ON THE PICARD GROUP OF A COMPACT COMPLEX NILMANIFOLD-II

ROBERT J. FISHER, JR.

Abstract

Let G be a complex simply connected nilpotent Lie group and Γ be a lattice subgroup of G. Then the compact complex nilmanifold G / Γ fibres holomorphically over the complex torus $T=G /[G, G] / \pi(\Gamma)$ where $\pi: G \rightarrow G /[G, G]$ denotes the quotient map and the fibre is the nilmanifold $[G, G] / \Gamma \cap[G, G]$. Let $\operatorname{pic}(G / \Gamma)$ denote the Picard group of G / Γ. Then under certain assumptions on T, we are able to obtain a partial generalization of the classical Appell-Humbert Theorem, and in addition, describe $\operatorname{Pic}\left(G / \Gamma^{\prime}\right)$ in terms of $\operatorname{pic}(T)$. Many detailed examples are presented illustrating the nature of G / Γ and its Picard group. See pages 631638 of the Rocky Mountain J. of Math. Vol. 13, Number 4, Fall 1983 for previous results on this subject.

1. Introduction. Wang [8] showed that compact complex parallelizable manifolds are homogeneous spaces up to analytic equivalence. As interesting examples of such spaces, consider the coset spaces G / Γ where G is a complex simply connected nilpotent Lie group and Γ is a lattice in G. The nilmanifold G / Γ is a natural generalization of the complex torus. Moreover, from the analytic point of view, such spaces provide natural examples of non-Kähler manifolds. In fact, G / Γ is Kähler if and only if it is a complex torus. Further, any such G / Γ has a canonically associated complex torus T given by

$$
\begin{equation*}
T=G /[G, G] / \pi(\Gamma) \tag{1.1}
\end{equation*}
$$

where $\pi(\Gamma)$ is a lattice in the vector space $G /[G, G]$ and $\pi: G \rightarrow G /[G, G]$ denotes the quotient map. In fact, G / Γ fibres holomorphically over T with fibre the nilmanifold $N_{1}=[G, G] / \Gamma_{1}, \Gamma_{1}=\Gamma \cap[G, G]$. Let $(G / \Gamma$, π, T, N_{1}) denote this fibration. See [6] and [7] for details.

This paper deals mainly with the Picard group of G / Γ, denoted $\operatorname{Pic}(G / \Gamma)$. Specifically, we extend some earlier results presented in [2]. As per habit, $\operatorname{Pic}(G / \Gamma)$ is the group of isomorphism classes of holomorphic line bundles on G / Γ. Under a certain condition (see Proposition 2.1), we construct holomorphic maps of T into G / Γ, and we use these same

Received by the editors on January 30, 1985.
Copyright (c) 1987 Rocky Mountain Mathematics Consortium
maps to guarantee the rationality of the first Chern class of any line bundle class on G / Γ (see Theorem 1). In this way, the earlier work of Sakane [7] is now generalized. At the same time, the rigid nature of a lattice in a complex vector space is uncovered. Ultimately, Proposition 2.1 proves to be a key tool for establishing the main result Theorem 2, which relates $\operatorname{Pic}(G / \Gamma)$ to $\operatorname{Pic}(T)$, and thus obtains for us a partial generalization of the classical Appell-Humbert Theorem.

In sections 3 and 5 of the paper, we present some examples of the aforementioned work, which hopefully illuminate the nature of things. There are a couple of interesting points that are made by all this business. Firstly, under the hypothesis of Theorem 2 we note that from the Pic point of view, the non-Kähler G / Γ is analyzed by the torus T. Secondly, Theorem 2 along with an example in section 5 further proves that the analytic difference between such spaces is not detected by the Picard group.

Finally, we would like to point out that in a previous paper [2], we gave a description of $\operatorname{Pic}^{\tau}(G / \Gamma):=\operatorname{ker} c_{1}$. In some recent work of K. B. Lee and F. Raymond, it has been shown that this object can be described via holomorphic Seifert fibrations. See [3] for details.

I would like to thank Professors K. Coombes, K. B. Lee and D. McCullough for their helpful suggestions and criticisms.
2. Canonical Coordinates of the second kind and holomorphic maps of \boldsymbol{T} into $\boldsymbol{G} / \boldsymbol{\Gamma}$. Let g denote the Lie algebra of right invariant holomorphic vector fields on $G ; I$ denotes the complex structure of g, and g^{+}(resp. \mathfrak{g}^{-}) denotes the vector space of $\sqrt{-1}$ (resp. $-\sqrt{-1}$) eigenvectors of I in the complexification $\mathfrak{g}^{\mathfrak{c}}$. In the usual way, identify g^{+}with the complex Lie algebra (\mathfrak{g}, I). Since G is a complex simply connected nilpotent Lie group, then relative to any basis $\left\{X_{1}, \ldots, X_{n}\right\}$ for g^{+}we obtain a biholomorphic map $\psi: \mathrm{g}^{+} \rightarrow G$ given by

$$
\begin{equation*}
\psi\left(\sum_{j=1}^{n} z_{j}(g) X_{j}\right)=\prod_{j=1}^{n}\left(\exp z_{j}(g) X_{j}\right)=g . \tag{2.1}
\end{equation*}
$$

In particular, $\left(z_{1}, \ldots, z_{n}\right)$ define a system of global coordinates for G referred to as canonical coordinates of the second kind. Next, we note that the lattice Γ has a canonical Malcev basis; that is, a set $\left\{d_{1}, d_{2}, \ldots\right.$, $\left.d_{2 n}\right\} \subset \Gamma$ such that
(a) $\gamma=d_{1}^{m_{1}} d_{2}^{m_{2}} \cdots d_{2 n}^{m_{2 n}}$ for each $\gamma \in \Gamma$ where $m_{j} \in \mathbf{Z}$;
(b) $\left\{d_{2 r+1}, \cdots, d_{2 n}\right\}$ has property (a) for the lattice Γ_{1} of $[G, G]$.

