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FOCAL POINTS OF NONLINEAR EQUATIONS-
A DYNAMICAL ANALYSIS 

A. L. EDELSON AND P. K. PALAMIDES 

Introduction. We consider the 2nth order scalar nonlinear differential 
equation. 

(E) x<**>(t)=f(t,x(t)) 

where/is continuous on [0, oo) x R. Let a be a real number ^ 0, and k 
a natural number with 1 ^ k S n — 1. The (2k, 2(n — A:)) focal point of 
a for the equation (E) is the smallest ß > a for which there exists a non-
trivial solution of (E) satisfying the boundary conditions 

x^(a) = 0, 0 g / g 2k - 1 and 

x('>(/3) = 0, 2k è i è 2n - 1. 

For linear equations there is a large bibliography concerning focal points 
and conjugate points. More relevant to the present work, there are several 
studies on the relation between the non-existence of solutions to two point 
boundary value problems (disfocality, disconjugacy) and the existence of 
monotone solutions having prescribed asymptotic behaviour. We refer 
to Elias [2] in the linear case, and Edelson, Kreith [4] in the nonlinear 
case. Unlike the linear problem, the existence of monotone solutions in the 
nonlinear case has frequently been established by means of topological 
methods such as fixed point theorems, which may give less information 
but are more generally applicable. 

Motivated by these considerations we will study the properties of focal 
point trajectories of nonlinear equations. Specifically, we will show that 
for the class of equations under consideration, in the disfocal case there 
must exist monotone solutions which we will call focal asymptotic. 

DEFINITION. A trajectory x(t) is said to be (2k, 2(n — A:)) focal asympto
tic on [a, oo) if it satisfies the conditions 
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xU)(a) = 0, 0 è i ^2k - \ 

(2) ( - \yx«\t) > 0, 2k è i ^ 2n - 1 

for all / > a. 

If in addition lim^œ xi2k)(t) = 0, then ß = oo is said to be a (2k, 
2(n — k)) focal point of a. 

Our principal tool for the analysis of trajectories will be a theorem of 
combinatorial topology known as Sperner's lemma (cf. [1]). This lemma 
was used in [3] to prove the existence of (2, 2) system conjugate points rj 
and (2, 2) system focal points fi, defined respectively by 

x(a) = x"(a) = x(rj) = x"(rj) = 0 

x(a) = x"(a) = x'(fi) = x"f(fi) = 0. 

Main result. It will be convenient to represent (E) as a second order 
system of the form 

(£) X"(t) = F(t, X) 

X = (Y, Z) where r e ^ a n d Z e R«~* are defined by Y = (yl9 . . .,yk) 
= (xx, . . . , xk) and Z = (&, . . . , £„-*) = (xk+1, . . . , xn). Then clearly 
the boundary conditions (1) take the form 

(!') Y(a) = Y'(a) = 0, Z(ß) = Z'(ß) = 0. 

Solutions of (1) are defined by trajectories of the initial value problem 
(E)-(2) where 

Y(a) = Y'(a) = 0 

(2) Z(a) = (1, . . . , 1) 

Z'(a) = - (Ax, . . . , Àn-k) = vo 

and the initial velocity vector v0 satisfies 0 ^ X{, 1 ^ i ^ n — k. A solu
tion of the initial value problem (E)-(2) will be denoted by X(t; v0) = 
(Y(t; v0), Z(t; v0)). Assume that K denotes the open positive cone of 
Rn and let dK be its boundary, which consists of the hyperplanes H{ = 
{x e Rn: x{ = 0, xj ^ 0, 1 ^ j ^ A/,y ^ /} . 

We will say that the trajectory X(t; v0) egresses from K whenever there 
exists a ti > a such that 

X(t\ v0) G K, a < t < tx and X(ti, v0) e dK. 

If moreover there exists e > 0 such that A f̂ ; v0) <£ J? for t G (/l5 ^ + e], 
then A f̂ ; y0) is said to egress strictly from K. 

The next lemma shows that, trajectories satisfying the initial conditions 
(2), can be made to egress (strictly) from K on any of the hyperplanes Ht, 
k + 1 ^ i^ n. Let e* G Rn be the vector defined by 
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- 1, / =j 
4--°«-y o,/*y 

i.e., 5,7 is the Kronecker delta function. 

