A SIMPLE CHARACTERIZATION OF THE CONTACT SYSTEM ON J ${ }^{\boldsymbol{k}(E) *}$

R. B. GARDNER AND W. F. SHADWICK

Abstract

In this note we give an invariant characterization of the contact system of $J^{k}(E)$ where (E, π, M) is a fibred manifold. This characterization generalizes one given in reference [1] for the case where $k=1$. It affords a simple coordinate free proof that a section σ of $\left(J^{k}(E), \pi_{M}^{k}, M\right)$ is the k-jet extension of a section of $(E$, $\pi, M)$ if σ annihilates the contact system [2].

1. The First order Case. Let (E, π, M) denote a fibred manifold with total space E, projection π and base space M. The k-jet bundle of local sections of (E, π, M), denoted by $J^{k}(E)$, has a natural fibred manifold structure over $J^{\prime}(E)$ for $\iota<k$ and over E and M. The canonical projections $\pi_{\text {: }}^{k}$: $J^{k}(E) \rightarrow J^{\prime}(E), \pi_{E}^{k}: J^{k}(E) \rightarrow E$ and $\pi_{M}^{k}: J^{k}(E) \rightarrow M$ are given by
(a)

$$
\pi_{i}^{k}: J_{x}^{k} s \rightarrow J_{x}^{\prime} s
$$

(b)

$$
\begin{equation*}
\pi_{E}^{k}: j_{x}^{k} s \rightarrow s(x) \tag{1}
\end{equation*}
$$

and
(c) $\pi_{M}^{k}=\pi \circ \pi_{E}^{k}: j_{x}^{k} s \rightarrow x$
respectively.
We begin by defining the contact system Ω^{1} on $J^{1}(E)$ as the exterior differential system given pointwise by

$$
\begin{equation*}
\left.\Omega^{1}\right|_{j_{x}^{1} s}=\left(\pi_{E}^{1 *}-\pi_{M}^{1 *} s^{*}\right) T_{s(x)}^{*} E . \tag{2}
\end{equation*}
$$

It is easy to verify, from (2), that a section σ of $\left(J^{1}(E), \pi_{M}^{1}, M\right)$ defined on $U \subset M$, satisfies $\sigma^{*} \Omega^{1}=0$ iff $\sigma=j^{1}$ s where $s=\pi_{E}^{1} \circ \sigma$. To see this, suppose $\sigma=j^{1}$ s. Then

$$
\begin{aligned}
\left.\sigma^{*} \Omega^{1}\right|_{j_{x}^{1} s} & =j^{1} s^{*}\left(\pi_{E}^{1 *}-\pi_{M}^{1 *} s^{*}\right) T_{s(x)}^{*} E \\
& =\left[\left(\pi_{E}^{1} \circ j^{1} s\right)^{*}-\left(s \circ \pi_{M}^{1} \circ j^{1} s\right)^{*}\right] T_{s(x)}^{*} E \\
& =\left[s^{*}-\left(s \circ i d_{U}\right)^{*}\right] T_{s(x)}^{*} E=0 .
\end{aligned}
$$

[^0]Next suppose that σ satisfies $\sigma^{*} \Omega^{1}=0$ and define a section s of (E, π, M) by $s:=\pi_{E}^{1} \circ \sigma$. Now for each x there is a section s_{x} defined on a neighborhood of x such that $\sigma(x)=j_{x}^{1} s_{x}$. It follows that $s_{x}(x)=\left(\pi_{E}^{1} \circ \sigma\right)(x)=s(x)$ and, in order to show that $\sigma=j^{1} s$, we need only show that all the first order partial derivatives of s_{x} and s agree. But this is the same as showing that, for each x, s_{x} and s have the same Jacobian, i.e., that

$$
\left(s^{*}-s_{x}^{*}\right) T_{s(x)}^{*} E=0
$$

This is precisely the condition given by $\left.\sigma^{*} \Omega^{1}\right|_{j 1_{s_{x}}}=0$, for

$$
\begin{aligned}
\left.\sigma^{*} \Omega^{1}\right|_{j_{x}^{1} s_{x}} & =\sigma^{*}\left(\pi_{E}^{1 *}-\pi_{M}^{1 *} s_{x}^{*}\right) T_{s(x)}^{*} E \\
& =\left[\left(\pi_{E}^{1} \circ \sigma\right)^{*}-\left(s_{x} \circ \pi_{M}^{1} \circ \sigma\right)^{*}\right] T_{s(x)}^{*} E \\
& =\left[s^{*}-s_{x}^{*}\right] T_{s(x)}^{*} E
\end{aligned}
$$

because $s=\pi_{E}^{1} \circ \sigma$ and $\pi_{M}^{1} \circ \sigma=i d_{U}$.
We note that the definition (2) leads immediately to the standard local coordinate presentation of the contact system. If $\left(x^{a}, z^{A}\right)$ are fibred coordinates at $s(x) \in E$ and $\left(x^{a}, z^{A}, z_{a}^{A}\right)$ are the induced coordinates at $j_{x}^{1} s \in J^{1}(E)$ then $T_{s(x)}^{*} E$ has the coordinate basis $\left(\left.d x^{a}\right|_{s(x)}\right),\left.d z^{A}\right|_{s(x)}$, and $\left.\left(\pi_{E}^{1 *}-\pi_{M}^{1 *} s^{*}\right) d x^{a}\right|_{s(x)}=0$, while

$$
\left.\left(\pi_{E}^{1 *}-\pi_{M}^{1 *} s^{*}\right) d z^{A}\right|_{s(x)}=\left.\left(d z^{A}-z_{a}^{A} d x^{a}\right)\right|_{j_{x}^{1}}
$$