See [1], [4], and [6] for details. Since exp: $\mathrm{g}^{+} \rightarrow G$ is a biholomorphic map, let $Y_{j} \in \mathfrak{g}^{+}$be given by $d_{j}=\exp Y_{j}, 1 \leqq j \leqq n$. Note that $\left\{Y_{1}, \ldots, Y_{2 n}\right\}$ is a real basis for \mathfrak{g}^{+}such that $\left\{Y_{2 r+1}, \ldots, Y_{2 n}\right\}$ is a real basis for $\left[\mathrm{g}^{+}, \mathrm{g}^{+}\right]$.

If we now assume that T is completely reducible, that is, $T=T_{1} \times \cdots \times$ T_{r} where each T_{j} is a one-dimensional complex torus and $r=\operatorname{dim} T$, then Γ admits a canonical Malcev basis $\left\{d_{1}, \ldots, d_{2 n}\right\}$ such that

$$
d_{2 j-1}=\exp X_{2 j-1}, d_{2 j}=\exp \tau_{j} X_{2 j-1}
$$

for $1 \leqq j \leqq r$, where $\tau_{j} \in \mathbb{C}$ with $\operatorname{Im} \tau_{j}>0$ and where $\left\{X_{1}, \ldots, X_{r}\right\} \in \mathfrak{g}^{+}$ are $(\mathbb{G}$-linearly independent; and in addition, they descend to vector fields on $G /[G, G]$. Extend $\left\{X_{1}, \ldots, X_{r}\right\}$ to a $\mathbb{C}^{(6}$-basis for \mathfrak{g}^{+}, say $\left\{X_{1}, \ldots, X_{n}\right\}$. Then following (2.1) we have the biholomorphic map ψ and a system of coordinates $\left(z_{1}, \ldots, z_{n}\right)$ where $z_{j} \in \operatorname{Hom}(G, \mathbb{C})$ for $1 \leqq j \leqq r$. See Proposition 3.6 in [7] for details. In particular, it follows that for $2 r+1 \leqq j \leqq$ $2 n$,

$$
\begin{equation*}
d_{j}=\psi\left(\sum_{r+1}^{n} y_{k j} X_{k}\right) \tag{2.2}
\end{equation*}
$$

for $y_{k j} \in \mathbb{C}$.
For notational convenience, let $(\exp X)^{z}=\exp z X$ where $z \in \mathbb{C}$ and $X \in \mathfrak{g}^{+}$. Given the above data, define the holomorphic map $s_{j}: G \rightarrow G$ by

$$
\begin{equation*}
s_{j}(g)=\left(\exp X_{j}\right)^{z_{j}(g)} . \tag{2.3}
\end{equation*}
$$

If $1 \leqq j \leqq r$, then s_{j} is also a homomorphism of G. Clearly, $[G, G] \subset$ ker s_{j}, and so we have an induced homomorphism $s_{j}: G /[G, G] \rightarrow G$. Next, we point out that since $[X, I X]=0$, then

$$
d_{2 j-1}^{m_{j}} d_{2 j}^{n_{i}}=\left(\exp X_{j}\right)^{m_{j}+\tau \tau_{j} n_{j}} \quad(1 \leqq j \leqq r),
$$

and hence it follows that $z_{j}(\Gamma)=\mathbf{Z} \oplus \tau_{j} \mathbf{Z}$ for $1 \leqq j \leqq r$. In particular, $T_{j} \simeq \S\left(z_{j}\left(\Gamma^{\prime}\right), 1 \leqq j \leqq r\right.$. In addition, we get that $s_{j}\left(\pi\left(\Gamma^{\prime}\right)\right) \subset \Gamma$. Explicitly, let $\pi(\gamma) \in \pi(\Gamma)$ with representative $\gamma \in \Gamma$. Relative to our Malcev basis, we have

$$
r=d_{1}^{m_{1}} d_{2}^{m_{2}} \cdots d_{2 n}^{m_{2 n}} \quad\left(m_{j} \in \mathbf{Z}\right),
$$

from which it follows that

$$
\begin{aligned}
s_{j}(\pi(\gamma)) & =\left(\exp X_{j}\right)^{z_{j}(r)} \\
& =\left(\exp X_{j}\right)^{m_{2 j}-1}\left(\exp \tau_{j} X_{j}\right)^{m_{2}} \\
& =d_{2 j}^{m_{2 j-1}^{2}-1} d_{2 j}^{m_{j}},
\end{aligned}
$$

i.e., $z_{j}(\gamma)=m_{2 j-1}+\tau_{j} m_{2 j}$. Thus, by definition of Malcev basis $s_{j}(\pi(\Gamma)) \in$ Γ. It follows that if $p: G \rightarrow G / \Gamma$ is the quotient map then $\hat{s}_{j}=p \circ s_{j}$ defines a holomorphic map of T into G / Γ for each $1 \leqq j \leqq r$. In general we have the following situation.

Proposition 2.1. There exists a system of coordinates $\left(z_{1}, \ldots, z_{n}\right)$ for G such that for each $j=1, \ldots, r$ and some positive integer $d \geqq 1, d z_{j}(\Gamma)$
is a lattice in \mathfrak{C} and $s_{j}^{d}(\pi(\Gamma))<\Gamma$ (see (2.3)) if and only if there is an isogeny $\phi: T_{1} \times \cdots \times T_{r} \rightarrow T$ where each T_{j} is a one-dimensional complex torus.

