ON THE AZIMI-HAGLER BANACH SPACES

ALFRED D. ANDREW

ABSTRACT. We study the X_{α} spaces constructed by Azimi and Hagler as examples of hereditarily l_1 spaces failing the Schur property. We show that each complemented non weakly sequentially complete subspace of X_{α} contains a complemented isomorph of X_{α} , and that X_{α} and X_{β} are isomorphic if and only if they are equal as sets.

Azimi and Hagler [1] have introduced a class of Banach spaces, the X_{α} spaces. Each of the spaces is hereditarily ζ_1 and yet fails the Schur property. In this paper we discuss the isomorphic classification of the X_{α} spaces and show that each non weakly sequentially complete complemented subspace of an X_{α} space X contains a complemented isomorph of X. This lends credence to the conjecture that the X_{α} spaces are primary, that is, that if $X_{\alpha} = Y \oplus Z$, then either Y or Z is itself isomorphic to X_{α} . Indeed, a technique for showing that a space W is primary is to show first that if $W = Y \oplus Z$, then either Y or Z contains a complemented isomorph of W and then to use a decomposition method, based either on W being isomorphic to some infinite direct sum $\Sigma \oplus W$ [5] or on knowledge that either Y or Z is isomorphic to its Cartesian square [3]. In the case of the X_{α} spaces, Azimi and Hagler [1] showed that X_{α} is of codimension one in its first Baire class, so that if $X_{\alpha} = Y \oplus Z$, then precisely one summand is weakly sequentially complete. Thus our result accomplishes the first step in this program. Unfortunately, by the same dimension argument, the summand containing X_{α} is not isomorphic to its square, and X_{α} is not isomorphic to any infinite direct sum $\Sigma \oplus X_{\alpha}$. In the case of James' quasi-reflexive space J, Casazza [2] was able to overcome difficulties of this type, and showed J to be primary. Some of our techniques are similar to those used by Casazza in [2]. Our terminology is generally the same as that of [1] or [4], and at several points in the analysis we use perturbation arguments such as Proposition 1.a.9 of [4].

The X_{α} spaces are defined as follows. Let $\alpha = {\{\alpha_i\}_{i=1}^{\infty}}$ be a sequence of real numbers satisfying

Received by the editors on April 25, 1985, and in revised form on June 28, 1985.

AMS (MOS) subject classifications (1980). 46B99, 46B15

Copyright © 1987 Rocky Mountain Mathematics Consortium

A. D. ANDREW

(1)
$$\alpha_1 = 1 \text{ and } \alpha_i \ge \alpha_{i+1} \text{ for } i = 1, 2, \cdots,$$

(2)
$$\lim_{i\to\infty}\alpha_i=0,$$

and

$$\Sigma \alpha_i = \infty.$$

The usual unit vectors in the space W of finitely nonzero sequences (or in X_{α}) are denoted by $\{e_i\}$, and the biorthogonal functionals by $\{e_i^*\}$. A block is an interval of integers, and a sequence $\{F_i\}$ of blocks is admissible if max $F_i < \min F_{i+1}$ for each *i*. For each block *F*, define a functional, also denoted by *F*, by $\langle F, x \rangle = \sum_{i \in F} \langle e_i^*, x \rangle$. Then X_{α} is the completion of *W* with respect to the norm

(4)
$$||x|| = \max \sum_{i=1}^{n} \alpha_i |\langle F_i, x \rangle|,$$

where the max is taken over all *n* and all admissible sequences $\{F_i\}_{i=1}^n$ of blocks. The functionals associated with blocks are of course bounded on X_{α} . We denote the natural projections associated with the unit vector basis by P_n .

From the definition of the norm it is easy to see that the unit vector basis is spreading (equivalent to each of its subsequences) and bi-monotone. That is, for each $x \in X_{\alpha}$ and each n < m, $||(P_m - P_n)x|| \le ||x||$. Further, if $\{e_{i_k}\}$ is a subsequence of $\{e_n\}$, then $[\{e_{i_k}\}]$ is complemented. Indeed, if $\{F_i\}$ is a sequence of blocks without gaps (max $F_i + 1 =$ min F_{i+1}) such that $i_k \in F_k$, then $[\{e_{i_k}\}]$ is complemented by the projection

$$Px = \sum_{k=1}^{\infty} \langle F_k, x \rangle e_{i_k}$$

Since $\{F_i\}$ has no gaps, any estimate of ||Px|| (by (4)) is also an estimate of ||x||, so ||P|| = 1.