LEMMA 1. Assume that f is a continuous function and xf(t, x) > Ofor 
every x ^ O . Then for each i, k 4- 1 S i Û n, there exists a X{ > 0 such 
that for any X > Xt the trajectory X(t; Xe*) egresses from K on the hyper-
plane H{. 

PROOF. The trajectory X{t) = X(t; Xe{) satisfies the initial conditions 

y}{a; Xe*) = y}(a; Xe<) = 0, 1 ^ j ^ k 

Cy(a;A*9= Ul£J£n-k 

Q{a\Xe<) = 0,1 £j£n-k,j* i 

C<a; Xe<) = - X. 

Consequently there exists a t > a such that for a < t < t, the coordinates 
of X satisfy y fa) > 0 for 1 ^ j' ^ k, and Çy(f ) > 0 for 1 ^ j <> i. Since 
Xiftt, *i) > 0, it follows that Cy(0 > 0 for i + 1 ^ y' ^ /i, and for a < 
f < f. Furthermore, each component y fa), Ç/(0 is an increasing function 
as long as Zfa) > 0. It follows that if any component has a zero on 
(a, oo), the first such zero must be in £,•(*)• We must now show that for 
X sufficiently large the trajectory X(t; Xe*) egresses (strictly) from the po
sitive cone K. 

By (E) and Taylor's formula, we get a point t e (a, 0» t e Dom x such 
that 

Xl(t) _
 2 g (Lyùi ,</, („) + H^lx^{i). 

Thus, in view of (2) and the choice v0 = Xe', we get 

(4) ^ i W - . = g + i { m - ^ + T j r ^ + (2„)! ^ . * i W ) . 

Now for A > A0, by the continuity of x{ = *,-(• ; Xe*) = x{(- ; X) and since 

x,(a; X) = Xi(a; XQ) = 1 and xi(a; X) = —A, x,-(a; A0) = — X0 

it follows that there exists a number T > a such that 

*,{'; *o) > xfa; X),a£t£z. 

Consequently in view of (2) and (3), we may assume 

*i('; ^o) > xfa; X), a ^ t ^ T. 

We choose XQ e R (for example A0 = 0) such that 
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xi(t; A0) > 0, / e Dom x^- ; A0) 

and assume that for every A è An 

xi(t; A) > 0, / G Dom xx(' ; A). 

We shall prove that for every /* G Dom ;q(- ; A0) 

(5) 0(/ ; A) = *!(/; A) - jqft; A0) < 0, a < t£ t*. 

Assume that there exists a root z G (a, t*] of the function </)(t; A), i.e., 

(6) 0(f; A) < 0, a < t < r and <J%t\ A) = 0. 

Clearly, since 0(2w)(f) = /(*, *i(f ; A)) - /(f, *i(f; A0)), integrations leads 
(as in (4)) to 

# ' ; ^—{^JfT^-^ + ̂ ^ ^ l M x1(î; A)) - / ( ? , ^(f; A0))] 

and thus we get 

a - Ao) ^r+^r = (î^r[f(i'xi(i; k)) ~f(hxi(î; m-
Now since 0 < Xi(t; A) ^ x^f ; Ao), for every A > An, the second member 
of the last equality is bounded when A -> oo but not the first one. Thus 
(5) holds. 

Consider now the rectangle R = [a, t*] x [0, q], q = jqft*; A0). Then 
by (5) we get 

G(*i(- ; « I [a, t*i) = {(', *i( '; *)): a^tèt*}ç:R. 

By the continuity of/, there exists M > 0 such that 

|/(>, x)| ^ M, (t, x) G 7?. 

Then by (4) we get 

Xl{t } = J=h+i (2n)l + (2«)! M (21+1)! *" 

Thus, by choosing A large enough, say A > A,-, we get that Xi(t*) < 0, a 
contradiction. 

We need another lemma, due to Sperner (see [1]). 

LEMMA [2]. Let Tn be an n-simplex with vertices {e°, e1, . . . , en) and let 
{Efr . . . , En) be a covering of the closure Tn by closed sets such that each 
closed face [e*°, . . . , e*r] of Tn is contained in the union Eio [j • • • U Eir. 
Then the intersection (~}?=Q E{ is nonempty. 