Proof. Suppose firstly that $\phi: T_{1} \times \cdots \times T_{r} \rightarrow T$ is an isogeny; that is, a holomorphic homomorphism which is a finite sheeted covering map. Clearly, ϕ is induced by a ©-linear isomorphism $\tilde{\phi}: \mathfrak{S}^{r} \rightarrow G /[G, G]$ such that

commutes. The vertical q maps are the natural quotient maps. Writing $T_{j}=\mathfrak{C} / L_{j}$ where L_{j} is its defining lattice in \mathfrak{C}, let $L=L_{1} \times \cdots \times L_{r}$. Now since ϕ is an isogeny onto $T, \tilde{\phi}(L)$ is a lattice in $G /[G, G]$ of rank $2 r$ which has finite index in $\pi(\Gamma)$. The following commutative diagram of exact sequences gives the complete picture.

By the snake lemma, $\operatorname{coker}\left(\left.\tilde{\phi}\right|_{L}\right) \simeq \operatorname{ker} \phi$ and hence $[\pi(\Gamma): \tilde{\phi}(L)]=d$ where $d=|\operatorname{ker} \phi|$. In particular, $\pi(\gamma)^{d} \in \tilde{\phi}(L) \subset \pi\left(\Gamma^{\prime}\right)$.

One can choose a canonical Malcev basis for L, say $\left\{\ell_{1}, \ldots, \ell_{2}\right\}$, such that $\ell_{2 j}=\tau_{j} \ell_{2 j-1}$ for $1 \leqq j \leqq r$ where $\tau_{j} \in \mathbb{C}$ with $\operatorname{Im} \tau_{j}>0$. Moreover, each pair is arranged so that it is a basis for L_{j}. Although $\left\{\tilde{\phi}\left(\ell_{1}\right), \ldots\right.$, $\left.\tilde{\phi}\left(\ell_{2}\right)\right\}$ is not in general a canonical Malcev basis for $\pi(\Gamma)$, it does have the following property: $\forall \gamma \in \Gamma$ there exist integers $m_{j} \in \mathbf{Z}$ such that

$$
\pi(\gamma)^{d}=\prod_{j=1}^{2 r} \tilde{\phi}\left(\ell_{j}\right)^{m_{j}}
$$

Next, choose $d_{j} \in \Gamma$ such that $\pi\left(d_{j}\right)=\tilde{\phi}\left(\ell_{j}\right)$ and then adjoin to $\left\{d_{1}, \ldots\right.$, $\left.d_{2 r}\right\}$ a canonical Malcev basis for Γ_{1}, say $\left\{d_{2 r+1}, \ldots, d_{2 n}\right\}$. The set $\left\{d_{1}, \ldots\right.$, $\left.d_{2 n}\right\}$ generates a lattice $\Gamma^{\prime \prime}$ in G such that $\left[\Gamma: \Gamma^{\prime}\right]=d$. Consider the nilmanifold G / Γ^{\prime}, and let $p^{\prime}: G \rightarrow G / \Gamma^{\prime}$ denote the quotient map. Identifying
L with $\tilde{\phi}(L)$, then G / Γ^{\prime} fibres holomorphically over $T_{1} \times \cdots \times T_{r}$. We are now in the completely reducible situation described earlier. So there are holomorphic homomorphisms $s_{j}: G /[G, G] \rightarrow G$ (see (2.3)) for $1 \leqq j \leqq r$ such that $s_{j}(L) \subset \Gamma^{\prime}$ and hence $\hat{s}_{j}:=p^{\prime} \circ s_{j}$ yields a holomorphic map of $T_{1} \times \cdots \times T_{r}$ into $G / \Gamma^{\prime \prime}$. Since $\pi(\gamma)^{d} \in L$, it follows that $s_{j}^{d}(\pi(\gamma))=s_{j}\left(\pi(\gamma)^{d}\right) \in \Gamma^{\prime \prime}<\Gamma$ and hence $s_{j}^{d}(\pi(\Gamma))<\Gamma$. Thus, $\hat{s}_{j}^{d}=$ $p \circ s_{j}^{d}$ defines a holomorphic map of T into G / Γ.

Suppose now we are given the converse hypothesis. Consider the © linear isomorphism $\phi: \mathbb{®}^{r} \rightarrow G /[G, G]$ given by $\phi(z)=\pi(g)$ where $z=$ $\left(z_{1}, \ldots, z_{n}\right)$ and $g \in G$ with $z_{j}(g)=z_{j}$. Let $L=L_{1} \times \cdots \times L_{r}$ where $L_{j}=d z_{j}(\Gamma)$. Since $s_{j}(\pi(\gamma))^{d}=\left(\exp X_{j}\right)^{d z_{j}(\tau)} \in \Gamma$ and $\phi\left(e_{j}\right)=\pi\left(\exp X_{j}\right)=$ $\exp \pi_{*} X_{j}$ where e_{j} denotes the $j^{\text {th }}$ unit vector, then it follows that for each $\ell_{j} \in L_{j}, \phi\left(\iota_{j} e_{j}\right)=\ell_{j} \phi\left(e_{j}\right) \in \pi(\Gamma)$ and hence $\phi(L) \subset \pi(\Gamma)$. Clearly, $[\pi(\Gamma)$: $\phi(L)]=d$ and ϕ induces an isogeny of $T_{1} \times \cdots \times T_{r}$ onto T where $T_{j}=\mathbb{E} / L_{j}$.

