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PARA-UNIFORMITIES, PARA-PROXIMITIES, AND 
H-CLOSED EXTENSIONS 

STEPHAN C. CARLSON AND CHARLES VOTAW 

ABSTRACT. A generalized uniformity, called a para-uniformity, 
and its induced generalized proximity, called a para-proximity, 
are introduced and applied to the investigation of //-closed spaces 
and //-closed extensions of Hausdorff spaces. 

//-closed spaces are characterized in terms of these structures, 
and the //-closed extensions of a Hausdorff space are characterized 
in terms of extensions of these structures. Moreover, collections of 
para-uniformities called superstructures are used to obtain all 
strict //-closed extensions of a non-//-closed Hausdorff space. 
Thus, the S-equivalence classes of //-closed extensions are des­
cribed by a method similar to that of Fedorcuk for describing the 
/^-equivalence classes. 

0. Introduction. Alexandroff [1] remarked in 1960 that no method 
of systematically determining the //-closed extensions of a Hausdorff 
space had been found. In classifying (the isomorphism classes of) such 
extensions, the introduction of two equivalence relations discussed in 
[18] is helpful. We declare two //-closed extensions of a given space to 
be jR-equivalent if they are ^-isomorphic and to be S-equivalent if their 
corresponding strict (or simple) extensions are isomorphic. In attempts 
to answer Alexandroff's remark, various authors have sought methods for 
obtaining all isomorphism classes, all ^-equivalence classes, or all S-
equivalence classes. (See, for instance, [2, 4, 7, 10, 11, 17 or 21].) 

Fedorcuk [7] refers to the particular problem of constructing the //-
closed extensions of a given Hausdorff space by means of uniformity or 
proximity-like structures as "TychonofTs problem." He [7], Porter and 
Votaw [18] have shown that in general there are not enough such structures 
on a set to yield all isomorphism classes of either semiregular //-closed 
extensions or strict //-closed extensions of one of its Hausdorff topologies. 
According to results in [18] this implies that neither the /^-equivalence 
classes nor the S-equivalence classes can be obtained in this manner, and 
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thus Tychonoff's problem has no solution. However, Fedorcuk [7] uses 
"//-structures," which are collections of generalized proximities called 
"^-proximities," to construct all semiregular //-closed extensions of a 
semiregular Hausdorff space. (In [16] 0-proximities on regular topological 
spaces are shown to coincide with particular /-proximities.) Thus, we 
may use //-structures to describe all /^-equivalence classes of //-closed 
extensions of a given Hausdorff space. Although nearness structures 
have been used by J.W. Carlson [4] to construct the strict //-closed ex­
tensions (and, hence, the 5-equivalence classes of //-closed extensions) 
of a given space, the following question has remained unanswered in the 
literature: can collections of generalized uniformities or proximities be 
used to obtain the S-equivalence classes of //-closed extensions of a given 
Hausdorff space? In this paper we provide an affirmative answer to this 
question. 

In particular we shall introduce a generalized uniformity, called a 
para-uniformity, and its associated generalized proximity, called a para-
proximity. These notions enable us to obtain new characterizations of 
//-closed spaces and of //-closed extensions of Hausdorff spaces. Canoni­
cal completions of these structures yield a rather large class of strict //-
closed extensions (those with "relatively completely regular outgrowth"), 
and this class is shown to include the extensions with "relatively zero-
dimensional outgrowth" studied by Flachsmeyer [8]. Moreover, collec­
tions of para-uniformities called superstructures will be used to obtain 
a representative from each isomorphism class of strict //-closed extensions. 
Thus, we obtain a new description of the 5-equivalence classes of //-
closed extensions of a given Hausdorff space by means of superstructures. 

Fedorcuk [5] has previously introduced generalized uniformities called 
"^-uniformities," which he later used to construct members of a class of 
//-closed extensions as canonical completions [6]. We shall develop a 
relation between these completions and those of para-uniformities. We 
are thankful to the referee for bringing to our attention [13], where Kulpa 
develops generalized covering uniformities which correspond to the 
(diagonal) para-uniformities introduced here. Hence, many results in this 
paper extend and illuminate results of [13]. 

The development of the theory of para-uniform and para-proximity 
spaces to a great extent parallels that of uniform and proximity spaces. 
Thus, many details of the proofs of the early basic results are left to the 
reader, who might find reference to [3], [14], [15], [22], or [24] helpful. 

A few comments about notation and terminology are appropriate now. 
If (Y, a) is a topological space, X c Y, and y e Y, then Olx denotes 
{G fi X: y e G e a). Thus, OyY is the collection of open neighborhoods of 
y in Y. If (Y, a) is an extension of (X, T), then the associated strict (res­
pectively, simple) extension is denoted by (Y, <T*) (respectively, (Y, a+)). 
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Recall [18] that a basis for the topology o* on Y is {G#: Gez} where 
G# = {y e Y: G e O**}, while a basis for the topology a+ on y is {G U 
{^}: GeOy

a
x, ye Y). Moreover, a* c a cz a+ and 0J>* = Oy

a>*x = 
0%'+x, for each y e Y. An extension ( 7, <j) of (Jf, r) is called a strict (res­
pectively, simple) extension if a = o% (respectively, a = a+). If SF is a 
filter on a space (X, T), then ^ will be called an open filter or r-filter if 
3F has a base of open sets. 

The study of para-uniform spaces was initiated in the Ph. D. disserta­
tion of the second author [23]. 

1. Para-uniform spaces. If X is a set and A is a subset of X, then we shall 
let A(A) = {(x, x): x e A}. If U a X x X we let dorn U = (x: (x, J ) G [ / 
for some 7 G Z}, t/° = A(dom U\ and t/"1 = {(>;, x): (x, y) e U}. Also, if 
UaX x XandA a. X,\et U[A] = {y : (x, j ) e [ / for some x e ^ } . When 
[/, F c I x I w e l e t [ / o K = {(x, j ) : for some z e X, (x, z) e V and 
(z, >>) e U}. 

DEFINITION 1.1. Let I b e a set and let f b e a collection of subsets of 
X x X which satisfies : 

(Ul) X x Xe<%; 
(U2) if C/e^r, then U° c £/; 
(U3) if £ / G ^ , then £/ fì l / ^ e ^ r ; 
(U4) if U, VeW, then there is We % such that W o W cz U f] V and 

W° = (U fi K)°; 
(U5) i f [ / e ^ a n d [ / c F c I x I with t/° = K°, then K e ^ ; and 
(U6) ifU,Ve<% and x e X with t/[x] # 0 , then U[x] H dorn K # 0 . 

Then ^ is called a para-uniformity on X, and (X, °U) is called a para-
uniform space. The members of <% are called entourages. 

Note that if condition (U2) is strengthened to require that A(X) <= U 
for every U e %, then <% is a uniformity on X. Of course, in this case, some 
of the conditions (U1)-(U6) are redundant, but this shows that the 
conditions are consistent and that the collection of para-uniformities on a 
set is nontrivial in general. 

If % is a para-uniformity on X and x e X, let m{x) = {U[x] : Uefy} -
{ 0 } . It may be shown easily, using conditions (Ul) - (U5), that {^(x): 
x G X) is a neighborhood system on X. The resulting topology on X will be 
denoted by T ( ^ ) . Note that (/ G %(fli) if and only if x G G implies there is 
some U e % such that x G U[X] <= G. Condition (U6) simply says that, for 
each entourage U e<fy, dorn U is r(^)-dense in X. Note that if fy and y 
are para-uniformities on X and % a y , then r (^ ) <= r ( ^ ) . 

DEFINITION 1.2. Let (X, $0 be a para-uniform space, (a) % is said to 
be compatible with a topology r on X if r = x($l). (b) If (X, ^(^)) is 
Hausdorff, then % is called a separated para-uniformity. 
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Throughout this paper many useful elementary results concerning para-
uniform entourages and topologies will be needed. For example, if % is a 
para-uniformity on a set X, U is a symmetric entourage in %, and x e dorn 
U, then 

(1) U[x] x U[x] c Uo U; 
(2) >> e E/M implies £/[>;] ci (U Q U) [x]; and 
(3) U[x] c dorn £/implies U{x] c ( [ / o [ / ) [*]. 

Similar results occasionally will be noted as needed. 
As in the theory of uniform spaces, it is convenient to consider collec­

tions with certain properties which generate, in a specified manner, unique 
para-uniformities. 

DEFINITION 1.3. Let X be a set. (a) Let ^ be a collection of subsets 
of X x X which satisfies (U2), (U4), and (U6) of Definition 1.1 and 
(B3) : if B e @, then there is some D e <% such that D c B Ç] Bl and D° = 
B0. Then <% is called a para-uniform basis on X. (b) Let y be a collection of 
subsets of X x X which satisfies (U2) and (U6) of Definition 1.1 and 
(S4): if Se Sf, then there is some r e y such that To T c S fi S - 1 and 
T° =-- S°. Then 5^ is called a para-uniform subbasis on X 

If <% is a para-uniform basis on X, then it may be shown easily that 
<JU(0) = {X x X} [J {U cz X x X: for some B e <%, 5 c £/ and B° = 
U0} is the smallest para-uniformity on X which contains ^ . If y is a para-
uniform subbasis on X, then it may also easily be verified that <%(y) = 
{fi ^ • $~ is a finite subcollection of ^ } (where f| (j> = X x X) is a para-
uniform basis on X and that ^r(^(y)) is the smallest para-uniformity on 
X containing &. q/{@{Sf)) may also be denoted by ^ ( ^ ) . 

We will freely use the fact that the collection of symmetric entourages 
of a para-uniformity °U which are open in the product topology zifil) x 
z(°U) is a basis for %. 

A para-uniformity on X may be described in terms of uniformities on 
subsets of X. This is the content of the next two propositions, whose 
straightforward proofs are omitted. 

PROPOSITION 1.4. Let (X, fy) be a para-uniform space and set $4% = 
{dorn U: UeW}. For each Aejrfy, 08A ={VeW: V = V~l and dorn 
V = A} is a basis for a uniformity °ilA on A. Moreover, the following 
properties are satisfied: 

(i) X e stfqt and &?% is closed under finite intersections; 
(ii) if Ai, A2 e s/v and Vt- e WA.(i=\, 2), then V1f]V2e <%A]f]A2; and 

(iii) if Ai, A2estf*u, Ve<%AV
 and xeX with V[x] =t 0, then V[x] Ç] 

A2 # 0 . 

