
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 17, Number 1, Winter 1987 
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ABSTRACT. Let G be a complex simply connected nilpotent Lie 
group and 71 be a lattice subgroup of G. Then the compact complex 
nilmanifold GjT fibres holomorphically over the complex torus 
T = G/[G, (7JM/7) where iz: G -• G /[G, G] denotes the quotient 
map and the fibre is the nilmanifold [G, G]/r Ç] [G, G]. Let 
pic(G/r) denote the Picard group of G//7. Then under certain as
sumptions on r, we are able to obtain a partial generalization of 
the classical Appell-Humbert Theorem, and in addition, describe 
picCG//7) in terms of pic(r). Many detailed examples are presented 
illustrating the nature of G/T and its Picard group. See pages 631-
638 of the Rocky Mountain J. of Math. Vol. 13, Number 4, Fall 
1983 for previous results on this subject. 

1. Introduction. Wang [8] showed that compact complex parallelizable 
manifolds are homogeneous spaces up to analytic equivalence. As 
interesting examples of such spaces, consider the coset spaces G\F where 
G is a complex simply connected nilpotent Lie group and F is a lattice 
in G. The nilmanifold G/F is a natural generalization of the complex torus. 
Moreover, from the analytic point of view, such spaces provide natural 
examples of non-Kähler manifolds. In fact, G/F is Kahler if and only if 
it is a complex torus. Further, any such G\F has a canonically associated 
complex torus T given by 

(1.1) T = G/[G, G)ITC(F) 

where %{F) is a lattice in the vector space G/[G, G] and %: G -> G'/[G, G] 
denotes the quotient map. In fact, G/F fibres holomorphically over T 
with fibre the nilmanifold N± = [G, G]/A, A = F f| [G, G]. Let (G/F, 
TT, r , Ni) denote this fibration. See [6] and [7] for details. 

This paper deals mainly with the Picard group of G/F, denoted 
Pic(G//7). Specifically, we extend some earlier results presented in [2]. As 
per habit, Pic(G//7) is the group of isomorphism classes of holomorphic 
line bundles on G/F. Under a certain condition (see Proposition 2.1), 
we construct holomorphic maps of T into G/F, and we use these same 
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maps to guarantee the rationality of the first Chern class of any line 
bundle class on G/T (see Theorem 1). In this way, the earlier work of 
Sakane [7] is now generalized. At the same time, the rigid nature of a 
lattice in a complex vector space is uncovered. Ultimately, Proposition 
2.1 proves to be a key tool for establishing the main result Theorem 2, 
which relates Pic(G//7) to Pic(T), and thus obtains for us a partial general
ization of the classical Appell-Humbert Theorem. 

In sections 3 and 5 of the paper, we present some examples of the 
aforementioned work, which hopefully illuminate the nature of things. 
There are a couple of interesting points that are made by all this business. 
Firstly, under the hypothesis of Theorem 2 we note that from the Pic 
point of view, the non-Kähler G/T is analyzed by the torus T. Secondly, 
Theorem 2 along with an example in section 5 further proves that the 
analytic difference between such spaces is not detected by the Picard group. 

Finally, we would like to point out that in a previous paper [2], we gave 
a description of PicT(G//7) — ker clt In some recent work of K. B. Lee 
and F. Raymond, it has been shown that this object can be described via 
holomorphic Seifert fibrations. See [3] for details. 

I would like to thank Professors K. Coombes, K. B. Lee and D. Mc-
Cullough for their helpful suggestions and criticisms. 

2. Canonical Coordinates of the second kind and holomorphic maps of 
T into G/r. Let g denote the Lie algebra of right invariant holomorphic 
vector fields on G; I denotes the complex structure of g, and g+ (resp. 
g~) denotes the vector space of y'— 1 (resp. — *J —I) eigenvectors of / 
in the complexification gc. In the usual way, identify g+ with the complex 
Lie algebra (g, / ) . Since G is a complex simply connected nilpotent Lie 
group, then relative to any basis {Xl9 . . ., Xn) for g+ we obtain a biholo-
morphic map (j) : g+ -» G given by 

(2.1) <ffè z,{g) x}j = J (exp z,<g)*j) = g. 