Now, we are ready to formulate and prove our main result. 
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THEOREM. For each k, 1 ^ k ^ n - 1, equation (E) has a focal point 
trajectory of the type (2k, 2(n — k)) or a (2k, 2(n — k)) focal asymptotic 
trajectory, provided that assumptions of Lemma 1 hold. 

PROOF. The result will be proved by an application of Sperner's lemma, 
as in [2]. Let S £ K be the closed n — k simplex spanned by the vertices 
e° = 0 and le*, k 4- 1 ^ / ^ n. Using the usual notation, [eio, eh, . . . , eir] 
denote the closed face of S spanned by the vertices {eio, eil, . . ., eir). 
Here X is chosen large enough, so that for any initial vector v0, which 
starts from e° = 0 and ends on [ek+1, ek+2,. . . , en], at least one of its 
projections is greater than max{/lf}, where Xt- are established by the pre
vious lemma. 

Define the sets Et, k 4- 1 g / ^ n, by 

EQ = cl{v0 e S: X(t; v0) remains in K for all t > a} 

and Ei = cl{v0e S: X(t, v0) egresses strictly from K on the hyperplane 
Xj — 0}, for / = k 4- 1, k 4- 2, . . . , «. 
To apply Sperner's lemma it is necessary to show 

i) the sets {Et) form a closed covering of S and 

ii) |y<\ e% . . ., <?»>] ç j j Eir 

It is obvious from the definitions that E{ are closed sets, and their union 
covers S, because every trajectory remains in K on (a, oo) or else egresses 
from K on some hyperplane x{ = 0, k 4- 1 ^ i ^ n. 

In order to prove (ii), let v0 e [é*°, é*\ . . . , eir] and assume that X(t; 
v0)e Kfor a < t <: ti ^ oo. We will examine two cases: 

(a) 0 $ {i0, ix,..., ir}. Then by the choice of A and the previous lemma, 
it is obvious that the solution X(t, v0) egresses strictly from K, i.e., t\ < oo. 
Now if y <jÉ {/0, ii,... , ir), then Xj(a; v0) = 0. From the nature of the force 
field in K, it follows that xj(t; v0) is a positive, increasing function on [a, 
ti), so Xj(ti; v0) > 0 and X(t; v0) egresses from K on some hyperplane 
X{ = 0, with i #./. So v0 e \J

r
k=0 Eik. 

(j8) 0 6 {/0, /*!,..., ir). In this case we may have ti = oo, so X(t; v0) either 
egresses from K on some hyperplane Ht., 0 rg y g r, or remains in cl(Ä )̂ 
on [a, oo). In the former case v0 e 2s,-,, and in the later case v0 6 E0. 

By Sperner's lemma there exists a point v* e E0 fi [fì?=*+i E,-], and 
such a trajectory must satisfy the conditions 

(8) Zi(V, v*) > 0, z-(r; v*) < 0 for 1 ^ / è n - A:, a < t < tx S oo. 

If ^ < oo then z,(*i; v*) = 0 for 1 ^ i ^ n - k. Since X(t; v*) e cl(^) 
for all J è ce, we must also have zfai, v*) = 0, so /Jf(f; v*) is a focal point 
trajectory, and ß = ti is a focal point of a. If instead ^ = oo, then (8) 
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is satisfied on (a, oo), and X(t; v*) is focal asymptotic on [a, oo). 
It is interesting to determine conditions which are sufficient to guarantee 

that focal asymptotic trajectories necessarily define focal points at oo, 
i.e., the guarantee that lim^co x(2k)(t) = 0. We first observe that the higher 
derivatives must go to zero as t -• oo. 

LEMMA 2. If X(t; v*) is a (2k, 2(n — k)) focal asymptotic trajectory on 
[a, oo), then 

(9) lim xU) (t; v*) = 0, 2k +1 g i < In 
t—>oo 

PROOF. The function u{(t) = (— \yx{i)(t; v*), 2k ^ i < 2n is positive, 
decreasing on [a, oo), hence linv»«, u{(t) = c{ ^ 0. If c{ > 0 then 

w,--i(0 = w«-i(«) + I Wi-iW * = w,--i(a) - | ",<•*) ds ^ w,--i(a) - c,(f - a), 
Ja Ja 

so M,--I(0 -> — oo as / -> oo. Therefore c,- = 0 for 2k < i < 2n. 
Finally, we derive sufficient conditions for focal points at oo. Recall 

that equation (E) is said to be sublinear (resp. superlinear) if f(t, x) is 
nonincreasing (resp. nondecreasing) in x. 