In closing we make some observations about complex tori. Following Mumford [5] p. 174, we say that a complex torus $T=\mathfrak{c}^{\boldsymbol{r}} / L$ is simple if it does not contain a subcomplex torus distinct from itself and zero. The following gives a useful criterion for determining the simplicity of T.

Proposition 2.2. The complex torus $T=\mathbb{®}^{\boldsymbol{r}} / \mathrm{L}$ is simple if and only if given any lattice basis $\mathfrak{B}=\left\{\ell_{1}, \ldots, \iota_{2}\right\}$ for L then any set of $2 k$ vectors from \mathfrak{B} with $0<k<r$ do not span a k-dimensional \mathfrak{C}-linear subspace of \mathfrak{c}^{r}.

Proof. If $\left\{\ell_{j_{1}}, \ldots, \ell_{j_{k}}\right\}$ is a set of $2 k$ distinct vectors from \mathfrak{B} which span a k-dimensional \mathfrak{C}-linear subspace W of $\mathfrak{C}^{r}(k \leqq r)$, then $\left\{\iota_{j_{1}}, \ldots\right.$, $\left.\ell_{\left.j_{22}\right\}}\right\}$ forms an \Re-basis for W_{R}. It follows that the \mathbf{Z}-span of $\left\{\ell_{j_{1}}, \ldots\right.$, $\iota_{\left.j_{22}\right\}}$) forms a lattice, call it L_{1}, in W and hence W / L_{1} is a sub-complex torus of T. So if T is simple then $k=0$ or $k=r$. The converse is immediate.

Remark. From the above lemma, the homomorphisms $s_{j}, 1 \leqq j \leqq r$, induce holomorphic maps from T into G / Γ provided one can choose a lattice of finite index in $\pi(\Gamma)$ which admits a basis $\left\{1_{1}, \ldots, \ell_{2 r}\right\}$ such that each pair $\ell_{2 j-1}, \iota_{2 j}, 1 \leqq j \leqq r$, spans a one-dimensional complex subspace of $G /[G, G]$. At the G / Γ level, this means that there exists a lattice $\Gamma^{\prime \prime}$ of finite index d in Γ such that the following diagram commutes:

where $T^{\prime}=(G /[G, G]) / \pi^{\prime}\left(\Gamma^{\prime}\right)$ and ϕ^{\prime} is a finite sheeted covering map induced by the isogeny ϕ.
3. Some Examples. In this section we present some explicit examples of the material from the previous section.
(1) Let

$$
G=\left\{\left.g=\left[\begin{array}{ccc}
1 & g_{1} & g_{3} \\
0 & 1 & g_{2} \\
0 & 0 & 1
\end{array}\right] \right\rvert\, g_{j} \in \mathfrak{C}\right\}
$$

and let

$$
\Gamma=\left\{\left.\gamma=\left[\begin{array}{ccc}
1 & \gamma_{1} & \gamma_{3} \\
0 & 1 & \gamma_{2} \\
0 & 0 & 1
\end{array}\right] \right\rvert\, \gamma_{j} \in \mathbf{Z} \oplus i \mathbf{Z}\right\}
$$

Then G / Γ is the well known Iwasawa manifold. The Lie algebra

$$
\mathfrak{g}=\left\{\left.X=\left[\begin{array}{lll}
0 & g_{1} & g_{3} \\
0 & 0 & g_{2} \\
0 & 0 & 0
\end{array}\right] \right\rvert\, g_{j} \in \mathfrak{C}\right\}
$$

Identifying g with g^{+}in the usual way, then relative to the standard basis $\left\{X_{1}=E_{12}, X_{2}=E_{23}, X_{3}=E_{13}\right\}$ for g , the canonical coordinates of the second kind are given by $z_{j}(g)=g_{j}, 1 \leqq j \leqq 3$. In this case, it is clear that T is a product of two one-dimensional complex tori; that is, $T \simeq \mathbb{C} / L_{1} \times$ \mathfrak{C} / L_{2} where $L_{j}=z_{j}(\Gamma)=\mathbf{Z} \oplus i \mathbf{Z}, j=1,2$. Consequently, it can be checked directly that

$$
s_{j}(g)=\exp z_{j}(g) X_{j}=I+z_{j}(g) X_{j} \quad(j=(1,2)
$$

has the property that $s_{j}\left(\pi\left(\Gamma^{\prime}\right)\right) \subset \Gamma$.
(2) Let G be the same as in (1), but let $\Gamma^{\prime \prime}$ be the lattice generated by the following elements:

$$
\begin{aligned}
& t_{1}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], t_{2}=\left[\begin{array}{lll}
1 & i & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], t_{3}=\left[\begin{array}{ccc}
1 & \sqrt{2} & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right], \\
& t_{4}=\left[\begin{array}{ccc}
1 & \sqrt{2 i} & 0 \\
0 & 1 & i \\
0 & 0 & 1
\end{array}\right], t_{5}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], t_{6}=\left[\begin{array}{lll}
1 & 0 & i \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