In particular, (zls . . ., zn) define a system of global coordinates for G 
referred to as canonical coordinates of the second kind. Next, we note 
that the lattice F has a canonical Malcev basis; that is, a set {di, d2, . . . , 
d2n} <= r such that 

(a) y = d^dp- • - • d$» for each y e T where wy 6 Z; 

(b) {d2r+i, • • •, d2n} has property (a) for the lattice Ti of [G, G\. 

See [1], [4], and [6] for details. Since exp: g+ -» G is a biholomorphic map, 
let Yj e g+ be given by dj = exp Yh 1 ^ j ^ «. Note that {Yl9 . . ., Y2n} 
is a real basis for g+ such that {Y2r+X, . . ., Y2n) is a real basis for [g+, g+]. 
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If we now assume that Tis completely reducible, that is, T = 7\ x • • • x 
Tr where each Tj is a one-dimensional complex torus and r = dim T9 

then r admits a canonical Malcev basis {dÌ9. . ., d2n} such that 

^2/-i = e x P ^2/-i> d2j = exp ZjX2j-\ 

for 1 g y g r, where zy e S with Im Ty > 0 and where {Xh . . ., Xr) e g+ 

are g-linearly independent; and in addition, they descend to vector fields 
on G/[G9 G]. Extend {Xh . . ., Xr) to a g-basis for g+, say {Xl9 . . ., Xn}. 
Then following (2.1) we have the biholomorphic map cp and a system of 
coordinates (zl9. . ., zn) where zy e Hom(G, K) for 1 S j S r> See Proposi
tion 3.6 in [7] for details. In particular, it follows that for 2r 4- 1 fz j S 
2n9 

(2.2) dj = </(£ykJXk} 

for j^y e g. 
For notational convenience, let (exp X)z — exp zX where z e © and 

I e g + . Given the above data, define the holomorphic map Sji G -> G by 

(2.3) syte) = (exp X,YM. 

If 1 ^ j ^ r, then Sy is also a homomorphism of G. Clearly, [G, G] c: 
ker Sj9 and so we have an induced homomorphism Sji G/[G9 G] -* G. 
Next, we point out that since [X9IX] = 0, then 

dfflidff = (exp Xj)rr*J*t (I £ j g r), 

and hence it follows that Zj(T) = Z © TJ Z for 1 g y g r. In particular, 
Ty Ä S/zy(r), 1 ^ y ^ r. In addition, we get that sfa^D) e /*. Ex
plicitly, let %(f) G 7r(r) with representative 7* e T7. Relative to our Malcev 
basis, we have 

r ^djFdg*-- dBF K - e Z ) , 

from which it follows that 

sMr)) = (exp xpiû 
= (exp Xj^-^exp TjXj)mv 

= d%U^ d$v9 

i.e., zy(7*) = m2j-i + z"ym2y. Thus, by definition of Malcev basis sfa^D) e 
r. It follows that if p: G -> G//7 is the quotient map then Sj — p o Sj 
defines a holomorphic map of T into G//7 for each 1 ^ 7 ' ^ r. In general 
we have the following situation. 

PROPOSITION 2.1. There exists a system of coordinates (zl9 . . . , zn)for 
G such that for each j = 1, . . . , r and some positive integer d ^ 1, dZj{T) 
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is a lattice in S and sdj(%(D) < r (see (2.3)) if and only if there is an isogeny 
<j> : 7\ x • • « x Tr -+ T where each T; is a one-dimensional complex torus. 

