ON THE AZIMI-HAGLER BANACH SPACES

ALFRED D. ANDREW

Abstract

We study the X_{α} spaces constructed by Azimi and Hagler as examples of hereditarily l_{1} spaces failing the Schur property. We show that each complemented non weakly sequentially complete subspace of X_{α} contains a complemented isomorph of X_{α}, and that X_{α} and X_{β} are isomorphic if and only if they are equal as sets.

Azimi and Hagler [1] have introduced a class of Banach spaces, the X_{α} spaces. Each of the spaces is hereditarily ι_{1} and yet fails the Schur property. In this paper we discuss the isomorphic classification of the X_{α} spaces and show that each non weakly sequentially complete complemented subspace of an X_{α} space X contains a complemented isomorph of X. This lends credence to the conjecture that the X_{α} spaces are primary, that is, that if $X_{\alpha}=Y \oplus Z$, then either Y or Z is itself isomorphic to X_{α}. Indeed, a technique for showing that a space W is primary is to show first that if $W=Y \oplus Z$, then either Y or Z contains a complemented isomorph of W and then to use a decomposition method, based either on W being isomorphic to some infinite direct sum $\Sigma \oplus W$ [5] or on knowledge that either Y or Z is isomorphic to its Cartesian square [3]. In the case of the X_{α} spaces, Azimi and Hagler [1] showed that X_{α} is of codimension one in its first Baire class, so that if $X_{\alpha}=Y \oplus Z$, then precisely one summand is weakly sequentially complete. Thus our result accomplishes the first step in this program. Unfortunately, by the same dimension argument, the summand containing X_{α} is not isomorphic to its square, and X_{α} is not isomorphic to any infinite direct sum $\Sigma \oplus X_{\alpha}$. In the case of James' quasi-reflexive space J, Casazza [2] was able to overcome difficulties of this type, and showed J to be primary. Some of our techniques are similar to those used by Casazza in [2]. Our terminology is generally the same as that of [1] or [4], and at several points in the analysis we use perturbation arguments such as Proposition 1.a.9 of [4].

The X_{α} spaces are defined as follows. Let $\alpha=\left\{\alpha_{i}\right\}_{i=1}^{\infty}$ be a sequence of real numbers satisfying

$$
\begin{gather*}
\alpha_{1}=1 \text { and } \alpha_{i} \geqq \alpha_{i+1} \text { for } i=1,2, \cdots, \tag{1}\\
\lim _{i \rightarrow \infty} \alpha_{i}=0 \tag{2}
\end{gather*}
$$

and

$$
\begin{equation*}
\Sigma \alpha_{i}=\infty \tag{3}
\end{equation*}
$$

The usual unit vectors in the space W of finitely nonzero sequences (or in X_{α}) are denoted by $\left\{e_{i}\right\}$, and the biorthogonal functionals by $\left\{e_{i}^{*}\right\}$. A block is an interval of integers, and a sequence $\left\{F_{i}\right\}$ of blocks is admissible if $\max F_{i}<\min F_{i+1}$ for each i. For each block F, define a functional, also denoted by F, by $\langle F, x\rangle=\sum_{i \in F}\left\langle e_{i}^{*}, x\right\rangle$. Then X_{α} is the completion of W with respect to the norm

$$
\begin{equation*}
\|x\|=\max \sum_{i=1}^{n} \alpha_{i}\left|\left\langle F_{i}, x\right\rangle\right| \tag{4}
\end{equation*}
$$

where the max is taken over all n and all admissible sequences $\left\{F_{i}\right\}_{i=1}^{n}$ of blocks. The functionals associated with blocks are of course bounded on X_{α}. We denote the natural projections associated with the unit vector basis by P_{n}.

From the definition of the norm it is easy to see that the unit vector basis is spreading (equivalent to each of its subsequences) and bi-monotone. That is, for each $x \in X_{\alpha}$ and each $n<m,\left\|\left(P_{m}-P_{n}\right) x\right\| \leqq\|x\|$. Further, if $\left\{e_{i_{k}}\right\}$ is a subsequence of $\left\{e_{n}\right\}$, then $\left[\left\{e_{i_{k}}\right\}\right]$ is complemented. Indeed, if $\left\{F_{i}\right\}$ is a sequence of blocks without gaps (max $F_{i}+1=$ $\min F_{i+1}$) such that $i_{k} \in F_{k}$, then [$\left\{e_{i_{k}}\right\}$] is complemented by the projection

$$
P x=\sum_{k=1}^{\infty}\left\langle F_{k}, x\right\rangle e_{i_{k}} .
$$

Since $\left\{F_{i}\right\}$ has no gaps, any estimate of $\|P x\|$ (by (4)) is also an estimate of $\|x\|$, so $\|P\|=1$.

In our analysis we will use the following two propositions. Proposition 1 is extracted from the proof of Theorem 1 of [1].