PROPOSITION 1.5. Let X be a set, let ^ be a collection of subsets of X, 
and for each A e stf let Y'A be a uniformity on stf. Moreover, assume that the 
following properties are satisfied'. 
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(i) X e sé and sé is closed under finite intersections', 
(ii) if Ax, A2esé and V{ e V A. (/ = 1, 2), then Vx f] V2e iTAinA2; and 

(iii) if Ai, A2esé, VerTAv and xeX with V[x] ^ 0 , then V[x] Ç] 
A2* 0 . 

Then (% = U AŒ^ ^ A ™ a para-uniform basis for a para-uniformity fy 
on X, and 'V'A = %A, where %A is the uniformity on A with basis {Ve 
<%: V = V~l and dorn V = A}. 

If {X, <%) is a para-uniform space, A e sém, and <%A is the uniformity 
on A induced by % as in Proposition 1.4, then it is clear that z{°U A) <= 
z{°tt), where z{°UA) is the uniform topology on A induced by °UA. (Observe 
first that A is r(^)-open in X since it is the domain of an entourage.) 

The preceding characterization of a para-uniform space demonstrates 
that a para-uniformizable topology may be obtained from uniformizable 
topologies on dense subsets. It follows from the next result that every 
topology is of this type. 

THEOREM 1.6. Let (X, z) be a topological space, and let ß be a subbasis for 
z. For each Geß let S{G) = {G x G) {J [{X - G) x {X - G)]. Then 
£f = {^(G): Geß} is a subbasis for a compatible para-uniformity on 
{X, z). 

PROOF. For Geß, S{G) o S{G) = S{G), S{G)~1 = S{G), and i f x e J 
with S{G) [x]ï 0, then S{G) [x] = G or X - G. With these observations, 
it is straightforward to verify (U2), (U6), and (S4) for &> and that z{%{^)) 
= z. 

Note that if a is a subbase for the topology z on X and a consists of 
open dense subsets of X, then {G x G: G ea} also serves as a subbasis for 
a compatible para-uniformity on {X, z). 

Certain subsets of para-uniform spaces become para-uniform spaces in 
the natural manner. 

PROPOSITION 1.7. Let {Y, fy) be a para-uniform space and let X be either 
z{%)-open or z{%)-dense in Y. Then <K\X = {U f] {X x X): Ue %} is a 
para-uniformity on X. Moreover, if & is a basis {respectively, subbasis) 
for fy, then {B f| {X x X) : B e &}} is a basis {respectively, subbasis) for 

V\x. 

PROOF. It is straightforward to verify (Ul) - (U5) for °U\X. Recall that 
these are the conditions of Definition LI needed to insure that %\x induces 
the topology z{W\x) on X. Also, it is straightforward to then show that 
z{°U\x) = z(^l)\x. So (U6) may be verified by a completely topological 
argument: the domain of any entourage in °U\X is z{°U\x)-tev&s in X since 
it is the intersection of a rW-dense and z-(^)-open subset of Y with a 
subset of Y which is either r(^)-dense or r(^)-open. 
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DEFINITION 1.8. Let (Y, %) be a para-uniform space and let Xbe either 
a r(^)-dense or a r(^)-open subset of Y. Then <%\x is called the relative 
para-uniformity on X. 

We shall conclude this section by discussing the generalization of uni­
formly continuous mappings to the para-uniform case. If / : X -> 7 is a 
function and V a Y x Y, then we use/_1(K) to denote {(x, y) e X x X: 

WW, Ay)) e v}. 
DEFINITION 1.9. Let (X, fy) and (Y, -V) be para-uniform spaces and let 

f: X -+ Y be a function. 
( a ) / i s para-uniformly continuous if, for each Ve *T with/_ 1(F) # 0 , 

(b) Iff is a para-uniformly continuous bijection a n d / - 1 is also para-
uniformly continuous, then / is called a para-uniform isomorphism. 

PROPOSITION 1.10. Iff: (X, <%) -> (Y, f") is para-uniformly continuous, 
thenf: (X, z(W)) -> (Y, z(i^)) is continuous. 

The proof is similar to the proof of the analogous result in the uniform 
case. 

Note that if (Y, fy) is a para-uniform space and X is either r(^)-dense 
or r(^)-open in Y, then idx : (X, <%\x) -• (Y, <%) is para-uniformly con­
tinuous. Also, it is clear that the composition of para-uniformly con­
tinuous functions is para-uniformly continuous. 

2. Para-proximity spaces. A given para-uniformity on a set X can be 
realized in terms of uniformities on subsets of X, and each uniformity in­
duces a proximity. So it is natural to seek a structure on X involving 
proximities on subsets of X whose relation to para-uniformities is an­
alogous to the relation of proximities to uniformities. 

DEFINITION 2.1. Let A' be a set, let sé be a collection of sbsets of X, 
and let Q) = {5A: A e sé} where öA is a proximity on A for each A e sé. 

(a) The triple (X, sé, &) is called a para-proximity space if the following 
three conditions hold : 

(PI) Xe sé and sé is closed under finite intersections; 
(P2) if Al9 A2 e sé, then 5AlM2 e dAl fi öÄ2; and 
(P3) if Ai, A2 e sé and x e Ax, then x öAl(Ax fi A2). 
(b) If (X, sé, Qi) is a para-proximity space, then the para-proximity on 

X associated with (X, sé, Sì) is ö a &>(X) x 0>(X) defined by (for Bl9 

B2 cz X) Bio B2 if and only if there is an A e sé with Bi a A and Bx dA 

(B2 fi A). 
If (X, sé, @) is a para-proximity space with associated para-proximity 

ô, then we may define (for B c X) Bô = {x e X: x ö B). It is straightfor-
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ward to verify that B -> Bd is a Kuratowski closure operator on 0>(X) 
and, hence, z(ö) — {X — Bô: B a X} is a topology on X. 

Note that if dx is a proximity on X, then (X, {X}, {8X}) is a para-pro­
ximity space whose associated para-proximity is <JX. Thus, para-proximity 
spaces generalize proximity spaces. 

The easy proof of the following proposition is omitted. 

PROPOSITION 2.2. Let (X, sé, &) be a para-proximity space with associated 
para-proximity ö, and let B, BÌ9 B2 <= X. (a) 0 ö B and Bd0. 

(b) x 5 x for all x e X. 
(c) BÖ(B1 U B2) if and only if Bö Bx or Bö B2. 
(d) If Bx ö B2, then there is C a X such that Bx ö X - C and Co B2. 
(e) If BXÖ_B2, then Bx Ç] B2 = 0 . 
(f) If Bx Ö B2 and C, c B{ (/ = 1, 2), then C1 Ö C2. 

It follows from this proposition that if the para-proximity ö associated 
with (X, sé, @) is symmetric (that is, Bx ö B2 if and only if B2 ö Bx), then 
ö is a proximity on X, and, hence, T(Ö) is completely regular. 

DEFINITION 2.3. Let (X, j / , ^ ) be a para-proximity space with associated 
para-proximity <5. 

(a) 5 is said to be compatible with a topology z on X if z — z(ö). 
(b) (X, sé, &) is called separated if z(ö) is Hausdorff. 

Note that z(ö) is T0 if and only if x, y e X with xdj' and yöx implies 
x = y, and r(5) is 7\ if and only if x,y e X with xöy implies x = y. Two 
other consequences concerning the para-proximity topology are recorded 
in the next proposition. 

PROPOSITION 2.4. Let (X, sé, @) be a para-proximity space with associated 
para-proximity ö. 

(a) For x e X and B c X, x d X - B if and only ifx e int B. 
(b) For Bl9 B2 cz X, Bxd X - B2 implies Bx a int B2. 

We begin to develop the relation between para-uniform spaces and 
para-proximity spaces in the next theorem, whose proof is quite similar 
to the proof of the analogous result in the uniform-proximity case. 

THEOREM 2.5. Let (X, °il) be a para-uniform space. Let sém — {dorn 
U:U e<%}, for each A esé<% let %A be the uniformity on A induced by 
% (as in Proposition 1.4), and let ÖA be the proximity induced on A by %A. 
Set <3m = {öA: Aesé®}. Then (X, sé<%, &<%) ^ a para-proximity space. 
Moreover, z(^U) = z(ö^), where ö® is the para-proximity on X associated 
with(X, sé ou, @ty) given by (for Bx, B2 c X) Bx ö<% B2 if and only if there is 
Ue<% with Bx c dorn U and U[BX] f] U[B2 fi dorn U] = 0 . 
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The result, together with Theorem 1.6. tells us that any topology is 
para-proximizable. * 

Before we observe that every para-proximity space is induced by a 
para-uniform space in the manner prescribed by Theorem 2.5, it is ap­
propriate to introduce the notion of a totally bounded para-uniformity. 

DEFINITION 2.6. A para-uniform space (X, fy) is totally bounded if, 
for each U e<%, there is a finite collection ^ of subsets of X such that 
X = U {C:Ce<£} and [j {C x C:Ce<g} c U. 

Note that the definition is equivalent to the usual definition of totally 
bounded in case °ll is a uniformity, since then C <= V[C] for every F e f . 
(Also, it is equivalent to assume that 0 £ <̂ .) Moreover, we have the 
following straightforward characterizations of totally bounded para-
uniformity. 

PROPOSITION 2.7. Let (X, <%) be a para-uniform space and let sém = {dorn 
U:U 6 ^ } . The following are equivalent: 

(a) (X, <%) is totally bounded. 
(b) For each U e<% there is a finite subset F cz X such that X = U[F]. 
(c) %A is totally bounded, for each A e sé^. 

THEOREM 2.8. Let (X, sé', &) be a para-proximity space. For each A e sé ̂  
let i^A be the unique totally bounded uniformity on A which induces dA. Then 
& = U \y A'-A e sé} is a basis for the unique totally bounded para-unifor­
mity ^ on X such that (X, sé, &) = (X, sé®, 9%). 

PROOF. Everything follows easily once we have verified (ii) of Proposi­
tion 1.5. To this end note that a basis f o r ^ i s ^ = {\jf=1Hj x Hy: 
KfiAA - Hh Hj cAU=U29...,m),A= [jf=1 Kj}. Let Al9 A2 e sé. 
To verify (ii) of Proposition 1.5 it suffices to show that if B{ e <%A. (i = 
1, 2), then B1Ç)B2e rAl(]Ar So let Kfd^ A, - Hj, Hj c A4 (j = 1, 
2, . . . , m,), A, = [JTkKj(i = 1, 2) and B, = (JJ^Hj x Hj (i = 1, 2). 
Then (A, f| A2) x (Ax f| A2) => B1 f] B2 => U^ i UBi ((#} fi #?) x 

If (A", j / , 9) is a para-proximity space, then it follows from Theorem 
2.8 and the remarks following Proposition 1.5 that z(oA) c ?(d), for each 
A e sé. Also, in view of Theorem 2.8, the next results about relative para-
proximities are not suprising. 