PROOF. Suppose firstly tha t^ : T\ x • • • x Tr -+ T is an isogeny; 
that is, a holomorphic homomorphism which is a finite sheeted covering 
map. Clearly, <j> is induced by a ©-linear isomorphism ^: S r -• G/[G, G] 
such that 

e r * , G/[G, G] 

(2.3) J L' 
7\ x . . . x Tr _t T 

commutes. The vertical q maps are the natural quotient maps. Writing 
Tj = ffi/Ly where Lj is its defining lattice in (£, let L = Z,! x • • • x Lr. 
Now since <f> is an isogeny onto T, <f>(L) is a lattice in G/[G, G] of rank 2r 
which has finite index in iz(r). The following commutative diagram of 
exact sequences gives the complete picture. 

0 0 

0 >L -Ì-+ 7ü(D >coke r ($ L ) >0 

er -*-> G/[G, G] 
9\ r 

0 > k e r <j> ><£7L-^-> T > 0 

0 0 

By the snake lemma, coker($L) ^ ker^ and hence [ic(r): <f>(L)] = d 
where d= |ker^|. In particular, %(y)d e foL) <= 7r(r). 

One can choose a canonical Malcev basis for L, say {4, . . ., / 2 r } , such 
that /2y = Ty4y-i f° r I = J = r where Tj e (£ with Im Ty > 0. Moreover, 
each pair is arranged so that it is a basis for Lj. Although { (̂4)> • • •> 
<^(/2r)} is not in general a canonical Malcev basis for ^(T7), it does have 
the following property : V y e r there exist integers m;- e Z such that 

7z(ry = n ^W' . 

Next, choose dj e r such that iz(dj) = $(//) and then adjoin to {d^ . . ., 
d2r} a canonical Malcev basis for / \ , say {y2r+i, • • •» ̂ 2»}- The set {dlf . . ., 
d2n] generates a lattice Z7' in G such that [T7: F] = </. Consider the nil-
manifold G/r\ and let/?': G -+ G//7' denote the quotient map. Identifying 
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L with $X), then G//"" fibres holomorphically over T\ x • • • x Tr. 
We are now in the completely reducible situation described earlier. So 
there are holomorphic homomorphisms Sji G/[G, G] -> G (see (2.3)) for 
1 ^ / ^ r such that Sj(L) c T7' and hence sj — / / ° «sy yields a holo
morphic map of T\ x • • • x TV into G//7'. Since (̂7*)̂  e L, it follows that 
sj(ic(r)) := ^Wr)<0 e Z7' < r and hence ^ ( T 7 ) ) < T. Thus, S« = 
p ° sj defines a holomorphic map of T into G//7. 

Suppose now we are given the converse hypothesis. Consider the (al
linear isomorphism <j>: 6 r -> G/[G, G] given by 0(z) = %{g) where z = 
(zi, . . ., zw) and g e G with zy(g) = zj. Let L = Lx x • • • x Lr where 
Ly = &X/1). Since sfa(r))d = (exp J5ry)

rfv<r) e 7̂  and <f>(ej) = 7r(exp JTy) = 
exp %*Xj where ey denotes they'Ä unit vector, then it follows that for each 
/yeLy, $/fiì) = <#(<?/) e %{f) and hence 0(L) c %{T). Clearly, [TTGT): 

^(L)] = d and ^ induces an isogeny of 7\ x • • • x Tr onto T where 
Tj = g/Ly. 

In closing we make some observations about complex tori. Following 
Mumford [5] p. 174, we say that a complex torus T = &r/L is simple if 
it does not contain a subcomplex torus distinct from itself and zero. The 
following gives a useful criterion for determining the simplicity of T. 

PROPOSITION 2.2. The complex torus T = 1$,rjL is simple if and only if 
given any lattice basis SS = {4, . . ., /2r} for L then any set of 2k vectors 
from S3 with 0 < k < r do not span a k-dimensional ^-linear subspace of 

PROOF. If {fjv . . ., /JkZ} is a set of 2k distinct vectors from 9S which 
span a /c-dimensional S-linear subspace W of S r (k ^ r), then {/jv . . . , 
/y2J forms an 9î-basis for WR. It follows that the Z-span of {/jv . . ., 
/Ju} forms a lattice, call it L1? in W and hence W\LX is a sub-complex 
torus of T. So if T is simple then k = 0 or k = r. The converse is im
mediate. 