Proposition 1.1. If $\left\{u_{i}\right\} \subset X_{\alpha}$ converges weak* to $x^{* *} \in X_{\alpha}^{* *}$, then $x^{* *}$ $=x+\theta$ where $x \in X_{\alpha}$ and $\left\langle e_{i}^{*}, \theta\right\rangle=0$ for all i.
2. If $\left\{u_{i}\right\} \subset X_{\alpha}$ is weakly Cauchy, then $\left\{u_{i}\right\}$ converges weak* to $x+$ $\eta \theta_{0}$ where $x \in X_{\alpha}, \eta=\lim \left\langle\mathbf{N}, u_{i}-x\right\rangle$, and θ_{0} is the weak* limit of $\left\{e_{i}\right\}$.

Proposition 2. Let $\left\{v_{i}\right\}$ be a block basic sequence of $\left\{e_{i}\right\}$, let $F=$ $\{M+1, M+2, \cdots\} \subset \mathbf{N}$, and suppose $\left\langle F, v_{i}\right\rangle=\gamma>0$ for all i. Then for any scalar sequence $\left\{a_{i}\right\}$,

$$
r\left\|\Sigma a_{i} e_{i}\right\| \leqq\left\|\Sigma a_{i} v_{i}\right\| .
$$

Proof. Let $\left(a_{i}\right)_{i=1}^{N}$ be a scalar sequence, and let $x=\Sigma_{1}^{N} a_{i} e_{i}, y=$ $\Sigma_{1}^{N} a_{i} v_{i}$. Since $\left\langle F, v_{i}\right\rangle=\gamma$ for each i, there exists an admissible sequence of blocks $\left\{F_{i}\right\}$ such that $\left\langle F_{i}, v_{i}\right\rangle=\gamma$ and supp $v_{i} \subset F_{i}$ for all i. Let $F_{i}=$ [f_{i}, g_{i}]. Let $\left\{G_{k}\right\}_{k=1}$ be an admissible sequence with

$$
\|x\|=\sum_{k=1}^{\dot{1}} \alpha_{k}\left|\left\langle G_{k}, x\right\rangle\right|,
$$

and for each k, let $G_{k}^{\prime}=\left[n_{k}, m_{k}\right.$, where $n_{k}=\min \left\{f_{i}: i \in G_{k}\right\}, m_{k}=$ $\max \left\{g_{i}: i \in G_{k}\right\}$. Then $\left\{G_{k}^{\prime}\right\}$ is admissible and

$$
\begin{aligned}
\|y\| & \geqq \sum \alpha_{k}\left|\left\langle G_{k}^{\prime}, y\right\rangle\right| \\
& =\sum \alpha_{k} r\left|\left\langle G_{k}, x\right\rangle\right| \\
& =r\|x\| .
\end{aligned}
$$

Theorem 3. Let Y be a complemented subspace of X_{α}. If Yis not weakly sequentially complete, then Y contains a complemented subspace isomorphic to X_{α}.

Proof. Let P be a projection onto Y, and let $Z=(I-P) X_{\alpha}$. The sequences $\left\{P e_{i}\right\}$ and $\left\{(I-P) e_{i}\right\}$ are weakly Cauchy. Since Z is weakly sequentially complete [1], Proposition 1 implies that

$$
\begin{equation*}
(I-P) e_{i} \xrightarrow{w^{*}} y \in X_{\alpha} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
P e_{i} \xrightarrow{w^{*}} x+\eta \theta_{0} . \tag{6}
\end{equation*}
$$

Now $e_{i} \xrightarrow{w^{*}} \theta_{0} \in X_{\alpha}^{* *}-X_{\alpha}$, and $e_{i}=(I-P) e_{i}+P e_{i}$, so $\left\{P e_{i}\right\}$ and $\left\{(I-P) e_{i}\right\}$ cannot both have weak* limits in X_{α}. Hence $\eta=\lim \langle\mathbf{N}$, $\left.P e_{i}-x\right\rangle \neq 0$. In fact, by standard perturbation arguments we may assume there exists $M \in \mathbf{N}$ such that $P_{M} y=y$ and $P_{M} x=x$, where x and y are as in (5) and (6). Then with $F=\{M+1, M+2, \cdots\}$,

$$
1=\left\langle F, e_{i}\right\rangle=\left\langle F,(I-P) e_{i}\right\rangle+\left\langle F, P e_{i}\right\rangle,
$$

so $\lim _{i}\left\langle F, P e_{i}\right\rangle=1$. Applying Proposition 1, part 1, passing to a subsequence $\left\{e_{i_{k}}\right\}$, and perturbing, we may assume that $P e_{i_{k}}=v_{k}=x+w_{k}$ with (M and F as above)

$$
\begin{equation*}
P_{M} x=x \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\left\langle F, w_{k}\right\rangle=1 \quad \text { for all } k, \tag{8}
\end{equation*}
$$

and
(9) supp $w_{k} \subset G_{k}$ where $\left\{G_{k}\right\}$ is an admissible sequence without gaps.