In our analysis we will use the following two propositions. Proposition 1 is extracted from the proof of Theorem 1 of [1].

PROPOSITION 1.1. If $\{u_i\} \subset X_\alpha$ converges weak* to $x^{**} \in X_\alpha^{**}$, then $x^{**} = x + \theta$ where $x \in X_\alpha$ and $\langle e_i^*, \theta \rangle = 0$ for all *i*.

2. If $\{u_i\} \subset X_{\alpha}$ is weakly Cauchy, then $\{u_i\}$ converges weak* to $x + \eta \theta_0$ where $x \in X_{\alpha}$, $\eta = \lim \langle \mathbf{N}, u_i - x \rangle$, and θ_0 is the weak* limit of $\{e_i\}$.

PROPOSITION 2. Let $\{v_i\}$ be a block basic sequence of $\{e_i\}$, let $F = \{M + 1, M + 2, \dots\} \subset \mathbb{N}$, and suppose $\langle F, v_i \rangle = \gamma > 0$ for all *i*. Then for any scalar sequence $\{a_i\}$,

$$\gamma \|\Sigma a_i e_i\| \leq \|\Sigma a_i v_i\|.$$

50

PROOF. Let $(a_i)_{i=1}^N$ be a scalar sequence, and let $x = \sum_{i=1}^N a_i e_i$, $y = \sum_{i=1}^N a_i v_i$. Since $\langle F, v_i \rangle = \gamma$ for each *i*, there exists an admissible sequence of blocks $\{F_i\}$ such that $\langle F_i, v_i \rangle = \gamma$ and supp $v_i \subset F_i$ for all *i*. Let $F_i = [f_i, g_i]$. Let $\{G_k\}_{k=1}^k$ be an admissible sequence with

$$||x|| = \sum_{k=1}^{\ell} \alpha_k |\langle G_k, x \rangle|,$$

and for each k, let $G'_k = [n_k, m_k]$, where $n_k = \min\{f_i: i \in G_k\}$, $m_k = \max\{g_i: i \in G_k\}$. Then $\{G'_k\}$ is admissible and

$$||y|| \ge \sum \alpha_k |\langle G'_k, y \rangle|$$

= $\sum \alpha_k \gamma |\langle G_k, x \rangle|$
= $\gamma ||x||.$

THEOREM 3. Let Y be a complemented subspace of X_{α} . If Y is not weakly sequentially complete, then Y contains a complemented subspace isomorphic to X_{α} .

PROOF. Let P be a projection onto Y, and let $Z = (I - P)X_{\alpha}$. The sequences $\{Pe_i\}$ and $\{(I - P)e_i\}$ are weakly Cauchy. Since Z is weakly sequentially complete [1], Proposition 1 implies that

(5)
$$(I-P)e_i \xrightarrow{w^*} y \in X_{\alpha}$$

and

$$Pe_i \xrightarrow{w^*} x + \eta \theta_0.$$

Now $e_i \xrightarrow{w^*} \theta_0 \in X_{\alpha}^{**} - X_{\alpha}$, and $e_i = (I - P)e_i + Pe_i$, so $\{Pe_i\}$ and $\{(I - P)e_i\}$ cannot both have weak* limits in X_{α} . Hence $\eta = \lim \langle \mathbf{N}, Pe_i - x \rangle \neq 0$. In fact, by standard perturbation arguments we may assume there exists $M \in \mathbf{N}$ such that $P_M y = y$ and $P_M x = x$, where x and y are as in (5) and (6). Then with $F = \{M + 1, M + 2, \cdots\}$,

$$1 = \langle F, e_i \rangle = \langle F, (I - P)e_i \rangle + \langle F, Pe_i \rangle,$$

so $\lim_i \langle F, Pe_i \rangle = 1$. Applying Proposition 1, part 1, passing to a subsequence $\{e_{i_k}\}$, and perturbing, we may assume that $Pe_{i_k} = v_k = x + w_k$ with (*M* and *F* as above)

$$(7) P_M x = x$$

(8)
$$\langle F, w_k \rangle = 1$$
 for all k ,

and

(9) supp
$$w_k \subset G_k$$
 where $\{G_k\}$ is an admissible sequence without gaps.