REMARK. From the above lemma, the homomorphisms sj, 1 ^j^r, 
induce holomorphic maps from T into G/T provided one can choose a 
lattice of finite index in K{D which admits a basis {4, . . ., /2r} such that 
each pair 4/~i> 4/> 1 = J: = r> spans a one-dimensional complex sub-
space of G/[G, G]. At the G/T level, this means that there exists a lattice 
T7' of finite index d in T such that the following diagram commutes : 

GIF - £ - G/r 
(2.5) J L 

r — • T 
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where T = (G/[G, G\)I%\F) and $ is a finite sheeted covering map 
induced by the isogeny <j>. 

3. Some Examples. In this section we present some explicit examples 
of the material from the previous section. 

(1) Let 

and let 

G = lg = 

, . \ . 

~1 Si gi 
0 1 

_0 0 
gl 

1 _ 
k/ett, 

"i n 
0 1 

_o o 

ri 
72 

l _ 

\rjeZ@iZ) 

Then G/T is the well known Iwasawa manifold. The Lie algebra 

= {X = 

~0 

0 

_0 

gi gz 
0 

0 
g2 

0 _ 
IS/eC}. 

Identifying g with g+ in the usual way, then relative to the standard basis 
{Xi = Ei2, X2 = E2z, ^3 = £13} f°r 9» the canonical coordinates of the 
second kind are given by Zj(g) = gy, 1 ^ 7 ^ 3. In this case, it is clear that 
Tis a product of two one-dimensional complex tori; that is, T ^ g/Li x 
S/L2 where Lj = zj(F) = Z © iZ, j = 1, 2. Consequently, it can be 
checked directly that 

S jig) = exp Z;(g)Zy = / + Zj(g)Xj 

has the property that s fail1)) <= T7. 

O' = (1, 2) 

(2) Let G be the same as in (1), but let F be the lattice generated by the 
following elements : 

h = 

"1 1 0" 

0 1 0 

.0 0 1. 
. '2 = 

"1 / 0" 

0 1 0 

.0 0 1_ 
, '3 = 

"1 V T 0" 
0 1 1 

.0 0 1_ 

' 4 = 

"1 V2f 0" 

0 1 i 
_0 0 1. 

. '5 = 

"1 0 r 

0 1 0 

.0 0 1. 
. ' 6 = 

"1 0 r 

0 1 0 

.0 0 i_ 

A typical element of F has the form 
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r = n y = 
j=i 

"1 («i + A / T « 3 ) + *(«2 + A/T/I4) «5 + *«6* 

0 1 «3 + //I4 

0 0 1 

where rij e Z. Let (A^, X2, X3} denote the standard basis for g as in (1). 
We obtain a new basis for g by defining Yi = Xh Y2 = X2 + <s/~2X\, 
and F3 = Xz. It can be shown that the canonical coordinates of the 
second kind with respect to {Yh Y2, Y3} are given by 

wife) = zife) - VTz2fe) 

^ f e ) = ^2fe) 
w3fe) = zz(g) + z2(g)(zl(g) - (VT/2)z2fe)) 

for each g e G where the zj are as defined in (1). In particular, Wj{F) = 
Z © VL for y = 1, 2, from which it follows that the maps sf(g) = 
expw/fe)F/, y = 1, 2, have the property Sj(F) c F'. Moreover, T Ä 
tt/Z ©iZ x tt/Z © /Z. Finally, we point out that the set z^/7') = 
{(«! + V^w3) + *(w2 + V~2^nù I «yG Z} is not a lattice in ®. 