A typical element of $\Gamma^{\prime \prime}$ has the form

$$
\gamma=\prod_{j=1}^{6} t_{j}^{n_{j}}=\left[\begin{array}{lcc}
1\left(n_{1}+\sqrt{2} n_{3}\right)+i\left(n_{2}+\sqrt{2} n_{4}\right) & n_{5}+i n_{6} \\
0 & 1 & n_{3}+i n_{4} \\
0 & 0 & 1
\end{array}\right]
$$

where $n_{j} \in \mathbf{Z}$. Let $\left\{X_{1}, X_{2}, X_{3}\right\}$ denote the standard basis for \mathfrak{g} as in (1). We obtain a new basis for \mathfrak{g} by defining $Y_{1}=X_{1}, Y_{2}=X_{2}+\sqrt{2} X_{1}$, and $Y_{3}=X_{3}$. It can be shown that the canonical coordinates of the second kind with respect to $\left\{Y_{1}, Y_{2}, Y_{3}\right\}$ are given by

$$
\begin{gathered}
w_{1}(g)=z_{1}(g)-\sqrt{2} z_{2}(g) \\
w_{2}(g)=z_{2}(g) \\
w_{3}(g)=z_{3}(g)+z_{2}(g)\left(z_{1}(g)-(\sqrt{2} / 2) z_{2}(g)\right)
\end{gathered}
$$

for each $g \in G$ where the z_{j} are as defined in (1). In particular, $w_{j}\left(\Gamma^{\prime \prime}\right)=$ $\mathbf{Z} \oplus i \mathbf{Z}$ for $j=1,2$, from which it follows that the maps $s_{j}(g)=$ $\exp w_{j}(g) Y_{j}, j=1,2$, have the property $s_{j}\left(\Gamma^{\prime}\right) \subset \Gamma^{\prime}$. Moreover, $T \simeq$ $\mathfrak{G} / \mathbf{Z} \oplus i \mathbf{Z} \times \mathfrak{(} / \mathbf{Z} \oplus i \mathbf{Z}$. Finally, we point out that the set $z_{1}\left(\Gamma^{\prime}\right)=$ $\left\{\left(n_{1}+\sqrt{2} n_{3}\right)+i\left(n_{2}+\sqrt{2} n_{4}\right) \mid n_{j} \in \mathbf{Z}\right\}$ is not a lattice in ©.
(3) Let G be the same as in (1), but let Γ be the lattice generated by the following elements:

$$
\begin{aligned}
& t_{1}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], t_{2}=\left[\begin{array}{lll}
1 & i & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], t_{3}=\left[\begin{array}{lll}
1 & \frac{1}{2} i & 0 \\
0 & 1 & \frac{1}{2} \tau \\
0 & 1 & 0
\end{array}\right], \\
& t_{4}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right], t_{5}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], t_{6}=\left[\begin{array}{lll}
1 & 0 & i \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],
\end{aligned}
$$

where $\tau \in \mathbb{C}$ with $\operatorname{Im} \tau>0$. Then G / Γ is a three-dimensional complex nilmanifold where T is analytically equivalent to the complex torus \mathbb{C}^{2} / L where L is the lattice generated by $(1,0),(i, 0),((1 / 2 i,(1 / 2) \tau),(0,1)$. Using the data $\left\{X_{1}, X_{2}, X_{3}\right\}$ and $\left(z_{1}, z_{2}, z_{3}\right)$ from (1) one can see directly that $T \simeq \complement^{2} / L$. In this example, T is not a product of two complex tori. This follows from the observation that pairing ($i / 2, \tau / 2$) with any other generator for L from above gives a basis for \complement^{2}. However, T is isogenous to $T^{\prime}=\bigotimes^{2} / L^{\prime}$ where L^{\prime} is the lattice generated by $(1,0),(i, 0),(0,1),(0, \tau)$. T^{\prime} is clearly a product of two complex tori. Moreover, in $T^{\prime},(i / 2, \tau / 2)$ represents a point of order two. So letting H denote the subgroup of T^{\prime} generated by the class of $(i / 2, \tau / 2)$, then $T=T^{\prime} / H$ with the isogeny $\phi: T^{\prime} \rightarrow T$ being the quotient map. Clearly, the degree of ϕ is $d=2$, $s_{j}(\Gamma) \not \subset \Gamma$ but $s_{j}^{2}(\Gamma) \subset \Gamma, j=1,2$.
(4) For our final example in this section we take G as in (1) but take Γ to be the lattice generated by

$$
\begin{aligned}
& t_{1}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], t_{2}=\left[\begin{array}{ccc}
1 & \sqrt{3} i & 0 \\
0 & 1 & \sqrt{7} i \\
0 & 0 & 1
\end{array}\right], t_{3}=\left[\begin{array}{ccc}
1 & \sqrt{7} i & 0 \\
0 & 1 & \sqrt{5} i \\
0 & 0 & 1
\end{array}\right], \\
& t_{4}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right], t_{5}=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], t_{6}=\left[\begin{array}{ccc}
1 & 0 & i \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

In this case, $T \in \mathbb{S}^{2} / L$ where L is the lattice generated by $(1,0),(0,1)$, $(\sqrt{3} i, \sqrt{7} i),(\sqrt{7} i, \sqrt{5} i)$. Since any two of these generators are a \mathfrak{C}-basis for \mathfrak{C}^{2}, T is not isogenous to a product of two complex tori. Hence, by Proposition 2.1 there are no non-trivial holomorphic maps of T into G / Γ arising from a canonical coordinate system of the second kind on G.
4. A Structure Theorem for $\operatorname{Pic}(G / \Gamma)$. Let $\mathcal{L} \in \operatorname{Pic}(G / \Gamma)$. As is demonstrated by Propositions 3.4 and 3.5 of [7] there is a unique real right invariant 2-form $\alpha \in \Lambda^{2}\left(\mathrm{~g}^{+}\right)^{*}$ of type (1, 1) representing $c_{1}(\mathfrak{l})$, and it is given by

$$
\begin{equation*}
\alpha=\frac{1}{2 i} \sum_{j, k=1}^{r} h_{j k} d z_{j} \wedge d \bar{z}_{k} \tag{4.1}
\end{equation*}
$$