THEOREM 2. Let equation (E) be sublinear or superlinear, and assume 
that 

(10) f °°f(s, e s2k) ds = oo 

for all e > 0. If x(t) is a (2k, 2(n — k)) focal asymptotic trajectory on 
[a, oo), then lim,_oo xi2k)(t) = 0, and ß = oo is a focal point of a. 

PROOF. Let (E) be superlinear and assume lim,-»«, x{2k)(t) = c > 0. Then 

JC<2*-I> (/) = xUk-Hcc) + P x™(s)ds ^ c(t - a), 

and by successive integrations x(t) ^ (c/(2k)\)(t — a)2k. Then 

JC<2»-D(f) = AT<2»-l)(a) + P x(2n) ( ^ 
J a 

= A:«"-1 ' (a) + P / f a x(s)) ds £ x*2»-^«) 

which tends to oo as t -» oo. This contradicts lemma 2. The sublinear 
case is similar, since for t sufficiently large, x{2k)(t) < 2c. 

A counterexample. The condition (10) in Theorem 2, is necessary in 
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order for a focal asymptotic trajectory to define a focal point at ß = oo. 
The referees provided the next example. 

Consider the fourth order linear equation 

(11) yU)(0 = (c/t5)y(t\ t* 1, 

where c is a constant in (0, 9/16). Then, for any sufficiently large a, this 
equation has neither a (2, 2) focal point ß < oo nor (2, 2) focal asymptotic 
trajectory with ß = oo as a focal point. 

PROOF. We must prove that no solution of (11) can satisfy either 

(12) y(a) = y'(a) = 0 = y"(ß) = y»(ß) or 

(13) y(a) = y\a) = 0, lim y"(t) = lim ym(t) = 0. 
t—»oo t—>oo 

Let assume that (12) holds. Then \a j;<4)(0<fr = $ß
acr5y2 ds and after 

an integration by parts we get 

(i4) p (/(O)2 * = r cr5^2 A. 
Ja Ja 

Now 

P /-4^2 A = P ( - l/3)(r3)>2 </, 
Ja Ja 

= - 1/3 jS-'X/ä2) + r (2/3)t-z(yy')dt 
J a 

^£(2/3)(r^)(ryW/. 

Consequently 

P rV<fe g (2/3)(T *-*j«drY/Yffl t-2(y')2dt)V2 

which implies that 

(15) r / - 4 j 2 <fr g (4/9) f * f ~2(/)2 A. 
Ja Ja 

Similarly we can obtain that 

(16) P t-\yydt <> 4 P (/)2<fr. 
Ja Ja 

From (14), (15) and (16) we have 

V {y"fdt g c f r*(/')2 <ft g (l6c/9) P (/')2<fc < r OO2* 
J a J a J a Ja 

which is a contradiction. 
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Proof of (ii). By asymptotic theory (e.g., Stability and Asymptotic Be
havior of Differential Equations by W.A. Coppel, p. 92) there are inde
pendent solutions y0(t), J>i(0> J2OX ^3(0 °f (11) which have the asympto
tic behavior as / -> 00 : 

[0, k < 1 < n. 

Suppose y(t) = £?=o c,-JV(0 satisfies y"'{t) -> 0 as t -• 00. The above 
asymptotic conditions imply c3 = 0. Similarly y"(t) -» 0 as / -> 00 im
plies c2 = 0. Thus if y is a nontrivial solution of (11) satisying(13), y{t) 
= coyo(t) + ciyi(0- Thus j>(a) =y'(a) = 0 and c0, ci not both zero imply 
that 

,t~ \yo(o0 y \{a) 
(17) I = 0. 

Since by the above relations 

Jo(0>i(0 - yfo{t)yi{t) -» 1 as / -> 00, 

(17) will fail to hold for all sufficiently large a. 
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