PROPOSITION 2.9. Let ( Y, sé, Qi) be a para-proximity space with associated 
para-proximity d, and let X be either z(d)-open or z(d)-dense in Y. Let sé\x 
= {A fi X:A e sé} and ®\x = {ÖA\A<)X'. A e tf}. Then (X, sé\x, ®\x) 
is a para-proximity space with associated para-proximity ô\x defined by 
(forBl9 B2 a X) Bx Ö\XB2 if and only if Bx Ö B2. Also z(ö\x) = r(d)\x. 
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DEFINITION 2.10. Let (Y, jtf, 2) be a para-proximity space with asso­
ciated para-proximity ö and let X be either ?(<?)-open or r(<5)-dense in Y. 
Then 3\x is called the relative para-proximity on X. 

PROPOSITION 2.11. Let (Y, %) be a para-uniform space, let (Y, jtf, <&) 
be the para-proximity space induced by ( Y, <%), and let ô be the associated 
para-proximity on Y. Let z ~ z(flô) = z(ô) and let X be either z-open or 
z-dense in Y. Then (X, sémx, @y\x) == (^» ^x* @\x) and d<teix

 == ^1** 

The notion of a proximity mapping also generalizes easily to the para-
proximity case. 

DEFINITION 2.12. Let (Xi9 jtfi9 ^ ) be a para-proximity space with as­
sociated para-proximity dt- (i = 1, 2) and letfiXi -+ X2 be a function, (a) 
/ i s a para-proximity mapping if, whenever x, y e Xi and xöiy, then/(x) 
ô2f(y). (b) I f / i s a para-proximity bijection and / " 1 is also a para-proxi­
mity mapping, then / is called a para-proximity isomorphism. 

PROPOSITION. 2.13. (a) A para-proximity mapping is continuous with 
respect to the para-proximity topologies, (b) A para-uniformly continuous 
mapping is a para-proximity mapping with respect to the induced para-
proximities, (c) The composition of para-proximity mappings is a para-
proximity mapping. 

3. Extensions of para-uniform and para-proximity spaces. Throughout 
the remainder of this paper we shall use "para-uniform space" to mean 
separated para-uniform space, "para-proximity space" to mean separated 
para-proximity space, and "topological space" to mean HausdorfT topo­
logical space. It is worth noting now that when a para-uniform space 
(X, <%) is separated it is not necessarily true that the uniformity <fyA in­
duced on A = dorn U(U e<%) is separated. (In fact, the compatible para-
uniformity % induced on the real line with the usual topology, in the man­
ner prescribed by Theorem 1.6 using the usual topology as its own sub-
base, has the property that, for all A e s/%, %A is not separated.) A sim­
ilar word of caution holds for para-proximity spaces. 

In order to develop the theory of para-uniform and para-proximal 
extensions, we need to introduce the notions of Cauchy filter and round 
filter. 

DEFINITION 3.1. Let (X, <%) be a para-uniform space and let & be a 
filter on X. & is Cauchy (or ^-Cauchy) if for each Uetft, there is an x e 
X such that U[x] e &. 

The easy proof of the following characterizations of Cauchy filter is 
omitted. 

PROPOSITION 3.2. Let (X, <fy) be a para-uniform space, let stf<% = {dorn 
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U:U e <%}, and let fyA be the uniformity induced on A by °ll for each A 
e sé®. Then the following are equivalent for a filter 3F on X. 

(a) 3* is W-Cauchy. 
(b) For each Ue<% there is F G 3? with F x F e U. 
(c) @*\A is fyA-CauQhy for each A G sé®. 

Note that if 3F is ^-Cauchy, then dorn Ue&, for every U G °U. Ac­
cordingly, there are examples of r(^)-convergent filters on some para-
uniform spaces (X, <%) which are not ^-Cauchy. In fact, the neighborhood 
filter of a point x e l i s ^-Cauchy if and only if x e dorn U for every 
U G ÛU. Thus, every neighborhood filter is ^-Cauchy if and only if °U 
a uniformity on X. 

As in the uniform case, a ^-Cauchy filter converges to each of its ad­
herence points, as can be verified easily. Also every ^-Cauchy filter 3F 
on X contains a smallest ^-Cauchy filter &m = {U[F]:Ue<%, F G 3F) 
called the minimal ^-Cauchy filter contained in 3F, 

DEFINITION. 3.3. Let (X, sé, &) be a para-proximity space with associated 
para-proximity <5. 

(a) A filter J* on X is round (or <5-round) if sé a <F and F\ G 3F im­
plies there is an F2 G 3F with F2d X — Fx. 

(b) Let 3F be a filter on X such that sé a 3F. The 5-round hull of <F 
is defined to be &r = {H <= X.FÔX - H for some Fe 3F). 

The proof of the next proposition requires only a slight modification of 
the proof of the corresponding results in the proximity case (see, for in­
stance [20]) and is omitted. 

PROPOSITION 3.4. Let (X, sé, Q>) be a para-proximity space and let ö be 
the associated para-proximity on X. 

(a) If & is a filter on X and sé <= J% then 3Fr is a d-round filter and 
&r e 3F. 

(b) Each d-round filter is contained in a maximal ö-round filter. 
(c) If' & is a maximal d-round filter and Bx and B2 are subsets of X such 

that Bxô X - B2 and Bx meets 3?, then B2 e 3?. 
(d) A 5-round filter 3F is a maximal ö-round filter if and only if Bx, B2 

c Xwith B1d X - B2 implies X - B1e 3F or B2e 3F. 
(e) If !F\ and 3F2 are two distinct maximal d-round filters on X, then 

there are Fx e 3^i and F2 G 3?2 with Fx f| F2 = 0 . 

Note that if (X, sé, $)) is a para-proximity space, then sé has f.i.p., and, 
hence, there are 5-round filters on X. 

When we say that a filter on a para-uniform space is round, it is under­
stood to be round with respect to the para-proximity induced by the 
para-uniformity. 
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PROPOSITION 3.5. (a) A minimal Cauchy filter on a para-uniform space 
is a maximal round filter, (b) A maximal round filter on a totally bounded 
para-uniform space is a minimal Cauchy filter. 

PROOF. Let (X, %) be a para-uniform space, sé = sé® = {dorn U:U 
G <%}, Qf = ®%, a n d Ô = d«. 

(a). Let <F be a minimal ^-Cauchy filter. Then 3Fr is a <5-round filter 
contained in SF. Let Ue<%. If VeW with V° = £/°, K = V~l, and F° 
F o F c £/, and if F e JF with F x F cz V, then F[F] G jF r and K[F] 
x F[F] c £/. So J% is $r-Cauchy, and J^ = &?r is 5-round. To see that 

ÏF is maximal 5-round, let Bh B2 cz X with B1 ô X — i?2. Then there is 
t / e ^ w i t h ^ x c dorn U = 4 and ^ ^ ( X - £2) D ^ ; so BXJ2{A -
j?2). Let <^J be the totally bounded uniformity on A induced by 5A. Then 
H = [(2?2 n A) x (B2 n ^)] U [(A - 2?i) x (A - BJ\ G « ß c ^ cz 
^ . Since ^ is ^-Cauchy, there is an F e ^ with F x F a H. So either 
F e £2 fi ^ or F cz A - Bl9 whence either B2e^ or X - B1e ^ . 
By PROPOSITION 3.4(d), <F is a maximal 5-round filter. 

(b). Let <F be a maximal 5-round filter. Since ^ is totally bounded, a 
basis for ^ is 38 = U {^U:^ e <$?} where, for ^ G sé, @A = {[}f=l Hj x 
Hf.Hj cz A, KjTA A - Hj (j = 1,2, . . . , m), A = Uf=i * / } . Let £ G^>. 
Then there is an A e sé such that B = [jf^Hj x Hj where Hj cz A, Kj 
dAA — Hj(j = 1, 2, . . . , m) and f̂ = U f=1 Kj. Since «^ is a maximal 3-
round filter, for each j = 1, 2, . . . , m either X — Kj e ^ or Hj G t^

r. But 
since A e #", there is some y G {1, 2 , . . . . , m} for which Hj G ZF. Then //y 
x 7/y cz B. So ^ is ^-Cauchy. Now ^"m is a maximal <5-round filter by 

(a), and J*w c # \ Thus, «^ = ^ m is a minimal ^-Cauchy filter. 

DEFINITION. 3.6. (a) A para-uniform space (X, %) is complete if every 
^-Cauchy filter on X is r(^)-convergent. 

(b) A para-uniform space (7, V) is a para-uniform extension of a para-
uniform space (X, %) if X is a z-(^)-dense subset of Y and ^r = *T\X. 

(c) A para-uniform extension (Y, y ) of (JSf? ^ ) is said to have relatively 
uniform outgrowth (r.u.o.) if Y — X cz dorn V, for every F e f . 

(d) A para-uniform completion of a para-uniform space is a complete 
para-uniform extension. 

(e) A para-proximity space is full if each round filter has non-void ad­
herence with respect to the para-proximity topology. 

(f) A para-proximity space (Y, sé', <&') is a para-proximal extension of 
a para-proximity space (X, sé, &) if X is a ?(<?')-dense subset of Y, sé = 
sé'\x, and Q = ^ ' | x . 

(g) A para-proximal extension (Y, sé', &) of (X, sé, <$) is said to have 
relatively proximal outgrowth (r.p.o.) if Y — X cz A for each y4 e j ^ ' . 

Note that if (Y, -f") is a para-uniform extension of (X, <%), then (Y, 
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stfr, @fr) is a para-proximal extension of (X, stf%, &&). Also note that if 
( Y, a) is a topological extension of (X, z) and y is compatible with a, then 
y\x is compatible with z, and (Y9 -jT) is a para-uniform extension of (X, 

r\x\ 
The next two propositions relate para-uniform extensions to simple and 

strict topological extensions. If U a Y x Y and S <= Y, then we use 
U(S) to denote U Ç] (S x S). 

PROPOSITION 3.7. Let (Y, a) be a topological extension of (X, z) and let 
ybe a compatible para-uniformity on Y. Then &+ = {U(S) :X a S a Y, 
U e y} is a basis for a para-uniformity y+ on Y, y a y+, z(y+) = <7+, 
and (Y9 y+) is a para-uniform extension of (X, y\x). 

