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A COMPUTER METHOD FOR APPROXIMATING 
THE ZEROS OF CERTAIN ENTIRE 

FUNCTIONS 

AMY C. KING AND J. D. PATTERSON 

1. Introduction. The computer revolution has greatly enhanced techni 
ques used in numerical calculations for a wide range of functions. This 
paper investigates some properties of a certain class of entire functions 
known as the Lindelöf functions. These functions are of the form : 

(1) Az) = j j (l - -jpc), A>l,z complex. 

Since f(z) is an infinite product, it is a generaliziation of a polynomial, 
and hence has a special appeal. In addition, when A = 2, we have the 
well-known equality 

sin % *J~z _ f r / i _ z \ 

Thus these functions are also intimately related to the trigonometric 
functions. 

In 1972 King and Shah (cf. [3]) exhibited selected properties of the 
Lindelöf Functions. As a partial proof of one theorem, it was necessary 
to approximate the bounds for the zeros of the derivatives of these func
tions. The techniques were slow and cumbersome due to the lack of 
computer facilities available to the authors at that time. We present here 
a method for locating the bounds, which is not only accurate to several 
decimal places, but greatly improves the previous values obtained for 
these bounds. A proof of a required theorem is given, along with sample 
computer calculations illustrating the method, and a discussion of the 
results. 

2. Mathematical analysis. We shall examine the zeros of/'(zX the deriva
tive of the Lindelöf Function, f(z) = UN=I 0 - zjNA\ A > 1. These 
Lindelöf Functions are a special subset of Functions of Bounded Index 
[2]. Both/and all its derivatives are of Bounded Index [3]. From a theorem 
of Laguerre (cf. [1]) the zeros off'{z) are all real and are separated by the 
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respective zeros of f{z). Note that these occur when z = NA. Thus the 
zeros of f \z) are in the range. NA < x < (N 4- l)A

9 where x is the real 
part of z. 

Let H(x) = f'(x)lf(x). Taking logarithmic derivatives, it is observed that 

(2) tfw-g—L-,.. 

The zeros off'(x), here denoted by BN(A), are identical to those of H(x), 
and will be indexed by the subscript N. H(x) is a decreasing function of x, 
since H'(x) < 0. Thus 

H(x) = f'{x)lf(x) > 0 - BN(A) > x, 

and 

H(x) = f'(x)lf(x) < 0 - 2?„04) < x. 

We now state and prove the essential theorem. 

THEOREM. Let H(x) - f'(x)/f(x\ as in (2), and 
(0 

(3) Hx{x) = £ x _ ^ - (^ _ !) ( A : + ! _ ^ > 

(4) #2(x) = g ^ — 7 T - (,4 - l)(tf + 1)^-1-

If K is chosen such that x < K + 1, A > 1, then, for each N with 
NA < x < (N + \)A, we have 

(5) Hx< H < H2. 

(ii) //j and H2 are decreasing functions of x in each interval. 

PROOF. Recall from calculus that if a function fis continuous, decreas
ing, and non-negative on [1, oo) and if fâf(x)dx converges, then 

/»oo oo /»oo 

(7) J J(x) dx ^ g / ( / : ) ^ / ( l ) + J J(x) dx. 

To prove the left hand side of (5), we shall establish that 

(J - x)A <> JA - x, for / è K + 1 > x. 

Let y = J — x. Then y > 0 and since x > 1 and / = x + j>, we see that 
0> 4- x)A > yA + xA > yA + x. Therefore JA > (J - x)A + x or 

(8) / * - * > ( / - * ) * . 
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Now f(J) = I/(J 4- K - x)A is a decreasing non-negative continuous 
function of / , so by (7) and (8) 

OO 1 OO 1 

1 »L 1 
/Ä+I (/ - *v " M v + K - *y 

dT 

(9) 
K-xY + J i (i + # - x)A J i (r + x - xY 
i , i (1 + K- xY (A - l)(K+ 1 - xY'1 

(A + K- x) 
- (A - 1) (K + 1 - xY ' 

By (8) and (9) we may conclude that 

oo J K I oo J 

H(X) S fi (* - JA) S fi (* - JA) ~ 7=5+1 7 ^ ^ " 
UT J oo I 

- fi (x - JA) ~ jS+x (J - *Y~ 
> f 1 (A+K-x) H 
= M (x - JA) {A - 1) (K + 1 - jc)* ~ 1-

This proves the left hand side of (5). To complete this proof, we note 

(10) 7 ^ > ^ 

since J > K + I > x, x > \ and A > 1. 
Therefore,/(/) == \/(K 4- / ) ^ is a decreasing, non-negative, continuous 

function of/, so, by (7) and (10), we have 

oo J K J oo J 
H s fiT^T^ s ; f i"F^7^ " /=Ç+1/^ - x 

K \ oo I if 1 oo I 

< y ! y _!_ = y ' y ' 

= jûxx - JA Jx (K+ 7 A T) 
K 1 1 _ 

= § T w * ~ (v4 - i) (A: 4- i)^-i s ^ 

Thus (5) has been verified. 
For the proof of part (ii) of the Theorem, it is easily verified that H2 

is a decreasing function of x9 since the second term does not involve x at 
all. 