where $\left(h_{j k}\right)$ is an $r \times r$-hermitian matrix and $r=\operatorname{dim} \mathfrak{g}^{+} /\left[\mathfrak{g}^{+}, \mathfrak{g}^{+}\right]$. We remark here that the uniqueness of α is relative to the coordinates $\left(z_{1}\right.$, \ldots, z_{n}); that is, relative to the basis $\mathfrak{B}=\left\{X_{1}, \ldots, X_{n}\right\}$ for \mathfrak{g}. If $\mathfrak{V}^{\prime}=$ $\left\{Y_{1}, \ldots, Y_{n}\right\}$ is another basis for \mathfrak{g}^{+}and (w_{1}, \ldots, w_{n}) the corresponding canonical coordinates of the second kind so that Proposition 3.6 in [7] is true, then as above one has a real $(1,1)$ form $\alpha^{\prime}=(1 / 2 i) \sum_{j, k=1}^{r} h_{j k}^{\prime} d w_{j} \wedge$ $d \bar{w}_{k}$ also representing $c_{1}(\mathfrak{L})$. Although α^{\prime} is cohomologous to α, α^{\prime} need not equal α. We show the usefulness of this remark in the following lemma.

Lemma 4.1. Let $\mathfrak{Z} \in \operatorname{Pic}(G / \Gamma)$. Then there exists a system of coordinates for G relative to which the (unique) $r \times r$ hermitian matrix representing $c_{1}(\mathbb{Q})$ is a diagonal matrix.

Proof. Let $\mathfrak{L} \in \operatorname{Pic}(G / \Gamma)$ and let α defined by (4.1) represent $c_{1}(\mathfrak{Z})$. As is well known, the hermitian matrix $\left(h_{j k}\right)$ is unitarily equivalent to a diagonal matrix D; i.e., $D=P^{-1}\left(h_{j k}\right) P$ where P is unitary. Let $S: \mathfrak{g}^{+} /$ $\left[\mathrm{g}^{+}, \mathrm{g}^{+}\right] \rightarrow \mathrm{g}^{+} /\left[\mathrm{g}^{+}, \mathrm{g}^{+}\right]$be the linear transformation whose matrix relative to $\left\{X_{1}^{*}, \ldots, X_{r}^{*}\right\}$ is $\left(h_{j_{k}}\right)$. If $\left\{Y_{1}^{*}, \ldots, Y_{r}^{*}\right\}$ is an eigenbasis for S then the matrix of S relative to the basis is D with P being the change of basis
matrix from $Y_{1}^{*}, \ldots, Y_{r}^{*}$ to $X_{1}^{*}, \ldots, X_{r}^{*}$. One can choose a basis $\mathfrak{B}^{\prime}=$ $\left\{Y_{1}, \ldots, Y_{n}\right\}$ for \mathfrak{g}^{+}such that $\pi_{*} Y_{j}=Y_{j}^{*}$ for $1 \leqq j \leqq r$ and $Y_{j}=X_{j}$ for $r+1 \leqq j \leqq n$. Define the matrix

$$
A=\left[\begin{array}{c|c}
P & 0 \tag{4.2}\\
\hline 0 & I_{n-r}
\end{array}\right]
$$

If $\left(w_{1}, \ldots, w_{n}\right)$ denotes the system of canonical coordinates of the second kind corresponding to \mathfrak{B}^{\prime} then Proposition 3.6 in [7] holds for this set-up. In particular, let $\psi_{w}: \mathfrak{g} \rightarrow G$ be the biholomorphic map given by

$$
\psi_{w}\left(\sum_{j} w_{j}(g) Y_{j}\right)=\prod_{j}\left(\exp Y_{j}\right)^{w_{j}(g)}=g .
$$

The matrix $A=\left(a_{i j}\right)$ defines a \circlearrowleft-linear isomorphism $T_{A}: \mathfrak{g} \rightarrow \mathfrak{g}$ by the recipe

$$
\begin{equation*}
T_{A}\left(\sum_{j=1}^{n} c_{j} X_{j}\right)=\sum_{i, j=1}^{n} c_{j} a_{i j} Y_{i} . \tag{4.3}
\end{equation*}
$$

In turn T_{A} induces a biholomorphic map of G by the diagram:

As elements of $\operatorname{Pic}(G / \Gamma), T_{A}^{*} \mathbb{L}=\mathcal{L}$; i.e., $T_{A}^{*} \mathbb{L}$ is analytically equivalent to \mathfrak{Q}. Hence $c_{1}(\mathfrak{Q})=c_{1}\left(T_{A}^{*} \mathfrak{Q}\right)$. Since D clearly represents $c_{1}\left(T_{A}^{*} \mathfrak{Q}\right)$ (i.e., $\bar{D}=D$), we are done.

Theorem 1. Let G / Γ be a compact complex nilmanifold such that T is isogenous to a product of r one-dimensional complex tori (see Proposition 2.1). Let $\mathfrak{Q} \in \operatorname{Pic}(G / \Gamma)$. Then there exists a real invariant form $\beta \in \Lambda^{2}\left(\mathfrak{g}^{+}\right)^{*}$ of type $(1,1)$ representing $c_{1}(\mathbb{L})$ which is rational.