PROOF. It is straightforward to verify that &+ is a para-uniform basis 
on Y, and clearly y a y+. To see that a+ a z(y+), it is enough to ob­
serve that if y e Y and G e Oy

a>
x, then there is F e ^ for which y e V[X] 

and 0 ï X Ç) V[y] a G and, hence, V({y} \j X) [>>] c G U M -
Now let j e y and let U e y be such that U is open in the product to­
pology on y x y and y e U[y\. Then (U[y] f] X) U W e ^ + and 
(U[y] f) X) \J {y} c U(S) [y], for all S with X {] {y} a S c y. Since 
the open entourages in y form a basis for y, this shows that z(y+) <= Ö-+. 
It is then clear that X is z(y+)-dense in y and that y+\x = y\x. 

Since y a y+, idY :(Y, y+) -* (Y, y) is para-uniformly continuous. 

PROPOSITION 3.8. Let (Y, o) be a topological extension of(X, z) and let 
y be a compatible para-uniformity on Y such that Y — X cz dorn V for 
each Vey. If V e y, let V* = V(X) [} {(x,y) e Y x Y: G x G c V, 
for some G e Ox

a
x fl O**}. Then &* = {V*: Vey) is a basis for y. 

Moreover, a = a*. Thus, any para-uniform extension of a para-uniform 
space with r.u.o. yields a strict topological extension. 

PROOF. We must first show that ffi is a para-uniform basis on Y. To 
verify (U2), let Ue y and let Vey with V° = U°, V'1 = V, V<>V a 
U, and V open in the product topology on Y x Y. Now if y e Y — X, 
then G = V[y] fi Xe Olx and G x G a U. Thus, A(Y - X) c U*. 
Also (C/*)°W = U\X). Therefore, (Wf a UK To see that (B3) is satis­
fied, note that if U, Ve y, then U* fi V* = (U fi Vf and U* fi (^#)_ 1 

= (U fi t/"1)' . To verify (U4), let U, Vey and let W e y with WQ 

= (U fi *0°> ^ _ 1 = W,W open in the product topology on y x y, 
and WoWoWoW a U fi K. One may easily verify that (W#)° = (£/* 
fi K*)° and W* c tf# fi K*. Finally, (U6) is satisfied for gfi since (U6) is 
satisfied for y\x and Y - X a dorn K*, for all V e y. So 0# is a 
para-uniform basis on Y. 
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If Uey and F e ^ with V° = U°, F"1 = V, and K° F° V c £/, 
then 17° = F° = (£/#)<> = (K#)o, K <= 17*, and F# c 17. It follows that 
y = °U (<#). So it remains to show that z(°U (&*)) = a*. 

Let y e G e a% and assume, without loss of generality, that G = {x 
eY: G Ç] Xe 0J>*}. Since o% c <r, there is £7 e TT such that >> e U[y] 
c G. Let F e - r with F° = U°, V~l = K, and V ° K c U. We claim that 
F#[y] c G. To see this, let x e K*|>]. First observe that if x e V(X)[y], 
then x e G. So assume (j>, x) £ V(X). Then there is 77 e G J ' x f\ 0»x such 
that H x H a V. Now 77 fl F[y] i=- 0 . Letting A e 77 f| *T>], we have 
77 c K[A] c ( K o F ) M c U[y] c G, whence x e G. So indeed F# [>>] 
c G. Thus, <7# cz r(#(^#)). 

Now let U e y and let y e F such that y e £/*[>>]. Then we are able 
to find GeO»x such that G x G c £/. (In case ; e l take G = F(JT) 
[y]9 where F e f with K° = t/°, F"1 = K, and V o K cz (7.) Then 
j e G U {x e F: G e 0£'*} c t/#[y]. So z{<%{@*)) c (7*. 

In the remainder of this section we shall construct and investigate 
canonical para-uniform completions and canonical full para-proximal 
extensions. Recall that a filter on a topological space (X, T) is r-free (or 
simply free) when it has void adherence. We will call a filter on a para-
uniform space or para-proximity space free if it is free with respect to the 
induced topology. 

DEFINITION 3.9. Let (X, %) be a para-uniform space. 
(a) Define tyXXo be X U {^\ ZF is a free minimal ^-Cauchy filter on 

X}. 
(b) For UeW, define U* = U \J {(J% x), (x, &): & e %X - X, 

xeX, and for some Fe & f] #(*), ^ x f c t / j y { (^ , ^ ) : ^ , ^ e < r z 
- Zand for some Fe &" f) &, F x F <=: U}. 

THEOREM 3.10. Let (X, %) be a para-uniform space. Then &* = {£/*: 
U e <%} is a basis for a para-uniformity <%* on <%X, and (<%X, ^*) is a para-
uniform completion of (X, <%) with r. u. o. Thus, (fllX, z{°U^) is a strict 
extension of(X, z(<%)). 

PROOF. The proof that 0&* is a para-uniform basis on X is similar to 
the proof for &* in Proposition 3.8 and is left to the reader. It is then 
easily verified that X is r(<^*)-dense in <*UX, %*\x = # , and %X - X cz 
dorn V for all Ve °U*. So it remains to show that (fUX, °il^) is complete. 

Let !F be a free minimal ^ -Cauchy filter on <%X. Then <F\X is a z(<%)-
free minimal ^r-Cauchy filter on X, so that there is ^ e %X — X for which 
<& c $F\X. Then F [\ V*{&\ ^ 0 , for every Fe$F and every Vety, 
whence ^ is a r(^*)-adherence point of 3F. This contradicts the assump­
tion that & is free. So there are no free <&vCauchy filters on <%X. 

Note that if % is a uniformity on X, then ^ * is a uniformity on <^X 
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THEOREM 3.11. Let (X9 <%) be a para-uniform space. Then <%* = (^*)+ 

is a para-uniformity on °UX and (fllX, <%*) is a para-uniform completion of 
(X, <%). Moreover, T(W*)+ = T(W*) andz(fy*)* = z(%*). 

PROOF. Everything is clear from Proposition 3.7 and Theorem 3.10 
except for the completeness of (fUX, <%*). Suppose ^ is a free ^r*-Cauchy 
filter on <%X. Since X x X e <#*, ^ contains a free minimal ^-Cauchy 
filter &. But {F U {^} ' F e ^ } is a r(^*)-neighborhood base at &. 
Thus, ^ T(^r*)-converges to <F e °UX, which contradicts the assumption 
that ^ is free. So (QlX, <%*) is complete. 

By Theorem, 3.10 it follows that every para-uniform space has a para-
uniform completion which coincides with the unique uniform completion 
for a uniform space. Moreover, according to Theorem 3.11, any non-
complete para-uniform space has more than one para-uniform completion. 
(Even a non-complete uniform space has more than one para-uniform 
completion !) Thus, it is natural to ask in what sense each of these canoni­
cal completions is unique. This question is answered by the next several 
results. 

LEMMA 3.12. Let f: (X, <%) -+ (T, TT) be a para-uniformly continuous 
mapping of para-uniform spaces with f(X) T(i^)-dense in Y and (7, rT) 
complete. Then there is a unique para-uniformly continuous mapping g: 
(<%X, <%*) -+ (y, TT) such that f{x) = g(x\for all x e X. 

PROOF. For each x e X define g(x) = f(x). We must define g(x) for x e 
fyX — X. In this case, x = J*7, a free minimal ^-Cauchy filter on X. Now 
{/(F): F e <F) is a filterbase on Y and is TT-Cauchy since f(X) is dense in 
Y. Let &(x) = {G cz Y: f(F) a G for some Fe^}. Then &(x) is a T-
Cauchy filter on Y and converges to a unique point g(x) e Y. Thus, g : 
<%X -+ y is defined. 

To show that g is para-uniformly continuous, let K e f and let We*T 
with W* = V\ W'1 = W,and Wo Wo W a V. Then f~\W) e m since f(X) 
is dense in Y. Set U = f~l{W) and H = Z U dorn g~l{W). Then X c 
H a WX and £/* e <3r*. So U*(H) e W*. We claim that U*(H) <=. g-\V) 
and that U*(H)Q = g_1(J0° (whence it follows that g'^V) e <9t*). Let 
(x, y) e U*{H). We shall verify that (x, y) e g~\V) in the case where x = 
&x e %X - X and y = J^2 e ^ Z - X Let G e ^ f] J^2 with G x G c 
£/. Now ^(x) converges to g(x), <̂ (j>) converges to g(>>), and /(G) e 
&(x) fi ^(>0- So g(x), g(y) e cly/(G). Also x, y e # - X So x, >> e 
dorn g-1(W0, whence g(jc), g(>>) e dorn W. Thus, Ĵ TgC*)] and W[g(y)] 
are r(f)-neighborhoods of g(x) and g(y), respectively. Therefore, we 
may select p e W[g(x)] fl /(G) and q e W[g(y)] Ç] /(G). So (/>, <?) e 
/(G) x /(G) c W, (g(x), />) e W, and fa, g(j)) E W. It follows that (g(x), 
g(y)) eWoWoWa: V; i.e., (x, y) e g~l(V). The proof that U*(H)<> 
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= g'HV)0 involves similar notions and is left to the reader. 
That g is the unique para-uniformly continuous extension off follows 

from the fact that g is continuous and X is dense in <%X. 

THEOREM 3.13. Let (X, <*U) be a para-uniform space. Then (°UX, <%*) is 
the (up to para-uniform isomorphism) unique para-uniform completion of 
(X, °tt) satisfying property (C*) \ If (Y, y) is any para-uniform completion 
of (X, °l/), then there is a unique para-uniformly continuous mapping p* : 
(WX, <%*) -> (Y, y+) such that p*{x) = x for all xeX; Le., the diagram 

(WX,W*) p- • (Y,y+) 

iàx idy 

(x,w) —^—* (Y,y) 

commutes. 
PROOF. TO show that (fUX, <%*) satisfies (C*) let (Y, y) be an arbitrary 

para-uniform completion of (X, %). Then (Y, y+) is a para-uniform ex­
tension of (X, <&), and (Y, y+) is complete since y a y+. So idx : (X, 
°U) -> (y, y+) satisfies the hypothesis of Lemma 3.12, whence there is a 
unique para-uniformly continuous mapping p*: (%X, <%*) -> (Y, y+) 
such that p*(x) = x, for all x e X. 

Now suppose that (Z, iT) is a para-uniform completion of (X, °U) 
satisfying (C*). Then we can find para-uniformly continuous mappings 
p*: (%X, <%*) -> (Z, iT) and q*: (Z, iT) -> (^X, **) such that p*(x) = 
<7*(x) = x, for all x e X. So /?* is a para-uniform isomorphism. 