2. The k-th order Case. The contact system on $J^{k}(E)$ for $k>1$ may be defined pointwise by

$$
\begin{equation*}
\left.\Omega^{k}\right|_{j_{x}^{k} s}=\left(\pi_{k-1}^{k *}-\pi_{M}^{k *} j^{k-1} s^{*}\right) T_{j_{x}^{k-1}}^{*} J^{k-1}(E) \tag{3}
\end{equation*}
$$

It is immediate from (3) that for $k=2,3, \ldots$,

$$
\begin{equation*}
\pi_{k-1}^{k *} \Omega^{k-1} \subset \Omega^{k} \tag{4}
\end{equation*}
$$

for

$$
\begin{aligned}
\left.\pi_{k-1}^{k *} \Omega^{k-1}\right|_{j_{x}^{k-1}} & =\pi_{k-1}^{k *}\left(\pi_{k-2}^{k-1 *}-\pi_{M}^{k-1 *} j^{k-2} s^{*}\right) T_{j_{x}^{k-2}}^{*} j^{k-2}(E) \\
& =\left(\pi_{k-1}^{k *}-\pi_{M}^{k} j^{k-1} s^{*}\right) \pi_{k-2}^{k-1 *} T_{j_{x}^{k-2}}^{*} J^{k-2}(E)
\end{aligned}
$$

and

$$
\pi_{k-2}^{k-1 *}\left(T_{j_{x}^{k-2}}^{*} J^{k-2}(E)\right) \subset T_{j_{x}^{k-1}}^{*} J^{k-1}(E)
$$

We now show by induction that if σ is a section of $\left(J^{k}(E), \pi_{M}^{k}, M\right)$ which annihilates Ω^{k} then $\sigma=j^{k}\left(\pi_{E}^{k} \circ \sigma\right)$. The converse is left to the reader.

Assume for $\ell=1,2, \ldots, k-1$, that if ψ is a section of $\left(J^{\prime}(E), \pi_{M}^{\prime}\right.$, $M)$ which satisfies $\psi^{*} \Omega^{\prime}=0$ then $\psi=j^{\prime}\left(\pi_{E}^{\prime} \circ \psi\right)$. Let σ be a section of
(J^{k}, E, π_{M}^{k}, M) defined on $U \subset M$ and let s be the section of E defined by $s=\pi_{E}^{k} \circ \sigma$. As above, we have $\sigma(x)=j_{x}^{k} s_{x}$. We wish to show that s and s_{x} agree to k-th order on U, i.e., that $j^{k} s_{x}=j^{k} s$.

Now if $\sigma^{*} \Omega^{k}=0$, (4) shows that $0=\sigma^{*} \pi_{k-1}^{k *} \Omega^{k-1}=\left(\pi_{k-1}^{k} \circ \sigma\right)^{*} \Omega^{k-1}$ and thus, by the induction hypothesis,

$$
\pi_{k-1}^{k} \circ \sigma=j^{k-1}\left(\pi_{E}^{k-1} \circ \pi_{k-1}^{k} \circ \sigma\right)
$$

But $\pi_{E}^{k-1} \circ \pi_{k-1}^{k} \circ \sigma=\pi_{E}^{k} \circ \sigma=s$ so $\pi_{k-1}^{k} \circ \sigma=j^{k-1} s$.
Thus $j^{k-1} s_{x}=j^{k-1} s$, so s_{x} and s agree to $(k-1)$ st order. Now $\pi_{k-1}^{k} \circ \sigma$ $=j^{k-1} s$, and the fact that $\sigma^{*} \Omega^{k}=0$ shows that $\pi_{k-1}^{k} \circ \sigma$ and $j^{k-1} s_{x}$ have the same Jacobian at x. Thus all of the first derivatives of $j^{k-1} s$ and $j^{k-1} s_{x}$ agree for all x in U and hence $j^{k} s_{x}=j^{k} s$, i.e., $\sigma=j^{k} s$.

Acknowledgement. We are grateful to R. C. Reilly for some useful comments on the manuscript, and to the Mathematical Sciences Research Institute, Berkeley where this work was carried out.

Reference

1. S. S. Chern, Editor, Essays in Exterior Differential System, (To appear).
2. F. A. E. Pirani, D. C. Robinson \& W. F. Shadwick, Local Jet Bundle Formulation of Bäcklund Transformations, Math. Phys. Studies 1 Reidel, Dordrecht, Boston, London 1979.

Department of Mathematics, University of North Carolina, Chaple Hill, N.C. 27514
Department of Applied Mathematics, University of Waterloo, Ontario N2P168

[^0]: * Research supported in part by NATO Grant 0546/82 and NSERC Grants T2100 \& U0172.
 Received by the editors on June 5, 1984.

