THE ARITHMETIC RING AND THE KUMMER RING OF A COMMUTATIVE RING

D. K. HARRISON

The Witt ring of a commutative ring is a functorial construction which: (1) gives a commutative ring for a commutative ring; (2) has nontrivial value at the field \mathbf{Q}, or at any number field; and (3) has value at \mathbf{Q}, or a number field, which is equivalent to a basic circle of successful ideas from classical number theory (see [5] and its references). The purpose of this note is to package another problem of classical number theory in this way.

We begin with a general construction, then define what we call the "Kummer ring", $K(R)$, and finally define what we call the "arithmetic ring", $A(R)$. For the special case of R a field whose multiplicative group has an element of order n, for all positive integers $n, A(R)$ is naturally isomorphic to $K(R)$, by the Merkurev-Suslin theorem ([6]). We use "ring" (respectively "ring homomorphism") to mean "ring with one" (respectively "ring homomorphism taking one to one").

Let m be a nonnegative integer.
Let X, Y, Z be functors from the category of commutative rings to the category of $(\mathbf{Z} / m \mathbf{Z})$-modules. For each commutative ring R, suppose we have a $(\mathbf{Z} / m \mathbf{Z})$-bilinear map

$$
\psi_{R}: X(R) \times Y(R) \rightarrow Z(R)
$$

which is functorial in R. By this we mean, if $f: R \rightarrow k$ is a homomorphism of commutative rings, then

$$
Z(f)\left(\psi_{R}(x, y)\right)=\psi_{k}(X(f)(x), Y(f)(y))
$$

for all $x \in X(R), y \in Y(R)$. First let $m=0$. We define $M(R)$ to be

$$
\mathbf{Z} \times X(R) \times Y(R) \times Z(R)
$$

We define operations on $M(R)$ by

$$
\begin{gathered}
\left(n_{1}, x_{1}, y_{1}, z_{1}\right)+\left(n_{2}, x_{2}, y_{2}, z_{2}\right)=\left(n_{1}+n_{2}, x_{1}+x_{2}, y_{1}+y_{2}\right. \\
\left.z_{1}+z_{2}+\psi_{R}\left(x_{1}, y_{2}\right)+\psi_{R}\left(x_{2}, y_{1}\right)\right)
\end{gathered}
$$

$$
\begin{gathered}
\left(n_{1}, x_{1}, y_{1}, z_{1}\right) \cdot\left(n_{2}, x_{2}, y_{2}, z_{2}\right)=\left(n_{1} n_{2}, n_{1} x_{2}+n_{2} x_{1}, n_{1} y_{2}+n_{2} y_{1}\right. \\
n_{1}\left(n_{1}-1\right) \psi_{R}\left(x_{2}, y_{2}\right)+n_{2}\left(n_{2}-1\right) \psi_{R}\left(x_{1}, y_{1}\right)+\left(n_{1} n_{2}+1\right) \psi_{R}\left(x_{1}, y_{2}\right) \\
\left.+\left(n_{1} n_{2}+1\right) \psi_{R}\left(x_{2}, y_{1}\right)\right) .
\end{gathered}
$$

Theorem 1. With the above notation, $M(R)$ is a commutative ring. Also, $M(R)$ is functorial in R.

Proof. Define

$$
\begin{gathered}
V=V(R)=X(R) \oplus Y(R), \\
\phi: V \times V \rightarrow Z(R)
\end{gathered}
$$

by $\phi\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\psi_{R}\left(x_{1}, y_{2}\right)+\psi_{R}\left(x_{2}, y_{1}\right)$. One checks that ϕ is biaddititive and symmetric. Define

$$
\begin{gathered}
P=P(R)=V \times Z(R) \\
\left(v_{1}, z_{1}\right)+\left(v_{2}, z_{2}\right)=\left(v_{1}+v_{2}, z_{1}+z_{2}+\phi\left(v_{1}, v_{2}\right)\right) \\
\left(v_{1}, z_{1}\right) \cdot\left(v_{2}, z_{2}\right)=\left(0, \phi\left(v_{1}, v_{2}\right)\right)
\end{gathered}
$$