LEMMA 3.14. Let f: (Y, y) -• (X, ^f) òe a para-uniformly continuous 
mapping of para-uniform spaces such that, for each Uefy,f(Y) fi dorn 
U ^ 0 and such that if !F is a free y-Cauchy filter on Y then the filter 
induced by <F under f is a free filter on X. If (Z, iT) is any para-uniform 
extension of(Y, y) with r.u.o., then there is a unique para-uniformly con­
tinuous mapping g : (Z, iT) -• (fllX, <%*) such that g(y) = f(y),for ally e Y. 

PROOF. For y e Y define g(y) = f(y). Let z e Z - Y. Then Oz
T 

filterbase on Z, and since (Z, iT) is an r.u.o. para-uniform extension of 
(y, TT), Offa is a -yT-Cauchy filterbase. So Oft^ is a free ^-Cauchy filter-
base on y. Now the filter J^(z) generated by {/(G): G e 0*(£)} is a r (*> 
free filter on X. If U e <%, then f(Y) fi dorn £/ ^ 0 so that/-!(£/) # 0 . 
Since / is para-uniformly continuous, f~\U) e y. Thus, there is G e 
Offa with G x G af-\U). Then /(G) e &(z) and /(G) x /(G) cz C/. 
So J^(z) is ^-Cauchy. Let g(z) = ^(z), the unique minimal ^-Cauchy 
filter contained in «F(z). ^(z) is T(^)-free since SF(z) is rW-free. So g(z) 
e<%X - X. Thus, g: Z -• ^ Z is defined. 

To see that g is para-uniformly continuous, let U e % and suppose that 
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£-i(£/*) # (j). We must show that g~l(U*) e TT. To this end, let V e % with 
F» = U°, V-1 = F, and F o F o F c *7. Then, since f(Y) f] dorn F # 0 , 

/ -!(K) e ^ . So there is We nr such that f~l(V) = W(r>. Now W* = 
f~l(V) U {(*, y) e Z x Z: for some G G O ? ^ fl 0?'(£), G x G <= / - i 
(F)}e7F. Also, it is straightforward to verify that W# c g"1(C/Hc) and 
(W*)Q = g-K^*)0. So indeed g-^UJ e W. 

That g is the unique extension off follows from the continuity of g and 
the fact that Y is dense in Z. 

THEOREM 3.15. Let (X, °U) be a para-uniform space. Then (°UX, °U^ is 
the {up to para-uniform isomorphism) unique para-uniform completion of 
{X, °U) with r.u.o. satisfying property (C*): If {Y, "T) is a para-uniform 
completion of{X, °U) with r.u.o., then there is a unique para-uniformly con­
tinuous mapping p*: (Y,i^) -> (fyX, fy*) such thatp*(x) = x, for all x e X; 
i.e., the diagram 

idx r.u.o. / ^ ^ ^ 

(X,W) ^ > ( # * , # * ) 

commutes. 
PROOF. TO see that (<%X, <%*) satisfies (C*), let (Y, y) be an arbitrary 

para-uniform completion of {X, °U) with r.u.o. Then idx : {X, %) -> {X, 
fy) and (Y, -V) satisfy the hypothesis of Lemma 3.14. So there is a unique 
para-uniformly continuous mapping /?*: (Y, Y") -+ (%X, °U^) such that 
p*{x) = x, for all x e X. 

The proof of uniqueness is essentially identical to the proof of uni­
queness in Theorem 3.13. 

We now turn our attention to finding full para-proximal extensions of 
para-proximity spaces. 

DEFINITION 3.16. Let {X, &?, @) be a para-proximity space with as­
sociated para-proximity <5. 

(a) Let 5X denote X [j ( j * : SF is a free maximal 5-round filter on X}. 
(b) For B cz X9 define 0(B) = B U {& e ÔX - X: B e &}. 
Note that ÖX = 0{X) and that if A es/9 then 0(A) = A [] {ÖX - X). 

THEOREM 3.17. Let {X, s/9 $)) be a para-proximity space with associated 
para-proximity <5. Let stf * = {0(A): A e so?} and, for Aestf9 define 
öoiA) c &(0(A)) x <P(0(A)) by (fojrr^ T2 c 0(A)) Tx & T2 if and 
only if there are Bl9 B2 <= A with Bx dA B2 and T{ c 0(Bt) (i = 1, 2). Then 
ôo(A) "" a proximity on 0(A). Moreover, if we set $)* = {d0(A) • ^ e j ^ } , 
//ze« (5^, j ^ * , <2)*) is a full para-proximal extension of (X, sé, @) with 
r.p.o. We shall let <?* denote the associatrdpara-proximity on dX. 
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PROOF. We shall verify the strong axiom of proximities for 30u)- Sup­
pose t h a i ^ , T2 <= 0(A) and 7\ Ö0(A) T2> Then there are Bl9 B2 c A such 
that Bi dA B2 and T{ c 0(5,-) (f = 1,2). Since <5A is a proximity on v4, there 
isC a A such that J ? ^ ^ - C and CÔA~B2. Set T = 0(C). Then it is clear 
that Tdowjj- Since B1ÔA~A - C, there is D a A such that B^A 
- D and Z>X^ - C Then 6>(y4) - 0(A - D) a 0(C) and hence 0(A) 
- 0(C) c 6>04) - [0(y4) - 0(A_- D)] = 004 - £>). So O(^) - T c 
<9(^ - D), Tx c 0(Bi), and B1ÔAA - D. Thus, 7\<5OU) O(^) - T. 

Verification of the other proximity axioms for ÖO(A) *S routine, as is 
the proof that (8X, sé*, <2>*) is a para-proximal extension of (X, sé, &). 
Noting that {0(B): B e T(Ö)} is an open basis for the topology T(3*), it is 
clear that X is a r(<5*)-dense subset of 8X. 

It remains to show that (öX, sé*, Q)*) is full. Suppose that ^ is a free 
<5*-round filter on dX. Then !F\X is a <5-round filter on X, and so is con­
tained in a maximal <5-round filter & edX - X. Let Fe^. Then i7 fl 
O(^) e #-, for each ,4 e sé and F fi A e &\x a<g. So ^ e 0(F f] A). 
Thus, ^ d0(A) F H ^5

 f o r a11 ^ e j / , and so ^ <5* Z7. Therefore, ^ is a r(<5*) 
-adherence point of <F. 

Note that for the para-proximity space (X, {X}, {ôx}), where 5x is a 

separated proximity on X, (ôX, T(Ô*)) is the Smirnov compactification of 
(X, 3X) [20], 

THEOREM 3.18. Let (X, %) be a totally bounded para-uniform space. Then 
(%X, sé^, 9*m) = (5«X, (sé®)*, (®m)*\ 

PROOF. Clearly %X = 3 ^ ( s e e Proposition 3.5) and sém^ = (sém)*. 
^qi* — (ß*u)* will follow once we have shown that, for Th T2 c 0(A) e 
sé<%, = (sé®)*, Tiöo(A) T2 if and only if Ti and T2 are distant in the pro­
ximity induced on 0(A) by (W*)O(A)- Suppose TIÒOÌA) T2. Then there are 
Bl9 B2 c ,4 such that B1JA~B2 and T{ c 0(Bt) (i = 1, 2). So there is Ve <fy 
with dorn V = A, V~l = V, and V[B{\ Ç] V[B2] = 0. Then V+eW*, 
dorn K* = 0(A), and it is a straightforward exercise to verify that K*[7\] 
p| T2 = 0. So Tx and T2 are distant in the proximity induced on 0(A) 

by(^*)o(,4). 
Conversely, suppose that Tx and T2 are distant in the proximity in­

duced on 0(A) by (<%*)0(A)- Then there is U* e <%* with dorn U* = 004), 
t/*1 = £/*, and U*[Tt] f] U*[T2] = 0 . Let K* e ^ * such that dorn K* = 
0(A), V-? =J* and V^V^y^ c U*. Set 2?, = V[V*[Tt] {] A] (i = 1, 
2). Then B1ÔAB2 and T{ a 0(Bt) (i = 1, 2). Therefore, 7^ <5o(i4) T2. 

COROLLARY 3.19. Le/ (X, j / , gì) be a para-proximity space. Then (öX, 
sé*, Q)*) is the (up to para-proximity isomorphism) unique full para-proxi­
mal extension of(X, sé, @) with r.p.o. satisfying property (F*): If (Y, sé', 
&) is a full para-proximal extension of (X, sé, &) with r.p.o., then there 
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is a unique para-proximity mapping q*: (Y, sé', $)') -> (dX, sé*, $)*) such 
that q*(x) = x, for all x e X. 

PROOF. TO see that (5X, sé*, $)*) satisfies (F*), suppose that (Y, ss?', 
&) is an arbitrary full para-proximal extension of (X, sé, <3) with r.p.o. 
Let -V be the unique totally bounded para-uniformity on Y inducing 
(Y, sé', &), and let % be the unique totally bounded para-uniformity on 
X inducing (X, sé, <&). Then <% = -r\x. So (Y, TT) is a para-uniform 
completion of (X, fy) with r.u.o. and, thus, by Theorem 3.15 there is a 
para-uniformly continuous mapping q*\ (Y, rT) -» (°UX, <%*) such that 
q^(x) = x, for all x e X. By Proposition 2.13 q*\ (Y, sé', 2') -* (ÔX, 
sé*, $)*) is a para-proximity mapping. The uniqueness, again, follows 
easily. 

Another canonical full para-proximal extension can be constructed 
which corresponds to the para-uniform completion ^*. The next few 
results are analogous to Theorem 3.17, Theorem 3.18, and Corollary 3.19, 
and their proofs are left to the reader. 

THEOREM 3.20. Let (X, sé, &) be a para-proximity space with associated 
para-proximity d. Let sé* = {0(A) f) H: A e sé, X <zz H Œ ÖX} and let 
®* = {d0(A)\o(A)f]H' Aesé, X Œ H a ÔX}. Then (ÖX, sé*, &*) is a full 
para-proximal extension of(X, sé, Q>). We shall let 5* denote the associated 
para-proximity on dX. 

THEOREM 3.21. Let (X, fy) be a totally bounded para-uniform space. Then 
(WX, sé**, 9r) = (<^> C^«)*, (0«)*)-

COROLLARY 3.22. Let (X, sé, $)) be a para-proximity space. Then (dX, 
sé*, Q>*) is the (up to para-proximity isomorphism) unique full para-proximal 
extension of (X, sé, &) satisfying property (F*): If (Y, sé', &) is a full 
para-proximal extension of(X, sé, &), then there is a unique para-proximity 
mapping q* : (dX, sé*, $*) -+ ( Y, sé', &') such that q*(x) = x,for all x e X. 