(3) Let G be the same as in (1), but let T7 be the lattice generated by the 
following elements: 

h = 

ri 
0 

Lo 

"ì 

0 

_o 

1 

1 

0 

0 

1 

0 

0" 

0 

1_ 

0" 

1 

1_ 

L H = 

, * 5 = 

ri 
0 

Lo 
"i 

0 

_0 

/ 

1 

0 

0 

1 

0 

0" 

0 

1_ 

11 

0 

l j 

I h = 

, ' 6 = 

r1 

P 
K) 

"1 

0 

_0 

•¥ 
1 

1 

0 

1 

0 

0 -, 

T« 
0 -

n 
0 

i_ 
n = 

where ^ e g with Im z > 0. Then G/T is a three-dimensional complex 
nilmanifold where T is analytically equivalent to the complex torus (&2/L 
where L is the lattice generated by (1, 0), (1, 0), ((1/2/, (l/2)r), (0,1). Using 
the data {XÌ9 X2, X^} and (zx, z2, z3) from (1) one can see directly that 
T Ä (£2/L. In this example, T is not a product of two complex tori. 
This follows from the observation that pairing (*/2,

 T/2) with any other 
generator for L from above gives a basis for K2. However, T is isogenous 
to T = ©2/Z/ where L is the lattice generated by (1, 0), (/, 0), (0, 1), (0, z). 
T is clearly a product of two complex tori. Moreover, in 7", (»^ V2) 
represents a point of order two. So letting H denote the subgroup of T 
generated by the class of (*/2, r/2), then T = r ' / # with the isogeny 
<f>:T -* T being the quotient map. Clearly, the degree of <f> is d — 2, 
J / / 7 ) É Tbut^K/7) <= Ay = 1, 2. 
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(4) For our final example in this section we take G as in (1) but take 
r to be the lattice generated by 

1 1 0" 

0 1 0 

0 0 1_ 
, h = 

'1 0 0" 

0 1 1 

_0 0 0_ 

"1 V 3 # 0 " 

0 1 VTi 
_0 0 1 

, '5 = 

"i o r 
0 1 0 

_o o i_ 

, *3 = 

, >6 = 1 

ri VTI o 
0 l VTi 

[_o o l 

"1 0 f 

0 1 0 

_o o i_ 

h = 

h = 

In this case, Te (£2/L where L is the lattice generated by (1, 0), (0, 1), 
(VTi, VTi), (VTi, VTi). Since any two of these generators are a 
©-basis for (£2, T is not isogenous to a product of two complex tori. 
Hence, by Proposition 2.1 there are no non-trivial holomorphic maps 
of T into G/r arising from a canonical coordinate system of the second 
kind on G. 

4. A Structure Theorem for Pic (G/T). Let 2 e Pic(G/r). As is demon
strated by Propositions 3.4 and 3.5 of [7] there is a unique real right 
invariant 2-form a e A2(Q+)* of type (1, 1) representing Ci(S), and it is 
given by 

(4.1) a = Ti Ti hi*dzi A d2k 
j,k=i 

where (hjk) is an r x r-hermitian matrix and r = dim g+/[g+, g+]. We 
remark here that the uniqueness of a is relative to the coordinates (z1? 

. . ., zn); that is, relative to the basis S = {Xh . . ., Xn} for g. If SS' = 
{Yi, . . . , Yn] is another basis for g+ and(wx, . . ., wn) the corresponding 
canonical coordinates of the second kind so that Proposition 3.6 in [7] 
is true, then as above one has a real (1, 1) form a' = (1/2/) Hrj,k=ihjkdwj A 
dwk also representing ci(£). Although a' is cohomologous to a, a' need 
not equal a. We show the usefulness of this remark in the following 
lemma. 

LEMMA 4.1. Let 2 e Pic(G//7). Then there exists a system of coordinates 
for G relative to which the (unique) r x r hermitian matrix representing 
Ci(2) is a diagonal matrix. 