Then for any scalar sequence $\{a_k\}$,

$$\|\sum a_k v_k\| = \|(\sum a_k)x + (\sum a_k w_k)\|$$

$$\geq \|\sum a_k w_k\| \quad (\{e_i\} \text{ is bi-monotone})$$

$$\geq \|\sum a_k e_k\|$$

by Proposition 2. Since $\|\sum a_k v_k\| \leq \|P\| \|\sum a_k e_k\|$, the sequence $\{v_k\}$ is equivalent to $\{e_k\}$, and hence Y contains an isomorph of X_{α} . A projection onto $[\{v_k\}]$ is defined by

$$Qz = \sum_{k=1}^{\infty} \langle G_k, z \rangle v_k.$$

Q is bounded since

$$\begin{aligned} \|Qz\| &= \|\sum \langle G_k, z \rangle v_k\| \\ &\leq \|P\| \|\sum \langle G_k, z \rangle e_k\| \leq \|P\| \|z\|, \end{aligned}$$

since $\{G_k\}$ has no gaps.

REMARKS. 1. It is possible that no subsequence of $\{Pe_n\}$ is a block basic sequence. A typical example is the norm 2 projection *P* defined by $Pe_1=0$ and $Pe_i = e_1 + e_i$, $i \ge 2$.

2. The arguments used in the proof of Theorem 3 may be modified to show that if $T: X_{\alpha} \to X_{\alpha}$ is a bounded linear operator, then either TX_{α} or $(I - T)X_{\alpha}$ contains a complemented isomorph of X_{α} .

The next theorem concerns the isomorphism type of the X_{α} spaces.

THEOREM 4. X_{α} is isomorphic to X_{β} if and only if the unit vector bases in X_{α} and X_{β} are equivalent.

PROOF. Let $T: X_{\alpha} \to X_{\beta}$ be an isomorphism. Then $\{Te_i\} \subset X_{\beta}$ is weakly Cauchy but not weakly convergent. Thus by Proposition 1, $Te_i \xrightarrow{w^*} x$ $+ \eta \theta_0$ where $x \in X_{\beta}$ and $\eta = \lim_i \langle \mathbf{N}, Te_i - x \rangle \neq 0$. We assume $\eta > 0$. Passing to a subsequence and perturbing, we may assume that $v_k = Te_{i_k} = x + w_k$ where $\{w_k\}$ is a block basic sequence of $\{e_i\}$ in X_{β} satisfying the hypotheses of Proposition 2 with $\gamma = \eta$ and M any integer such that $P_M x = x$. Then for any scalar sequence $\{a_i\}$,

$$\|T\| \|\sum a_i e_i\|_{X_{\alpha}} \ge \|\sum a_k v_k\|_{X_{\beta}}$$

$$\ge \|\sum a_k w_k\|_{X_{\beta}} \text{ (bi-monotonicity)}$$

$$\ge \eta \|\sum a_k e_k\|_{X_{\beta}}.$$

Applying the same argument to T^{-1} yields that the unit vectors in X_{α} and X_{β} are equivalent.

REMARKS. 1. Theorem 4 may be interpreted as saying that X_{α} and X_{β} are isomorphic if and only if they are equal as sets.

2. If α and β satisfy (1), (2), (3) and if there exists a constant A such that

(10)
$$A^{-1}\alpha_i \leq \beta_i \leq A\alpha_i$$
 for all i ,

it is clear that X_{α} and X_{β} are isomorphic. On the other hand, since $\|\sum_{1}^{N}(-1)^{i}e_{i}\|_{X_{\alpha}} = \sum_{1}^{N}\alpha_{i}$, if X_{α} and X_{β} are isomorphic, there exists a con stant B such that for all N,

(11)
$$B^{-1}\sum_{i=1}^{N}\alpha_{i} \leq \sum_{i=1}^{N}\beta_{i} \leq B\sum_{i=1}^{N}\alpha_{i}.$$

However, there are pairs of sequences α , β , satisfying (1), (2), (3), and (11), yet satisfying no estimate of type (10).

References

1. P. Azimi and J. Hagler, Examples of hereditarily 1¹ Banach spaces failing the Schur property, Pacific J. Math. 122 (1986), 287-297.

2. P. G. Casazza, James' quasi-reflexive space is primary, Israel J. Math. **26** (1977), 294–305.

3. — and B. L. Lin, Projections on Banach spaces with symmetric bases, Studia Math. 52 (1974), 189–193.

4. J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces I*, Springer-Verlag, New York, 1977.

5. A Pelczynski, Projections in certain Banach Spaces, Studia Math. 19 (1960), 209-228.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, DAVIS, DAVIS, CA 95616

SCHOOL OF MATHEMATICS, GEORGIA INSTITUTE OF TECHNOLOGY, ATLANTA, GA 30332