Proof. Let $\left(z_{1}, \ldots, z_{n}\right)$ be a system of coordinates for G subject to the conditions of Proposition 2.1. By Lemma 4.1 we can if necessary apply a unitary change of coordinates to obtain a diagonal form representing $c_{1}(\mathbb{Z})$. Moreover, such a change of coordinates preserves the conditions of Proposition 2.1. So we may assume that

$$
\beta=\frac{1}{2 i} \sum_{j=1}^{r} d_{j} d z_{j} \wedge d \bar{z}_{j}
$$

is the unique (relative to $\left(z_{1}, \ldots, z_{n}\right)$) real invariant form in $\Lambda^{2}\left(\mathfrak{g}^{+}\right)^{*}$ of
type $(1,1)$ representing $c_{1}(\mathbb{Z})$. We will prove the theorem by showing that the hermitian form H defined by β on G has an imaginary part A which is rational valued when restricted to $\Gamma \times \Gamma$. We define H : $G \times G \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
H(g, h)=\sum_{j=1}^{r} d_{j} z_{j}(g) \overline{z_{j}(h)} \tag{4.5}
\end{equation*}
$$

Then H is a hermitian bihomomorphism. Let $\hat{s}_{j}^{d}: T \rightarrow G / \Gamma, 1 \leqq j \leqq r$, be the holomorphic maps induced from the coordinates $\left(z_{1}, \ldots, z_{n}\right)$ as described in Proposition 2.1. Consider next the line bundle $\left(\hat{s}_{j}^{d}\right) * \mathcal{Z}$ on T; i.e., the pullback of \mathfrak{Z} by \hat{s}_{j}^{d}. By the Appell-Humbert Theorem (see [2], [5]), one knows that relative to the coordinates $\left(z_{1}, \ldots, z_{r}\right)$ for $G /$ $[G, G], c_{1}\left[\left(s_{j}^{d}\right)^{*} \mathrm{Q}\right]$ is represented by a unique hermitian form on $G /[G, G]$ for which the imaginary part is integral on $\pi(\Gamma)$. Explicitly, this form is given by

$$
\begin{aligned}
H_{j}(g, h) & :=\left(s_{j}^{d}\right)^{*} H(g, h) \\
& \left.=\sum_{k=1}^{r} d_{k} z_{k}\left(s_{j}^{d}(g)\right) \overline{z_{k}\left(s_{j}^{d}(h)\right.}\right) \\
& =d^{2} d_{j} z_{j}(g) \overline{z_{j}(h)}
\end{aligned}
$$

Clearly, $H=1 / d^{2}\left(H_{1}+\cdots+H_{r}\right)$. Continuing, the imaginary part of H_{j} is then given by

$$
A_{j}(g, h)=\frac{d^{2} d_{j}}{2 i}\left(z_{j}(g) \overline{z_{j}(h)}-\overline{z_{j}(g)} z_{j}(h)\right)
$$

Moreover, since $A=1 / d^{2}\left(A_{1}+\cdots+A_{r}\right)$ and since $A_{j}(\pi(\Gamma) \times \pi(\Gamma)) \subset$ \mathbf{Z}, it follows that $A(\Gamma \times \Gamma) \subset\left(1 / d^{2}\right) \mathbf{Z}$ and the theorem is proved.

We now state and prove the main theorem.
Theorem 2. Let G / Γ be a compact complex nilmanifold such that T is isogenous to a product of r one-dimensional complex tori (see Proposition 2.1). Let $\mathfrak{L} \in \operatorname{Pic}(G / \Gamma)$. Then there exists $\mathfrak{Q}^{\prime} \in \operatorname{Pic}(T)$ such that

$$
\mathfrak{Q}^{d^{2}}=\pi^{*} \mathfrak{Q}^{\prime}
$$

where d is the integer defflned in Proposition 2.1.
Proof. Let $\mathcal{L} \in \operatorname{Pic}(G / \Gamma)$. By Theorem 1, choose a system of canonical coordinates of the second kind for G, say $\left(z_{1}, \ldots, z_{n}\right)$, relative to which $c_{1}(\mathfrak{L})$ is represented by the Hermitian form H in (4.5). Define

$$
\begin{equation*}
\mathfrak{Z}_{j}=\pi^{*}\left(\hat{s}_{j}^{d}\right) * \mathbb{Z} \tag{4.6}
\end{equation*}
$$

where $1 \leqq j \leqq r$ and $\pi: G / \Gamma \rightarrow T$ is the fibre map. It can be shown directly that $c_{1}\left(\mathfrak{L}_{1} \otimes \cdots \otimes \mathfrak{Z}_{r}\right)=d^{2} c_{1}(\mathfrak{Z})$ and so $\mathfrak{L}^{d^{2}} \otimes \mathfrak{Z}_{1}^{-1} \otimes \cdots \otimes \mathfrak{R}_{r}^{-1} \in$
$\operatorname{Pic}^{0}(G / I)$. By Proposition 3.1 of [2] (or see section 4.8 of [3]) there exists $\mathfrak{Z}^{\prime \prime} \in \operatorname{Pic}^{0}(T)$ such that

$$
\mathfrak{L}^{d^{2}}=\pi^{*} \mathfrak{Q}^{\prime \prime} \otimes \mathfrak{L}_{1} \otimes \cdots \otimes \mathfrak{Q}_{r} .
$$

