ux,Qs) < const 6a 

(where Q$ = Q f] B$, B$ C Rn a ball will radius 6, "ose" as in [9 Chap-
terV., §7), where the constants and a depend only on M, dQ, the global 



GLOBAL BOUNDS 507 

bound N of -jU- and the global bound of f(t,x,H(u)(t)). 

PROOF. Since our solution is not sufficiently smooth for further 
calculations, instead of u we must study its Steklov average Uh(t,x) = 
(£) Jt*

+ u(z, x)dz. Note that the global L°°(ü) bounded for a function 
remains valid also for its Steklov average. If we fix h > 0, take the 
average of both components in (15), differentiate with respect to x ,̂ 
multiply by [(A(tz/l))2P~1)]It|p = 1,2,.. . , sum over i and integrate 
over fi, we get (uth = uht) 

Jj2u^A(M^))2P-%tdx 

= J J2l^(^)hA(^(uh))2P-%tdx + J fhXi [(&uh))2P-%xdx. 

Integrating by parts and using the Holder inequality, this gives 

/ (A(uh))
2P-1 ( Y] uXt cos(n, Xi)) de 

JßQ \*—' /ht 

Then from (16) and the boundedness of fhXt it follows that 

| J(Auhrdx < - ^ i / £« w &** 
+ 2(2"-l)N(nJ(Auhr-'dx)i(lj2((A^r~l)ldx)12. 

To obtain the global bound for / Au\dx ( the first step of induction 
p = 1), we need (see [11, p. 83, Theorem 3.6.5]) the Poincaré inequality 
(dfi-Lipschitz boundary) 

(20) VveWi«in)C J \v{x) - Ifif1 J v(y)dy\«dx < | ] T | | ^ d x , 

c = c{n, q, fi), with q = 2. This can be used to bound Au\, noting that 
in the presence of (16), 

/ 
Auh{t,y)dy = 0. 
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Hence from (19) with p = 1 and Lemma 0, it follows that 

(21) {Auh)
2{t,x)dx<maxl {Auh)

2{0,x)d2 
N2n\n\} 

c y 

Denote the inductive bound of / Au^ dx,p = 1,2. . . , by rap; also let 
Wp = Au2^. It follows from (19), the simple inequalities (Au/ l)

2P~2 < 
(Auh)

2P + 1, y/a + b + c < y/â + y/b + y/c, a, 6, c > 0, and (18) that 
(22) 

^ I K - i l l ì 2 ( Q ) < ( ~ è + 2(2p - l)Ny/Kè)\\(wp^)x\\l2(aì 

+ 2(2^ - l )JVVn| | ( i i ;p-i)x | |L»(n)(v^lK-il lLt(n) + v l^ i ) -

Choose e(p) — 6:p(6:(0,1)) such that the first bracket above is less than 
or equal to - 1 , then by Lemma 0 and (20) it follows (for explicit wv-\) 
that 

/ AUfr \t,x)dx < max{ / Aw£P(0, x)dx; 

( 2 3 ) c-\2(2^ - VNyfiiy/cTmp-i + >M\))2} ep>">P-

=: mp, p = 2,3, 

Now h in (23) may be omitted, so we have the uniform bound for 
f Au2Pdx for all p. This, together with the boundedness of / , is, 
through (15), equivalent to the global estimates 

I* (24) / uf dx < const , p = 1,2,.. . , 

and clearly gives global boundedness of ut in both Lk(Q). Our parabolic 
equation with fixed arbitrary t > 0 will now be considered as the elliptic 
problem 

du 
Au -f (/(*, x, H{u){t)) - ut) = 0, — = 0 on diì, 

on 

with the bracket bounded in Lk(Q) independently on t. This, via the 
results of Chapter V, §7 of [9] ensures global in t estimates 

max|zix | < const , ose (UX,QÖ) < cont 6Q 
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and finishes our proof. 

REMARK 6. By Theorem 3 and results of Chapter V, §7 of [9], one 
can get estimates for Holder norms of uXi; i = 1 , . . . , n (see Theorem 
7.2 in [9]). 

REMARK 7. See also Appendix B in [4]. 

REMARK 8. In several papers (see [1, 3, 4, 5, 6, 11]), generaliza
tions of the reaction-diffusion problem 

(25) tit = Ati + / (u) , 

(26) — = 0 on an , u(0, x) given 
on 

are considered. Often (cf. [1,3,4,5,6,13,14]) the global in t bounded
ness of its solution is shown. Having such L°°(C°) global boundedness, 
theorems of the proposed type lead (via Sobolev Imbedding Theorems, 
for example) to the compactness results for solutions considered as tra
jectories in suitable Banach spaces (compare [5, §5], [6, Remark 3]). 
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