4. H-closed extensions. In this section we shall investigate the relation­
ship between //-closed extensions of a topological space and its compatible 
para-uniformities and para-proximities. We begin with another charac­
terization of totally bounded para-uniformity which leads to a charac­
terization of //-closed spaces. 

PROPOSITION 4.1. Let (X, fy) be a para-uniform space. Then tfl is totally 
bounded if and only if every z(^/)-open ultrafilter on X is fy-Cauchy. 

PROOF. First suppose that °U is totally bounded, and let !F be an open 
ultrafilter on (X, z(<%)). Let U e fy, and let V e <% with K° = U°, K"1 = V, 
and F o F c U. There is a finite set F a Xfor which V[F] = X. Now, for 
each aeF, V[a] a int U[a], and so U {int U[a]: aeF} = X. Since & is 
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an open ultrafilter, & must contain int U[a] for some aeF, and for that 
a we have U[a] e gF. Thus, ^ is ^r-Cauchy. 

Conversely, suppose that every open ultrafilter on (X, z(fll)) is fy-
Cauchy, and let U e ty. Let Ve % with V° = U°, V'1 = V, and VoV c U. 
If, for every finite subset F d , ~V[F] # X, then {X - T[F]: F is finite} 
forms a base for an open filter on (X, z{°tt)) which is contained in an open 
ultrafilter 3F. Now 3F is ^-Cauchy ; so there is a e X for which V[a] e J^, 
a contradiction since X - K[#] e #". Thus, there is a finite subset F a X 
such that K[F] = X, and Z7[Fj = X too. Therefore, <̂  is totally bounded. 

THEOREM 4.2. TTze following are equivalent for a topological space X. 
(a) X is H-closed. 
(b) Every compatible para-uniformity on X is complete. 
(c) Every compatible totally bounded para-uniformity on X is complete. 
(d) There is a complete, compatible, totally bounded para-uniformity on 

X. 
(e) Every compatible para-proximity on X is full. 
(f) There is a full compatible para-proximity on X. 

PROOF, (a) => (b). Since X is //-closed, every open ultrafilter on Zis con­
vergent. If % is a compatible para-uniformity on Xand SF is a ^-Cauchy 
filter on X, then ^ is an open filter and is contained in an open ultrafilter 
<g. Since <g converges and SF is Cauchy, 3F converges too. So (X, ^ii) is 
complete. 

(b) => (c). Trivial. 
(c) => (d). The compatible para-uniformity on X provided by Theorem 

1.6 is totally bounded. If (c) holds, then it is also complete. 
(d) => (a). Let $F be an open ultrafilter on X and let % be any complete, 

compatible, totally bounded para-uniformity on X. By Proposition 4.1, 
^ is ^-Caüchy and, hence, converges. So X is //-closed. 

The equivalences (c) <=> (e) and (d) o (f) follow from results of §3. 

The //-closed extensions of a given topological space may also be 
characterized in terms of para-uniformities and para-proximities. 

THEOREM 4.3. Let (Y, a) be a topological extension of(X, z). The follow­
ing are equivalent. 

(a) ( Y, a) is H-closed. 
(b) (F, a) is the underlying topological space of a para-uniform completion 

of a compatible totally bounded para-uniformity on (X, z). 
(c) (F, a) is the underlying topological space of a full para-proximal 

extension of a compatible para-proximity on (X, z). 

PROOF, (a) => (b). By Theorem 4.2 there is a complete, compatible, to­
tally bounded para-uniformity y on (7, a). So *r\x is a compatible totally 
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bounded para-uniformity on (X, z) and (Y, if) is a completion of (X, ^ l * ) . 
(b) => (a). Suppose there is a complete compatible para-uniformity if 

on ( Y, a) such that if\x is totally bounded. Then if must be totally bound­
ed, too. So, by Theorem 4.2, (Y, a) is //-closed. 

(b) o (c). This follows from results of §3. 

It is clear from [7] or [18] that no one-to-one correspondence between 
the //-closed extensions of (X, z) and compatible totally bounded para-
uniformities (or compatible para-proximities) on (X, z) exists, in spite 
of Theorem 4.3. In fact, Theorem 4.3 can be established only since a 
given para-uniform space may have many completions. Also note that 
a para-uniform space (X, °ti) may indeed be //-closed even when % is not 
totally bounded (see Example 4.6 below). 

DEFINITION 4.4. A para-uniformity Ol on a set X is called pre-//-closed 
if every r(^)-free, ^(^)-open ultrafilter on X is ^r-Cauchy. 

Note that, according to Proposition 4.1, a totally bounded para-uniform­
ity is pre-//-closed. 

THEOREM 4.5. Let (X, <%) be a para-uniform space. The following are 
equivalent. 

(a) % is pre-H-closed. 
(b) (<&X, z(<%*)) is H-closed. 
(c) (WX, z(<%*)) is H-closed. 
(d) ( Y, z{"T)) is H-closed for every para-uniform completion ( Y, if) 

of(X, V). 
(e) ( F, z(i^)) is H-closed for some para-uniform completion ( Y, if) 

of(X, fy) with r.u.o. 

PROOF, (a) => (b). Let & be a r(^*)-open ultrafilter on %X. Either & 
converges or SF is free. If <F is free, then $F\X is a z (^r)-free, z (^)-open 
ultrafilter on X and so is ^r-Cauchy. Let ^ be the minimal ^-Cauchy 
filter contained in &\x. Then ^ is a z (^*)-adherence point of <F. 

(b) => (a). If & is a free z W-open ultrafilter on X, then {Gez (?U*)\ 
G {} Xz$F} generates a z (<^*)-open filter <g on <fyX. Since (%X, z (^*)) 
is //-closed, <g has an adherence point tf e %X — X. Now Of^ = 
tf fi T ( ^ ) , and so every member of tf must meet every member of SF. 
So ffî cz J*, since <F is an open ultrafilter. Thus, $F is ^-Cauchy, since 
tf is ^r-Cauchy. 

(b) => (c). Since z(<%*) = r(<2f*)+, (<%X, z(<%*)) is //-closed if (#JT, T(<%*)) 

is //-closed. 
(c) => (d). Any para-uniform completion of (X, °ii) is a para-uniformly 

continuous image of (<%X, <%*) by Theorem 3.13. So (Y, z(if)) is //-closed 
as the continuous image of {°llX, r($r*)). 
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(d) => (e). (<%X, *(#*)) is tf-closed, by (d). 
(e) => (b). By Theorem 3.15, (fllX, °U^) is a para-uniformly continuous 

image of (7, i^). So (fllX, T(<%*)) is //-closed as the continuous image of 
(Y, vir-)). 

The example which follows may be helpful to the reader in distinguish­
ing some of the para-uniform concepts being discussed. 

EXAMPLE 4.6. Let Y = [0, 1], and let i^ be the para-uniformity on 7, 
with subbasis consisting of all entourages in the usual (metric) uniformity 
on [0, 1] along with B = U~=i [(!/(" + 1), 1/«) * 0/(« + 1), I In)]. Then 
T(TT) is the usual topology on [0, 1]. Let X = (0, 1], and let % = r\x. 
Then : 

(a) *r is pre-//-closed but not totally bounded. (No open ultrafilter 
converging to 0 can be f-Cauchy.) 

(b) (7, r ( f ) ) is an //-closed extension of {X, z(fll)), but ^ is not pre-
//-closed. (Note that (7, f ) does not have r.u.o. as a para-uniform ex­
tension of (X, fy).) Thus, a non-pre-//-closed para-uniform space may 
have some //-closed para-uniform completions. 

For a given totally bounded para-uniform space (or a given para-pro­
ximity space) the canonical para-uniform completions (or the canonical 
full para-proximal extensions), which we constructed in §3, yield the 
strict and simple //-closed extensions belonging to a particular S-equi-
valence class. It is clear from [18] that the set of S-equivalence classes so 
obtained cannot include all S-equivalence classes of //-closed extensions. 
Thus, it is of interest to characterize these classes. Such a characterization 
(in terms of the strict representative) is provided next. 

DEFINITION 4.7. [19] A topological extension (7, a) of (X, z) is said to 
have relatively completely regular outgrowth, (r.c.r.o.) if, whenever y eG 
e a, there is H e G with [y] (J ( 7 — X) c H and a continuous function 
/ : (//, O\H) -> [0, 1] such that/OO = 0 and/( / / - G) c {1}. 

THEOREM 4.8. Let (7, a) be a topological extension of(X, z). The follow­
ing are equivalent. 

(a) (7, a) is an H-closed extension of(X, z) with r.c.r.o. 
(b) ( 7, G) is isomorphic to {WX, z(<%*)) for some compatible totally 

bounded para-uniformity <% on (X9 z). 
(c) (7, a) is isomorphic to (dX9 z(d*))for some compatible para-proximity 

space (X, sé, 9) on (X, z). 

PROOF, (b) => (a). We show (more generally) that if (7, rT) is a para-
uniform completion of (X, Qi) with r.u.o. and % is totally bounded, then 
(7, r(TT)) is an //-closed extension of (X, zifll)) with r.c.r.o. That (7, z(T)) 
is //-closed follows from Theorem 4.5. Let yeG e z(iT). Then there is 
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KG ^ with V'1 = V and y G V[y] c G. Set H = dorn V and let TT^ be 
the uniformity induced on H by if. (Recall that ifH need not be separ­
ated.) Then {y} \J ( 7 — X) a //, since (7, if) is an r.u.o. para-uniform 
completion of (X, <%), and H e z{i"). Since (//, z(ifH)) is completely re­
gular (not necessarily Tychonoff), there is a continuous function / : (H, 
<TH)) -+ [0, 1] such that f(y) = 0 and f(H - V[y]) a {!}. But Z(TH) 
c r(Tr); s o / : (//, r O O y -> [0, 1] is continuous, and f(H - G) c {1} 
since Ffj] c G. 