Now let 
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M = f 1 (A+K-x) 
l~ pYx - J* (A - 1) (K + 1 - JC)̂  7-1 

= $i + S29 

i.e., 

2 (A - 1) (Ä- + 1 - *)* * 

A direct calculation yields 

dS idx - (K+\-xY-{A + K-x)(A)(K+l - x)^ 
d*2ldX (A - \)(K + 1 - x)2A ' 

Since A > 1, 

K+\-x<K+A-x< A(K •+ (̂ - JC). 

Multiplying each side of the inequality by the positive factor (K + 1 — 
x)A, we see that 

(Ä- + 1 - x) (# + 1 - xY^KAiK + A - x)(K+ \ - x)A~\ 

Thus the numberator of dS2/dx is negative, so dS2/dx < 0. Obviously 
dSi/dx < 0, so we must have dHJdx < 0, i.e., H1 is a decreasing function 
of x. 

This completes the proof of the theorem. 

3. Method. The calculations were performed on an Apple II + with 
48K. Those wishing to trace the logic of the program may contact either 
author. 

As in the theorem just proved, f(z) indicates the Lindelöf Functions. 
By Laguerre's theorem, the zeros of/ '(z) a r e r e a l a n d are separated by the 
zeros of/(z). Hence, for each N9 

NA < x < (N + \)\ 

where x represents the zeros of f'(z). The method is by bisection of each 
interval. The user enters the number of bisections (M), as well as the 
values of N and A desired. With the notation used previously, the zeros 
of f'(z) are the same as those of H(x) and 

Hx< H < H2 

After each bisection, the "half" which contains the zero is located, and 
upper and lower bounds for Hx and H2 are given. At the end of the re
quested number of bisections, the lower and upper bounds are printed. 
The diagram illustrates the location of the quantities studied. 
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Hi H2 

1 1 I 1 I 1 
LA LB UA UB 

4. Results. Tables I and II are included, which exhibit values obtained. 
Table I contains those from the computer program and Table II gives 
results using the following formulas : (cf. [2]) 

1 + 2^+1 < B(2) < 2A \3A+1 

(N + 2) < ^ ^ ; < (TV+ 2) <wv + i; , 

N è 3; and A ^ 3 

Here B(N) denotes the Nth zero of the derivative. When comparisons are 
made between the two tables, it is to be noted that Table I yields much 
more accurate values. This is even more evident as the values of A and N 
are increased ; however, the computer time required is considerably more. 
In addition, when 1 < A < 2, another more complicated formula was 
required (cf. [3]) and the computations become very messy. On the other 
hand, the computer program yields these values quickly and accurately. 

Table I illustrates some results obtained. 

M = 10 A = 1.01 

M = 10 A = 2 

M = 5 A = 3 

M = 5 A = 4 

N = 2 
N = 4 
N = 6 
N = 10 
N = 2 
N = 3 
N = 4 
N = 5 
N = 10 
AT = 2 
W = 4 
TV= 5 
Ar= 3 

Lower 
Bound 

2.024 
4.066 
6.119 

10.243 
5.528 

11.133 
18.707 
28.266 

105.947 
17.5 
98.312 

179.031 
190.375 

Upper 
Bound 

2.025 
4.067 
6.120 

10.244 
6.070 

12.062 
20.061 
30.060 

110.069 
18.093 

100.219 
181.875 
195.844 

TABLE I. 
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Lower Upper 
Bound Bound 

A = 2 

A = 3 

A = 4 

AT= 3 
W = 4 
N = 5 
N = 10 
JV = 2 
7V= 4 
JV = 5 
JV= 3 

TABLE II 

10.40 
17.50 
26.57 

101.25 
17 
74.17 

138 
116 

14.60 
23.50 
34.43 

119.25 
22.25 

114.83 
203 
221 

5. Conclusion. A computer program was designed to estimate the value 
of the zeros of f\z\ where/(z) = Il?/=i(l - z/NA)> A > 1, z complex. 
In these calculations the lower and upper bounds of these zeros are given 
respectively by 

jk x - JA (A - \)(K+ I - x)A 

and 
K I | 

H2(z) = 2] x _ JA - (A _ !) ( A : + i)^-i • 

where in both H1 and H2 K is chosen such that \<x<K+\iA>\, 
and, for each N, 

NA < x < (N 4- \)A. 

By the methods illustrated, we were able to approximate the zeros of 
f'(z), quite rapidly and accurately, as long as N and A are not too large. 
Even in this case, the results were obtained more quickly and precisely 
than by the calculator computations. 
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