Then for any scalar sequence $\left\{a_{k}\right\}$,

$$
\begin{aligned}
\left\|\sum a_{k} v_{k}\right\| & =\left\|\left(\sum a_{k}\right) x+\left(\sum a_{k} w_{k}\right)\right\| \\
& \geqq\left\|\sum a_{k} w_{k}\right\| \quad\left(\left\{e_{i}\right\} \text { is bi-monotone }\right) \\
& \geqq\left\|\sum a_{k} e_{k}\right\|
\end{aligned}
$$

by Proposition 2. Since $\left\|\sum a_{k} v_{k}\right\| \leqq\|P\|\left\|\sum a_{k} e_{k}\right\|$, the sequence $\left\{v_{k}\right\}$ is equivalent to $\left\{e_{k}\right\}$, and hence Y contains an isomorph of X_{α}. A projection onto $\left[\left\{v_{k}\right\}\right]$ is defined by

$$
Q z=\sum_{k=1}^{\infty}\left\langle G_{k}, z\right\rangle v_{k} .
$$

Q is bounded since

$$
\begin{aligned}
\|Q z\| & =\left\|\sum\left\langle G_{k}, z\right\rangle v_{k}\right\| \\
& \leqq\|P\|\left\|\sum\left\langle G_{k}, z\right\rangle e_{k}\right\| \leqq\|P\|\|z\|,
\end{aligned}
$$

since $\left\{G_{k}\right\}$ has no gaps.
Remarks. 1. It is possible that no subsequence of $\left\{P e_{n}\right\}$ is a block basic sequence. A typical example is the norm 2 projection P defined by $P e_{1}=0$ and $P e_{i}=e_{1}+e_{i}, i \geqq 2$.
2. The arguments used in the proof of Theorem 3 may be modified to show that if $T: X_{\alpha} \rightarrow X_{\alpha}$ is a bounded linear operator, then either $T X_{\alpha}$ or $(I-T) X_{\alpha}$ contains a complemented isomorph of X_{α}.

The next theorem concerns the isomorphism type of the X_{α} spaces.
Theorem 4. X_{α} is isomorphic to X_{β} if and only if the unit vector bases in X_{α} and X_{β} are equivalent.

Proof. Let $T: X_{\alpha} \rightarrow X_{\beta}$ be an isomorphism. Then $\left\{T e_{i}\right\} \subset X_{\beta}$ is weakly Cauchy but not weakly convergent. Thus by Proposition $1, T e_{i} \xrightarrow{w^{*}} x$ $+\eta \theta_{0}$ where $x \in X_{\beta}$ and $\eta=\lim _{i}\left\langle\mathbf{N}, T e_{i}-x\right\rangle \neq 0$. We assume $\eta>0$. Passing to a subsequence and perturbing, we may assume that $v_{k}=$ $T e_{i_{k}}=x+w_{k}$ where $\left\{w_{k}\right\}$ is a block basic sequence of $\left\{e_{i}\right\}$ in X_{β} satisfying the hypotheses of Proposition 2 with $\gamma=\eta$ and M any integer such that $P_{M} x=x$. Then for any scalar sequence $\left\{a_{i}\right\}$,

$$
\begin{aligned}
\|T\|\left\|\sum a_{i} e_{i}\right\|_{X_{\alpha}} & \geqq\left\|\sum a_{k} v_{k}\right\|_{X_{\beta}} \\
& \geqq\left\|\sum a_{k} w_{k}\right\|_{X_{\beta}} \text { (bi-monotonicity) } \\
& \geqq \eta\left\|\sum a_{k} e_{k}\right\|_{X_{\beta}} .
\end{aligned}
$$

Applying the same argument to T^{-1} yields that the unit vectors in X_{α} and X_{β} are equivalent.

Remarks. 1. Theorem 4 may be interpreted as saying that X_{α} and X_{β} are isomorphic if and only if they are equal as sets.
2. If α and β satisfy (1), (2), (3) and if there exists a constant A such that

$$
\begin{equation*}
A^{-1} \alpha_{i} \leqq \beta_{i} \leqq A \alpha_{i} \quad \text { for all } i, \tag{10}
\end{equation*}
$$

it is clear that X_{α} and X_{β} are isomorphic. On the other hand, since $\left\|\Sigma_{1}^{N}(-1)^{i} e_{i}\right\|_{X_{\alpha}}=\Sigma_{1}^{N} \alpha_{i}$, if X_{α} and X_{β} are isomorphic, there exists a con stant B such that for all N,

$$
\begin{equation*}
B^{-1} \sum_{1}^{N} \alpha_{i} \leqq \sum_{1}^{N} \beta_{i} \leqq B \sum_{1}^{N} \alpha_{i} \tag{11}
\end{equation*}
$$

However, there are pairs of sequences α, β, satisfying (1), (2), (3), and (11), yet satisfying no estimate of type (10).

References

[^0]
[^0]: 1. P. Azimi and J. Hagler, Examples of hereditarily l^{1} Banach spaces failing the Schur property, Pacific J. Math. 122 (1986), 287-297.
 2. P. G. Casazza, James' quasi-reflexive space is primary, Israel J. Math. 26 (1977), 294-305.
 3. -_ and B. L. Lin, Projections on Banach spaces with symmetric bases, Studia Math. 52 (1974), 189-193.
 4. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, New York, 1977.
 5. A Pelczynski, Projections in certain Banach Spaces, Studia Math. 19 (1960), 209-228.

 Department of Mathematics, University of California, Davis, Davis, CA 95616
 School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332