Taking $\mathfrak{L}^{\prime}=\mathfrak{Z}^{\prime \prime} \otimes\left(\hat{s}_{1}^{d}\right)^{*} \mathcal{L} \otimes \cdots \otimes\left(\hat{s}_{r}^{d}\right) * \mathfrak{Z}$, the proof is complete.
5. More Examples and Concluding Remarks. For examples 1 and 2 of section 3, Theorem 2 says that $\operatorname{Pic}\left(G / \Gamma^{\prime}\right) \simeq \operatorname{Pic}\left(G / \Gamma^{\prime \prime}\right)$. However, one gets this directly since the map $\left(z_{1}(g), z_{2}(g), z_{3}(g)\right) \rightarrow\left(w_{1}(g), w_{2}(g), w_{3}(g)\right)$ induces an analytic isomorphism of G / Γ onto G / Γ^{\prime}. On the other hand, let $G(n)$ be the simply connected complex nilpotent Lie group defined by

$$
G(n)=\left\{\left.\left[\begin{array}{ccccc}
1 & z_{1} & z_{2} & \cdots \cdots z_{n-1} & w \\
& 1 & 0 & \cdots & 0 \\
& & & \vdots & y_{n-1} \\
& & & 0 & \vdots \\
& & & 1 & \\
& & & & 1
\end{array}\right] \right\rvert\, \begin{array}{l}
\\
\\
\end{array}\right.
$$

and $\Gamma(n)$ be the lattice of $G(n)$ defined by

Then, by Theorem 2, $\operatorname{Pic}(G(n) / \Gamma(n)) \simeq \operatorname{Pic}(T(n))$ for each $n \geqq 2$. More importantly, though, $\operatorname{Pic}(G(n) / \Gamma(n)) \simeq \operatorname{Pic}(G / \Gamma)$ for G / Γ from example 1 . Explicitly, this follows from Theorem 2 and the observation that the base tori $T(n)$ and T are biholomorphic. There are two points to this last example. The first is that for $n \geqq 3, G(n) / \Gamma(n) \nsucceq G(2) / \Gamma(2)=G / \Gamma$, yet the respective Picard groups are isomorphic; and the second point is that the Picard group is not a good indicator of the analytic difference between two compact complex nilmanifolds.

Finally, in [2] (see Theorem 2) it was shown that $\operatorname{Pic}^{\tau}(G / \Gamma)$ is a compact complex manifold which is a finite sheeted disconnected covering of $\operatorname{Pic}^{0}(T)$. The following proof of the latter fact was suggested by K. Coombes, K. B. Lee and D. McCullough. Recall from [2] that $F:=\Gamma_{1} /[\Gamma, \Gamma]$ where $\Gamma_{1}=\Gamma \cap[G, G]$ is a finite abelian group, $\Gamma / \Gamma_{1} \simeq \mathbf{Z}^{2 r}$ and one has the short split exact sequence

$$
0 \rightarrow F \rightarrow \Gamma /[\Gamma, \Gamma] \longrightarrow \Gamma / \Gamma_{1} \rightarrow 0 .
$$

In particular, $\Gamma /[\Gamma, \Gamma] \simeq \Gamma / \Gamma_{1} \oplus F$ and so

$$
\operatorname{Hom}\left(\Gamma, \mathfrak{C}_{1}^{*}\right)=\operatorname{Hom}\left(\Gamma /[\Gamma, \Gamma], \mathfrak{๒}_{1}^{*}\right) \simeq \operatorname{Hom}\left(\Gamma / \Gamma_{1}, \mathfrak{\bigodot}_{1}^{*}\right) \oplus \operatorname{Hom}\left(F, \mathfrak{\bigodot}_{1}^{*}\right)
$$

Using the results of section 3 in [2] and the above facts, we have isomorphic exact sequences

In particular, $\operatorname{Pic}^{\tau}(G / \Gamma) \simeq \operatorname{Pic}^{0}(T) \oplus F$. Next, Lemma 3.1 of [2] yields the exact sequence

$$
0 \rightarrow \operatorname{ker} D \hookrightarrow \operatorname{Pic}^{\tau}(G / \Gamma) \xrightarrow{D} \operatorname{Pic}^{0}(T) \rightarrow 0
$$

where it follows from above that $\operatorname{ker} D \simeq\left(\mathrm{Z}_{k}\right)^{2 r} \oplus F$. Combining all of the above data, we obtain the following diagram of exact sequences.

All of this information summarizes as follows. D is a $2 r k^{2}$ sheeted disconnected covering map. Moreover, π^{*} injectively maps $\operatorname{Pic}^{0}(T)$ onto the identity component of $\operatorname{Pic}^{\tau}(G / \Gamma)$, and $\mathfrak{L} \rightarrow \mathfrak{L}^{k}$ maps $\operatorname{Pic}^{\tau}(G / \Gamma)$ onto $\pi^{*} \operatorname{Pic}^{0}(T)=\operatorname{Pic}^{0}(G / \Gamma)$. Thus, $D(\mathcal{L})=\left(\pi^{*}\right)^{-1} \mathfrak{Q}^{k}$.

Bibliography

1. L. Auslander, et al., Flows on homogeneous spaces, Ann. of Math. Studies, no. 53, Princeton Univ. Press, Princeton, N.J., 1963.
2. R. Fisher, On the Picard Group of a compact complex nilmanifold, Rocky Mtn. J. of Math., Volume 13, Number 4, Fall 1983.
3. K. B. Lee and F. Raymond, Seifert fibered spaces construction and its applications, Proceedings of AMS Conference on Group Actions on Manifolds, Colorado, 1983.
4. A. Malcev, On a class of homogeneous spaces, Transl. Amer. Math. Soc., no. 39, 1951.
5. D. Mumford, Abelian Varieties, Tata Inst. Studies in Math., Oxford University Press, 1970.
6. M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der math. und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York, 1972.
7. Y. Sakane, On compact complex parallelizable solvmanifolds, Osaka J. Math. 13 (1976), 187-212.
8. H. C. Wang, Complex parallelizable manifolds, Proc. Amer. Math. Soc. 5 (1954).