(a) => (b). Let (7, cr) be an //-closed extension of (X, z) with r.c.r.o. 
For each y e Y and G e er with j e G , let //(G, j>) G #• such that there is a 
continuous function /(G, >>): //(G, >>) -> [0, 1] with {y} U (F - * ) <= 
//(G, 7),/(G, j,) (j,) = 0, and/(G, j ) (//(G, y) - G) <= {1}. Let F = {/(G, 
j ) : j / e G e ( 7 } , and, for each / = /(G, y) G F, let H(f) = //(G, ^). For 
fe F and e > 0, let K(/, e) = (Y - //(/*)) x ( 7 - //(/)) U {(*, >>)e#(/) 
x H{f):\f(x) - f(y)\ < e}. It is straightforward to show that {K(/, e): 

/ G F , e > 0} is a subbasis for a compatible totally bounded para-uni­
formity f on ( r , a). Let ^ = V\x. Then it is clear that (7, TT) is a 
para-uniform completion of (X, °U) with r.u.o. We claim that (7, if) and 
(^rX, ^f*) are para-uniformly isomorphic completions of (X, °U). By 
Theorem 3.15,/?*: (7, TT) -> ( ^ X ^*) is para-uniformly continuous, 
and p*(x) = x, for all x e l Define j : %X -• 7 as follows. Set y(*) = 
x, for all jc e X, and, for J^ G fyX — X, let y(<^) be the unique point of 
7 to which the ^T-Cauchy filter { G c Y: F <= G for some Fe^} con­
verges. To see that y is para-uniformly continuous, let V = V(f, s ) 6 f 
and let W = V(f9 e/3). Set U = *K fi (* x ^ ) - It is straightforward 
to show that C/# c j - i (F) and (£/*)° = r^V)0, so t ha ty - 1 ^ ) G ^*-
Thus, j : (<%X, <%*) -* (7, y ) is para-uniformly continuous and y(*) = 
x, for all xe X. It follows that (7, i r ) and (<M; ^*) are para-uniformly 
isomorphic para-uniform extensions of (X, fy). Thus, (°UX, z{°U^) and 
( 7, r(y^)) are is omorphic topological extensions of (X, z(<%)). 

(b) o (c) follows from previous results. 

It follows that an extension of a topological space with r.c.r.o. is a 
strict extension. (This was also pointed out in [19].) It is clear that there 
must be strict extensions of some topological spaces without r.c.r.o. An 
example of such an extension is given now. 

EXAMPLE 4.9. Let X = {(«, m): n G N, m G Z - {0}} and z be the dis­
crete topology on X. Let/? = (0, 1), q = (0, - 1), and 7 = X \J {/?, q) U 
{(/i, 0): « G N}. For n,keN, let G(«, jfc) = {(«, 0)} U {(«, m) G Z:|m| > 
k}, let G(/>, A) = {p} U {G, m) G X:j > k9 m > 0}, and G(q, k) = {q} (J 
{(y, m ) G l : ; > ^ m < 0 } . Let a be the topology on 7 generated by the 
basis {{*}: j c e l j u {G(/i, ife): n, * GN} U {GO', k):ye {p, q}, k eN}. 
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Then (7, a) is a strict //-closed extension of (X9 z)9 but p and q cannot 
be separated by any continuous real-valued function on any neighbor­
hood of Y — X. So (7, a) does not have r.c.r.o. as an extension of (X, z). 

A special class of totally bounded para-uniformities may be used to 
obtain //-closed extensions studied by Flachsmeyer [8]. 

DEFINITION 4.10. (a) [8] A topological extension (7, a) of (X, z) is said 
to have relatively zero-dimensional outgrowth (r.z.d.o.) if G has a base 
ß such that cl r B - B c X, for every B e ß. 

(b) A collection & of subsets o f l x l i s called transitive if B°B cz B9 

for every Be&. 

THEOREM 4.11. Let ( 7, a) be a topological extension of (X, z). The fol­
lowing are equivalent. 

(a) (7, a) is an H-closed extension of(X9 z) with r.z.d.o. 
(b) (7, a) is isomorphic to (?UX9 z(°U*$) for some compatible totally 

bounded para-uniformity % on (X, z) with a transitive basis. 

PROOF, (b) => (a). If Ue % with U~l = U and U<>U cz u, then £/°£/° 
UoU c U, whence U^u* cz U*. Let ß = [UJLp]: Ue®, U'1 = U9 

UoU cz U9 and/7 e U*[p]}. Then ß is a base for a, and it is straightforward 
to show that if B e ß9 then c\<%x B - B cz X. So ( 7, a) has r.z.d.o. as an 
extension of (X, z). 

(a) => (b). Let ß = {G e a: cl r G - G cz X}. Since (7, a) has r.z.d.o. 
as an extension of (X, z)9 ß is a base for a. Let y be the para-uniformity 
on 7 generated by the subbasis {S(G): G e ß}, where S(G) = (G x G) U 
[(7 - clrG) x ( 7 - clrG)] (as in Theorem 1.6). Then TT is a compatible 
para-uniformity on ( 7, a)9 and it is easy to verify that V has a transitive 
basis. Let ^r = rT\x. Then ^ has a transitive basis too. Further, if y e 
G e ß, then define/(G, 7): G U (Y - clrG) - [0, 1] by/(G, >>) (G) <= {0} 
and/(G, >0 ( 7 - clrG) <= {1}. As in the proof of Theorem 4.8, {V(f(G9 

y)9 e): ye Ge/3, 0 < e < 1/2} generates a compatible para-uniformity 
TT' on (7, <x) such that, when we set <%' = TT' |^, (7, i r ' ) and (WX9 W+) 
are para-uniformly isomorphic completions of (X, %'). But when y e G e 
ß and 0 < £ < 1/2, K(/(G, .y), e) = S(G). So TT = V'9 % = # ' , and so 
(7, y ) and ($fA", tyl*) are para-uniformly isomorphic completions of (X9 

%). Therefore, (7, a) and (^X, ?(^*)) are isomorphic topological ex­
tensions of (X9 z). 

EXAMPLE 4.12. Let (X9 z) be a topological space, and let % be the com­
patible para-uniformity on X with transitive basis {5(G): G ez} (as in 
Theorem 1.6). Then (*UX9 r(#*)) is an //-closed extension of (X9 z) with 
r.z.d.o. In fact, {%X9 r($f*)) and (<%X, z(<%*)) are, respectively, the strict 
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and simple filter extensions of (X, z) based on the collection of free z--open 
ultrafilters. Thus, (WX, z(°U^) is the Fomin extension of (X, z) [9], and 
(<%X, r(q/*)) is the Katëtov extension of (X, z) [12]. 

Flachsmeyer [8] studied //-closed extensions with r.z.d.o. and noted 
that, up to isomorphism, they could be obtained as filter extensions based 
on the set of maximal filters from a collection of open sets called a 7r-basis. 
(A TT-basis on (X, z) is a base ß for z such that G e ß implies X — G e ß.) 
Using the idea of a full rc-basis, he showed that there is a one-to-one cor­
respondence between the full abases on (X, z) and the isomorphism 
classes of //-closed extensions of (X, z) with r.z.d.o. (A full rc-basis may 
be defined as a 7zr-basis, /3, with the property that G e ß if every open ul-
trafilter containing G contains a subset of G which is an element of ß.) 
This yields the result that there is a one-to-one correspondence between 
the isomorphism classes of //-closed extensions of (X, z) with r.z.d.o. 
and the para-uniformities ^ o n l generated by {S(G) : G G ß} when ß 
ranges through the full 7r-bases for z. 

Also note that it follows immediately from Theorems 4.8 and 4.11 that 
an //-closed extension with r.z.d.o. has r.c.r.o. However, there are some 
topological spaces which have //-closed extensions with r.c.r.o. and with­
out r.z.d.o., as the existence of Hausdorff compactifications of a non-
rim compact Tychonoff space shows. Thus, the method presented in 
Theorem 4.8 for obtaining //-closed extensions yields a larger class of 
//-closed extensions than does the method of Flachsmeyer. 

We shall conclude this section by developing a relationship between the 
//-closed extensions obtained as canonical para-uniform completions and 
those obtained as canonical 0-uniform completions. The notion of d-
uniformity was introduced by Fedorcuk in [5]. 

DEFINITION 4.13. [5, 6] Let (X, z) be a topological space. 
(a) A family a of subsets of X is a 0-cover of locally finite type if the 

members of a are regular open and if, for any point x e X, there exist 
finitely many members Vx, . . . , Vn of a with x e int U?=i cl V{. 

(b) A collection pt of 0-covers of locally finite type is a 0-uniformity on 
(X, z) (and (X, fi) is a 0-uniform space on (X, z)) if the following condi­
tions are satisfied: 

(Fl) if a e fi and ß is a 0-cover of locally finite type such that a refines 
ß, then ße JLL; 

(F2) if a, ße JLL, then a and ß have a common star-refinement y G ju; 
(F3) if x and y are distinct points in X, then there are neighborhoods 

G of x and H of y and a e /J, such that G f| st(Z/, a) ± 0 ; and 
(F4) if x e X and G is a regular open neighborhood of x, then there is 

a neighborhood N of x and a e fi such that st (N, a) cz G. 
A ^-uniformity does not determine the underlying topology, although a 
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certain amount of "compatibility" is required. Also a 0-uniformity ^ on 
(X, z) is a ö-uniformity on (X, a) if a and z are ö-homeomorphic. 

If ß is a ö-uniformity on a topological space (X, z), then a filter !F on 
Jf is called ^-Cauchy if, for every a e ft, ^ f] a ¥" 0. Every ^-Cauchy 
filter J^ contains a unique minimal ^-Cauchy filter ^ 0

 a n d t n e regular 
open members of ^ 0 form a filterbase which generates ^0. 

If ^ is a ö-uniformity on a topological space (Y, a) and X is a dense 
subset of Y, then ^ = {ax' oc e ft}, where ax = {V f) X: Ve a}, forms 
a ö-uniformity on (X, a\x). 

DEFINITION 4.14. [5, 6] (a) A ö-uniformity ^ o n a topological space 
(Y, a) is complete if every minimal ^-Cauchy filter converges 

(b) Let (7, a) be a topological extension of (X, z), let v be a ö-uniformity 
on (Y, a), and let /i be a ö-uniformity on (X, z). (Y, v) is a ö-uniform 
extension of (X, ft) if ft = v\x. 

(e) A ö-uniform completion is a complete ö-uniform extension. 
(d) A ö-uniformity ft on (X, z) is pre-compact if ft has a (covering-type) 

basis consisting of finite ö-covers of locally finite type. 