One checks a commutative prering (i.e., ring not necessarily with one) results and $n(v, z)=(n v, n z+(n(n-1) / 2) \phi(v, v))$, for all $n \in \mathbf{Z}, v \in V$, $z \in Z(R)$. One adjoins an identity in the usual fashion to get $M(R)$. Now let $f: R \rightarrow k$ be a homomorphism of commutative rings. Define

$$
V(f): V(R) \rightarrow V(k)
$$

by $V(f)(x, y)=(X(f)(x), Y(f)(y))$. Define

$$
P(f): P(R) \rightarrow P(k)
$$

by $P(f)(v, z)=(V(f)(v), Z(f)(z))$. Define

$$
M(f): M(R) \rightarrow M(k)
$$

by $M(f)(n, w)=(n, W(f)(w))$. One checks that $M(f)$ is a ring homomorphism and that $k=R$ and $f=1$ imply $M(f)$ is the identity map. If $t: k \rightarrow S$ is a homomorphism of commutative rings, one checks $M(t) \circ$ $M(k)=M(t \circ k)$. The Theorem is proven.

We call the ring $M(R)$ of Theorem 1 , the first version of the construction ring of $X(R), Y(R), Z(R)$, and ψ_{R}. We now define a second version, which it a little easier to work with because it does not involve ψ_{R} in the addition. $M(R)$ is the same set, but the operations are defined by

$$
\begin{gathered}
\left(n_{1}, x_{1}, y_{1}, z_{1}\right)+\left(n_{2}, x_{2}, y_{2}, z_{2}\right)=\left(n_{1}+n_{2}, x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right), \\
\left(n_{1}, x_{1}, y_{1}, z_{1}\right) \cdot\left(n_{2}, x_{2}, y_{2}, z_{2}\right)=\left(n_{1} n_{2}, n_{1} x_{2}+n_{2} x_{1}, n_{1} y_{2}+n_{2} y_{1},\right. \\
n_{1} z_{2}+n_{2} z_{1}+\psi_{R}\left(x_{1}, y_{2}\right)+\psi_{R}\left(x_{2}, y_{1}\right) .
\end{gathered}
$$

Theorem 2. With the above notation $M(R)$ is a commutative ring. Also, $M(R)$ is functorial in R.

Proof. This is easily checked along the lines of the proof to Theorem 1.

Let R be a commutative ring. Write $U(R)$ for the units of R and $S(R)$ for the set $\{\alpha \in U(R) \mid 1-\alpha \in U(R)\}$. The permutation group S_{3}, has a natural action on $S(R)$ defined by

$$
(12) \cdot \alpha=\alpha^{-1}, \quad(23) \cdot \alpha=1-\alpha
$$

We write $D(R)$ for

$$
\left(U(R) \otimes_{\mathbf{Z}} U(R) \otimes_{\mathbf{Z}}(\mathbf{Q} / \mathbf{Z})\right) / \operatorname{rel}(R)
$$

where $\operatorname{rel}(R)$ is the subgroup generated by all $\alpha \otimes(23) \cdot \alpha \otimes(1 / n+\mathbf{Z})$, for $\alpha \in S(R), n$ a positive integer. Note we are being forced to write $U(R)$ additively. Write ψ_{R} for the natural map

$$
\psi_{R}: U(R) \times\left(U(R) \otimes_{\mathbf{Z}}(\mathbf{Q} / \mathbf{Z})\right) \rightarrow D(R) .
$$

The second version construction ring of $U(R), U(R) \otimes_{\mathrm{Z}}(\mathbf{Q} / \mathbf{Z}), D(R)$, and ψ_{R}, is what we call the Kummer ring of R and denote by $K(R)$.

The arithmetic ring is more subtle. Write $T(R)$ for the abelian group $T(\mathbf{Q} / \mathbf{Z}, R)$ of [2]. $T(R)$ is functorial in R, and if R is a field, then the finite subgroups of $T(R)$ correspond bijectively with the finite Galois field extensions $\sigma: R \rightarrow K$ (up to isomorphism) which have abelian Galois groups, by σ goes to $\operatorname{ker}(T(\sigma))$. Write $B(R)$ for the Brauer group of R [1]. Let

$$
\alpha \in U(R), \quad y=[G,[A] \in T(R)
$$

Then G is a finite subgroup of \mathbf{Q} / \mathbf{Z}, and A is a Galois $(G-R)$-extension. Let n be the cardinality of G, and write σ for

$$
1 / n+\mathbf{Z} \in \mathbf{Q} / \mathbf{Z}
$$

which is a canonical generator of G. Write (σ, A, α) for the cyclic algebra

$$
\sum A u^{i}
$$

where $i=0, \ldots, n-1, u^{n}=\alpha \cdot u^{0}, u \cdot a=\sigma(a) \cdot u$, and write $\Psi_{R}(\alpha, y)$ for its Brauer class in $B(R)$. A long check gives that Ψ_{R} is biadditive and functorial in R. The construction ring of $U(R), T(R), B(R)$, and Ψ_{R} (second version) is what we call the arithmetic ring of R and denote by $A(R)$. For m a nonnegative integer, we replace $\mathbf{Z}, U(R)$ by ()$/ m()$ and $T(R), B(R)$ by ()$_{m}$ to get $A(m, R)$.