PROOF. Let ß G Pic(G/f) and let a defined by (4.1) representees). 
As is well known, the hermitian matrix (hjk) is unitarily equivalent to a 
diagonal matrix D; i.e., D = P-l(hJk)P where P is unitary. Let S: g+/ 
fe+' 9+] ~~> 9+/l9+> 9+] b e t n e n n e a r transformation whose matrix relative 
to {Xf,. . ., Xf) is (hjk). If {Yf,. . ., Y*} is an eigenbasis for S then the 
matrix of S relative to the basis is D with P being the change of basis 



PICARD GROUP 73 

matrix from Ff,. . ., 7* to Xf, . . ., Xf. One can choose a basis 93' = 
{Yi, . . ., Yn} for g+ such that %%Yj = 7* for 1 g> j £ r and Fy = JTy for 
r + 1 <* j <> n. Define the matrix 

(4.2) y4 = 

p 

0 

0 

•*«—r 

If (H>I, . . ., w„) denotes the system of canonical coordinates of the second 
kind corresponding to SS' then Proposition 3.6 in [7] holds for this set-up. 
In particular, let cjjw: g -> G be the biholomorphic map given by 

SUE Hvfc)ry) = n (exp r ^ = g. 

The matrix A = (fl,7) defines a K-linear isomorphism J^ : g -» g by the 
recipe 

(4.3) 

In turn TA induces a biholomorphic map of G by the diagram: 

TA 
B -

(4.4) 

As elements of Pic(C/D, JH|2 = 2 ; i.e., T%2 is analytically equivalent 
to 2. Hence ci(2) = c^T^S). Since Z> clearly represents ci(T$8) (i.e., 
5 = Z>), we are done. 

THEOREM 1. Let G/T be a compact complex nilmanifold such that T 
is isogenous to a product of r one-dimensional complex tori (see Proposition 
2.1). Let 2 e Pic(G/r). Then there exists a real invariant form ß e /l2(g+)* 
of type (1,1) representing Ci(2) which is rational. 

PROOF. Let (zb . . ., zn) be a system of coordinates for G subject to the 
conditions of Proposition 2.1. By Lemma 4.1 we can if necessary apply 
a unitary change of coordinates to obtain a diagonal form representing 
Ci(2). Moreover, such a change of coordinates preserves the conditions 
of Proposition 2.1. So we may assume that 

ß ̂ -hy.djdzj /\dzj 

is the unique (relative to (zh . . ., zn)) real invariant form in /l2(g+)* of 
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type (1, 1) representing Ci(2). We will prove the theorem by show
ing that the hermitian form H defined by ß on G has an imaginary 
part A which is rational valued when restricted to f x f. We define H: 
G x G - <£ by 

(4.5) //(g, h) = 2 djZj(g)zJh). 

Then / / is a hermitian bihomomorphism. Let sj: T -> G/T, 1 ^ . / ^ r, 
be the holomorphic maps induced from the coordinates (zl5 . . ., zn) as 
described in Proposition 2.1. Consider next the line bundle (sj)*S on 
T; i.e., the pullback of 2 by sj. By the Appell-Humbert Theorem (see 
[2], [5]), one knows that relative to the coordinates (zl5 . . ., zr) for G\ 
[G, G], <?i[Csf)*£] is represented by a unique hermitian form on G/[G, G] 
for which the imaginary part is integral on %{r). Explicitly, this form is 
given by 

H,{g, h) := (sf)*H(g, h) 

= 2 dkzk(si(g))^m) 

= d2djzj(g)z](h). 

Clearly, H = \jd2(Hi + • • • + Hr). Continuing, the imaginary part of 
Hj is then given by 

Aj(g, h) = ^-(zj&zjih) - zf(g)zj(h)). 

Moreover, since A = \/d2(Ai + • • • + Ar) and since Aj(%(r) x n{r)) c 
Z, it follows that A(r x T7) <= (l/d2)Z and the theorem is proved. 

We now state and prove the main theorem. 

THEOREM 2. Let G/T be a compact complex nilmanifold such that T is 
isogenous to a product of r one-dimensional complex tori {see Proposition 
2.1). Let2ePic(G/r). Then there exists 2' e Pic(r) such that 

2d2 = TZ*2\ 

where d is the integer defflned in Proposition 2.1. 

PROOF. Let 2 e PicCG//7). By Theorem 1, choose a system of canonical 
coordinates of the second kind for G, say (zl5 . . ., z„), relative to which 
Ci(Q) is represented by the Hermitian form H in (4.5). Define 

(4.6) 2j = %*(sj)*2 

where 1 ^ j ^ r and 7r: G/T -• 7* is the fibre map. It can be shown di
rectly that cx(2i ® • - - ® 2r) = d2Ci(2) and so £rf2 ® V ® • • * ® S^1 G 
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Pic°(G/F). By Proposition 3.1 of [2] (or see section 4.8 of [3]) there exists 
S" e Pic°(r) such that 

2d2 = ?r*£" ® Si ® • • • ® ß r. 

Taking 2' = S" ®(sf)* 2 i ® (£?)*£, the proof is complete. 

5. More Examples and Concluding Remarks. For examples 1 and 2 of 
section 3, Theorem 2 says that Pic(G/F) ^ Pic(G/F). However, one gets 
this directly since the map {z^g), z2(g), z3(g)) -• (wx(g), w2(g), w3(g)) 
induces an analytic isomorphism of G/F onto G\F. On the other hand, let 
G(n) be the simply connected complex nilpotent Lie group defined by 

G(n)={ 

1 Z\ *2 Zn- l W 

1 0 0 yn_x 

ô ; 

i 

I Zj, y h w 6 $ 
7 = 1,2 #i — l 

for A ̂  2, 

and Aw) be the lattice of Gin) defined by 

m 

1 tfl «2 «»-1 0 
1 0 0 V i 

0 
1 bx 

1 

|öy, bj, ceZ © /Z 
7 = l , . . . , / i - 1 

Then, by Theorem 2, Pic(G(n)ir(n)) ^ Pic(T(«)) for each « ^ 2. More 
importantly, though, Pic(G(n)/F(n)) c* Pic(G/D for G/T from example 1. 
Explicitly, this follows from Theorem 2 and the observation that the base 
tori T(n) and T are biholomorphic. There are two points to this last ex
ample. The first is that for n ^ 3, G(n)/F(n) ¥ G(2)//T(2) = G/F, yet the 
respective Picard groups are isomorphic; and the second point is that the 
Picard group is not a good indicator of the analytic difference between 
two compact complex nilmanifolds. 

Finally, in [2] (see Theorem 2) it was shown that PicT(G/F) is a compact 
complex manifold which is a finite sheeted disconnected covering of 
Pic°(T). The following proof of the latter fact was suggested by K. Coom-
bes, K. B. Lee and D. McCullough. Recall from [2] that F ••= A/[A Al 
where A = F fi [G, G] is a finite abelian group, A A ^ Z2r and one has 
the short split exact sequence 

o -> F-* A I A /ir— A A -> o. 
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In particular, r/[r, I7] Ä nrx © F and so 

Hom(A (St) = Hom(r/[r, I7], ttf) * Hom(/7A, «Î) © Hom(F, Sf). 

Using the results of section 3 in [2] and the above facts, we have isomor
phic exact sequences 

0 -> HomC/7//7!, Œf) — Hom(r/[r, T7], ttf) -* Hom(F, ŒJ) — 0 

is « 

0 > Pic°(T) > Picr(G/r) > F > 0. 

In particular, Pic^G//7) ^ Pic°(r) © F. Next, Lemma 3.1 of [2] yields 
the exact sequence 

0 -> ker D c> Pic^G//7) -^ Pic°(F) -* 0 

where it follows from above that ker D Ä (Zk)
2r © F Combining all of 

the above data, we obtain the following diagram of exact sequences. 

o -+ (zkyr © F __5_ o 
^> Pic^G//7) <^- PicO(r) < ^ 

0 4- F ^ T ^ 0 

All of this information summarizes as follows. D is a 2r£2 sheeted dis
connected covering map. Moreover, K* injectively maps Pic°(T) onto 
the identity component of Picr(G/F), and S -> ß* maps Picr(G/F) onto 
7T*Pic0(D = Pic°(G/F). Thus, £(£) = (**)-!£*. 
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