In the definition of $K(R)$ replace $\mathbf{Z}, U(R)$ by ()$/ m()$, and with $D(R)$ make the obvious adjustment, to get $K(m, R)$. If R is a field which has a primitive m-th root of 1 (all of them if $m=0$), then by [6] the natural
isomorphisms of Kummer theory and of algebraic K-theory give a ring isomorphism between $K(m, R)$ and $A(m, R)$. This is natural, but rather complicated, so in the interest of brevity we simply refer to [6].

The arithmetic ring $A(R)$ has a natural ideal which we denote by $B(R)$ and which may be identified with the Brauer group of R. It also has natural ideals $I(R), J(R)$, and natural group homomorphisms

$$
\begin{aligned}
& \ln : U(R) \rightarrow I(R), \\
& \text { tn }: T(R) \rightarrow J(R),
\end{aligned}
$$

with obvious natural properties. If $f: R \rightarrow k$ is a homomorphism of commutative rings, and $t \in T(R)$, we have a group homomorphism from $U(R)$ to $B(k)$ which takes u to $A(f)(\ln u) \cdot(\operatorname{tn} t))$. Hence we have a group homomorphism

$$
\phi_{f}: T(R) \rightarrow \operatorname{Hom}(U(R), B(k))
$$

If R is a number field, and f varies over all the completions of R, this can be used to characterize $T(R)$, but this is both a very long story and equivalent to a more or less standard story. We end this note with a discussion of $A(\mathbf{Q}), K(\mathbf{Q})$, and $W(\mathbf{Q})$. For $W(\mathbf{Q})$, we draw from page 25 of [3], which is somewhat inaccessible.

We will state $X=U(\mathbf{Q}), Y=T(\mathbf{Q})$ (the group of Dirichlet characters), $Z=B(\mathbf{Q}), \psi=\psi_{\mathbf{Q}}$ explicitly and then apply the construction of Theorem 2. We use the fact that the non identity elements of X have an action by S_{3} (i.e., is the $S(R)$ defined above, for $R=\mathbf{Q}$). Let P be the set of all prime numbers. Let $P^{\sharp}=P \bigcup\{-1\}$ and \mathbf{N}^{*} be the set of all positive integers. To avoid confusion we write $u(p)$ for a p in $P^{\#}$ when considered in X (i.e., additively). Every $x \in X$ can be written uniquely

$$
x=\sum v_{p}(x) u(p)
$$

the sum over all $p \in P^{\ddagger}$, where all but finitely many of the $v_{p}(x)$ are 0 , for $p \in P$ each $v_{p}(x) \in \mathbf{Z}$, and $v_{-1}(x) \in Z_{2}$. For each $p \in P, n \in \mathbf{N}^{\sharp}$,

$$
U(p, n)=\{0\} \cup\left\{x \in X \mid x \neq 0, \quad n \leqq v_{p}((23) \cdot x)\right\}
$$

is a subgroup of X (even of ker v_{p} in which it is of finite index). According to [4], Y can be characterized by the properties that follow. Y is a direct sum of subgroups D_{p}, one for each $p \in P$. For each $p \in P$ we have an infinite strictly increasing sequence

$$
G(p, 1) \subset G(p, 2) \subset G(p, 3) \subset \cdots
$$

of finite subgroups of D_{p} whose union is D_{p}. For each $p \in P^{\#}$ we have a biadditive map

$$
\psi_{p}: U(\mathbf{Q}) \times Y \rightarrow \mathbf{Q} / \mathbf{Z}
$$

Furthermore:

(1) $\forall a \in U(\mathbf{Q}), \forall y \in Y, \psi_{q}(a, y)=0$ for all but finitely many q, and

$$
\sum \psi_{q}(a, y)=0,
$$

the sum over all $q \in P^{\#}$;
(2) $p \in P, d \in D_{p}, q \in P^{\#}, q \neq p, a \in \operatorname{ker} v_{q}$ imply

$$
\psi_{q}(a, d)=0
$$

(3) $p \in P, a \in \operatorname{ker} v_{p}, n \in \mathbf{N}^{*}$, imply

$$
\psi_{p}(a, d)=0 \quad \forall d \in G(p, n)
$$

if and only if $a \in U(p, n)$; and
(4) $p \in P, d \in D_{p}, n \in \mathbf{N}^{*}$, imply

$$
\psi_{p}(a, d)=0 \quad \forall a \in U(p, n)
$$

if and only if $d \in G(p, n)$.
For $p \in P^{\#}$, if $p=-1$, then write $(\mathbf{Q} / \mathbf{Z})_{p}$ for $\{0+\mathbf{Z}, 1 / 2+\mathbf{Z}\}$, and otherwise write $(\mathbf{Q} / \mathbf{Z})_{p}$ for $\mathbf{Q} / \mathbf{Z} . B(\mathbf{Q})$ is the set of all $b=\left(\ldots, b_{p}, \ldots\right)$ in the direct sum of the $(\mathbf{Q} / \mathbf{Z})_{p}$ such that $\sum b_{p}=0$. For $a \in U(\mathbf{Q}), y \in Y$, one checks that

$$
\left(\ldots, \psi_{p}(a, y), \ldots\right)
$$

is in $B(\mathbf{Q})$; this is $\psi(a, y)$.
Using the theorem on page 101 of [7], one checks $D(\mathbf{Q})=0 . U(\mathbf{Q})$, we have discussed above, and

$$
U(\mathbf{Q}) \otimes_{\mathbf{Z}}(\mathbf{Q} / \mathbf{Z})
$$

is obvious from it. Hence $K(\mathbf{Q})$ is obvious.
Let M (respectively N) be the set of all finite sets of prime numbers (respectively, of odd prime numbers). With symmetric difference both M and N are abelian groups, isomorphic respectively to

$$
\mathbf{Z}_{2} \otimes_{\mathbf{Z}}\left(\operatorname{ker} v_{-1}\right), \quad \mathbf{Z}_{2} \otimes_{\mathbf{Z}}\left(\operatorname{ker} v_{-1} \cap \operatorname{ker} v_{2}\right)
$$

For $A=\left\{a_{1}, \ldots, a_{n}\right\}, B=\left\{b_{1}, \ldots, b_{m}\right\} \in M$, write $[A, B]$ for

$$
\left\{p \in P \mid p \neq 2,\left(a_{1} \ldots a_{n}, b_{1} \ldots b_{m} ; p\right)=-1\right\}
$$

where (, ;) is the Hilbert symbol. Define operations on $M \times N$ by

$$
\begin{aligned}
& \left(A, A^{\prime}\right)+\left(B, B^{\prime}\right)=\left(A+B, A^{\prime}+B^{\prime}+[A, B]\right) \\
& \left(A, A^{\prime}\right) \cdot\left(B, B^{\prime}\right)=(\varnothing,[A, B])
\end{aligned}
$$

Let $\mathbf{Z} \times M \times N$ be the usual adjunction of a one; this is $W(\mathbf{Q})$. For $a \in U(\mathbf{Q})$, let

$$
A(a)=\left\{p \mid v_{p}(a) \text { is odd }\right\}
$$

if $0<a$, then $\langle a\rangle=(1, A(a),[A(a), A(a)])$ and $\langle-a\rangle=(-1, A(a), \phi)$.

References

1. M. Auslander and O. Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409.
2. D. K. Harrison, Abelian extensions of commutative rings, Mem. Amer. Math Soc. 52 (1965), 1-14.
3. -_ Witt Rings, Dept. of Math., U. of Kentucky, 1970.
4. -_ : The multiplicative rationals, to appear in J. of Algebra.
5. M. Knebusch, Grothendieck- und Wittringe von nicht ausgearteten symmetrischen Bilinearformen, Sitzber. Akad. Wiss. 3. Abh. (1969/70), 93-157.
6. A. S. Merkurev and A. A. Suslin, K-cohomology of Severi-Brauer varieties and the norm residue homomorphism (Russian), Izv. Akad. Nauk. S.S.S.R. Ser. Mat. 46 (1982), 1011-1046, 1135-1136.
7. J. Milnor, Introduction to Algebraic K-theory, Princeton, 1971.

University of Oregon, Eugene, OR 97403