It is clear from Proposition 10 in [6] that a ö-uniform space may have a 
number of distinct completions. Let ft be a ö-uniformity on (X, z). A 
canonical ö-uniform completion of (X, //) is constructed in [6] as follows. 
Let X be the set whose members are elements of X or free minimal ft-
Cauchy filters on X. Define a topology z on X by taking as a neighborhood 
basis at each point of X, all its neighborhoods in X, and at 3F e X — X, 
all sets of the form {^} [} G where G e z and int cl G e &. Then (X, z) 
is a topological (Hausdorff) extension of (X, z). Define a ö-uniformity 
fi on (X, r) as follows. For G e r, let G denote the largest open subset of 
X such that G = X f| G. (Note that if G is regular open, then G = int^ 
cljjfG). For a e ^ let d = {G: G e a} and set /i = { a : a e /^}. Then /* is 
indeed a complete ö-uniformity on (X, z) and (Jp, fi) is a ö-uniform com­
pletion of (X, ft). Moreover, if ft is pre-compact, then (X, z) is //-closed. 

The theorem which follows shows that any totally bounded para-
uniform space induces a pre-compact ö-uniformity on its underlying to­
pological space in a natural way. 

THEOREM 4.15. Let (X, ty) be a totally bounded para-uniform space, and 
let z = z(°U). 

(a) For U e<%, U symmetric, a(U) = {int cl U[x] : x e X} is a d-cover of 
locally finite type on (X, z). 

(b) piflt) — {ß: ß is a 6-cover of locally finite type refined by a(U) for 
some symmetric U e °U) is a pre-compact ft-uniformity on (X, z). 

PROOF, (a) Let Ue % be symmetric. Clearly, a(U) is a family of regular 
open subsets of (X, z). Now let K e ^ be symmetric and open in the pro-



830 S.C. CARLSON AND C. VOTAW 

duct topology on X x X with V° = U° and V a U. Since % is totally 
bounded, there is a finite set F = {xx, . . ., xn) a X such that X = cl 
V[F] = cl U?=i V[*i] = U?=icl Kfo-]. Noting that each V[xt] is open, 
we have X = int X = int U *=1 cl K[JCJ = int U *=1 cl int cl K[xJ c int 
U?=i cl int cl U[xt]. 

(b) We shall verify (F2) and the pre-compactness of y.{?U\ leaving the 
verification of (F3) and (F4) to the reader and noting that (Fl) is obvious. 
Let ai, a2 e ju(<%). Then there are symmetric entourages Uh U2eWwith 
a {Ut) refining cc{ (i = 1, 2). Let F e f be symmetric and open in the 
product topology on X x X with K° = (Ux Ç] U2)° and V o K° V a 
U1 H U2. Then it is straightforward to verify that a{V) is a common star 
refinement of a(U{) and a(£/2), hence of a\ and a2. Thus (F2) holds. 

In order to verify that JLI((%) is pre-compact, let a G yifll). We must find 
a finite family ß G fi(<%) such that /3 refines a. Let £/ G % be symmetric 
with a(£/) refining a. Let KG ^ be symmetric and open in the product 
topology o n l x l with V° = C/° and F ° F o V c £/. Since ^r is totally 
bounded, there is a finite set F = {jq,.. . , xw} c= JSf such that cl F[F] = 
X Now, as in the proof of (a), ß = {int cl U[xt]: i = 1, . . . , « } is a finite 
0-cover of locally finite type. Also it may be verified easily that a(V) re­
fines j3. So ß e ju(<%) and clearly ß refines a(U) (and hence a). 

Now, for a totally bounded para-uniform space (X, <%), the canonical 
^-uniform completion of (X, fi{^)) is (X, ß(%)) whose underlying to­
pological space (X, T(<%)) is an //-closed extension of (X, zifll)). Of course, 
the extensions {fllX, z"(^*)) and (fllX, z(fy*)) are also //-closed extensions 
of (X9 z(fy)) which represent a single /^-equivalence class of //-closed ex­
tensions. The next theorem asserts that (X, r(^)) also represents this 
/^-equivalence class. 

THEOREM 4.16. Let (X, °il) be a totally bounded para-uniform space. Then 
(tflX, z{q/*)) is d-isomorphic to (X, T(<%)) as topological extensions of 
(X, r W ) . 

PROOF. First note that if & is a ^r-Cauchy filter on (X, °U), then & is a 
/i(^r)-Cauchy filter on the ^-uniform space (X, juiW)). Moreover, if J^ is 
a minimal ^r-Cauchy filter on (X, <%), then the unique minimal /Lt(%)-
Cauchy filter ^ 0

 o n ( ^ M^O) contained in <F has (int cl F: Fe ^} as a 
filterbase. 

Now define j : QlX -> X by y'(jc) = x (xeX) andy(^) = J^0 ( j ^ G ^ X 
— X), where J^o *s t n e unique minimal /z(<^)-Cauchy filter contained in 
SF. (We have y'C^) = ^0eX — X, since J^0 being free follows from 3F 
being free.) If <F\* !F2 e ^rX — X and J ^ ^ «̂ 2» t n e n there are open 
members Fx e J^i and F2 G J ^ w ^h Fi fi F2 = 0. So int ci Fi f] int cl 
F2 = 0 . Since int cl F, G (J^.)O (/ = 1, 2), it follows that (^^o # (^2)0-
Thus, y is one-to-one. 
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If J^ e fyX — X, then a neighborhood basis at & in r(^*) consists of 
sets of the form {&?} \J G, where G is an open member of $Fy and a 
neighborhood basis at J^0 — j&) m

 ^ W I / O M ) consists of sets of the 
form {J^o} U G where G is open and int cl G e SF§. It follows in a straight­
forward manner that j : tyiX -> j(°UX) is a 0-continuous, open surjection. 
Now, j(<%X), being the 0-continuous image of an //-closed space, is in­
closed itself. Since j(°UX) contains X,j(<%X) is dense in X. Thus, j(<ttX) = 
X, whence j is onto. 

Therefore, j is a 0-isomorphism, as desired. 
If we identify the points of X with the points of fyX via the 0-isomor-

phism of the preceding theorem, then fi(tyi) becomes a complete 0-uni-
formity on (%X, z(<%*)) (and also on (fUX, z(%*j), according to Proposi­
tion 10 in [6]). (Also / ^ * ) and pifll*) are 0-uniformities on ^Xwith any 
topology G for which (°UX, o) is ^-isomorphic to (WX, zitft*)). In fact it 
can be shown that, as 0-uniformities on (WX, a), fi(fy), ß(<%f*), and pifll^ 
are identical.) Thus, we have the following corollary. 

COROLLARY 4.17. Let (F, a) be an H-closed extension of(X, z) with r.c.r. 
o. Then there is a pre-compact d-uniformity /u on (X, z) such that the under­
lying topological space (X, z) of the canonical d-uniform completion (X, fi) 
belongs to the R-equivalence class of ( F, a). 

The ^-equivalence classes of //-closed extensions of a given topological 
space which are represented by canonical 0-uniform completions of pre-
compact 0-uniformities on the space have not been characterized. How­
ever, it is clear that any such ^-equivalence class contains an //-closed 
extension whose outgrowth is completely regular. The example which 
follows shows not only that an //-closed extension with completely regular 
outgrowth need not have r.c.r.o., but in fact need not be ^-isomorphic to 
an extension with r.c.r.o. 

EXAMPLE 4.18. Let (X, z) and (F, a) be the topological spaces introduced 
in Example 4.9. Recall that (F, a) is a strict //-closed extension of (X, z) 
but does not have r.c.r.o. since the points p and q in Y — X cannot be 
separated by any real-valued continuous function on any neighborhood 
of Y - X. 

Now Y — X is completely regular since it is discrete in the relative 
topology inherited from Y. Moreover, (F, a) cannot be ^-isomorphic to 
any extension of {X, z) with r.c.r.o. For, suppose that (Z, rj) is an extension 
of (X, z) with r.c.r.o. and h: Y -> Z is a 0-isomorphism. Since h(p) and 
h(q) are two distinct points of Z — X, there is a neighborhood H e 77 
of Z - Zand a continuous function/: H -* [0, 1] with f(h(p)) ^ f(h(q)). 
Set K = h~l(H) and define g: K -* [0, 1] by g = /<> h. Then Ke a, F -
X cz K, and g is continuous since [0, 1] is regular. Thus g separates p and 
q, a contradiction. 
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5. Superstructures and H-cIosed extensions. In [7] Fedorcuk uses col­
lections of 0-proximities called //-structures to construct all serniregular 
//-closed extensions of a given serniregular topological space. Thus, the 
/^-equivalence classes of //-closed extensions of a given space may be 
described in terms of these //-structures. In this section we develop pro­
perties of certain collections of para-uniformities, which we shall call 
superstructures, and we shall be able to describe the S-equivalence classes 
of //-closed extensions of a given space in terms of these collections. 

DEFINITION 5.1. Let <g be a nonempty collection of pair-wise compatible 
para-uniformities on a set X. (I.e., if <%l9 <%2

 e &> t n e n ^O^i) = ^(^2)-) 
(a) A filter & on X is called ^-Cauchy if & is ^r-Cauchy for some 

(b) M(^) denotes the collection of all free ^-Cauchy filters on X (where 
adherence is computed with respect to the topology induced commonly 
by % G <g). 

(c) Two filters gF and & in M(<g) are said to be contiguous if there is 
a finite set {&l9 . . ., J%} c M(#) such that grx = &9 J% = ^ , and J%-
meets SFiAr\ for / = 1, . . . , « — 1. 

The relation of "being contiguous" is an equivalence relation on 
M(^), as may be verified easily. 

DEFINITION 5.2. Let <e be as in Definition 5.1. For & G M(^), let m{^) 
denote the equivalence class under "being contiguous" of J*, and let 
^% denote the filter on X which is the intersection of all filters in m{JF\ 
A set M of filters on a topological space (X9 z) is free if each filter in M 
is free, and M is separated if any two distinct filters 3F and <g in M contain 
disjoint members F e , f and G e&. 

DEFINITION 5.3. Let ^ be a nonempty collection of pair-wise compatible 
para-uniformities on a set X. 

(a) # is called a superstructure on X if {j^*: J^ G Af(#)} is free and 
separated. 

(b) ^ is said to be compatible with a topology z on X if z(?U) = z for 
every Ql G ^ , in which case we write z(^) = z. 

DEFINITION 5.4. Let ^ be a compatible superstructure on a topological 
space (X9 z). 

(a) A topological extension (Y9 a) of (X, z) is a ^-completion of (X9 z) 
if every ^-Cauchy filter on X has a ^-adherence point in Y. 

(b) Let VX = X [J {&*: 3? G M(<g)} and let <éz be the topology on 
<€X such that (<£X9 <6z) is the strict filter extension of (X9 z) based on 
{&•*: g?eM(<#)} [2]. 

PROPOSITION 5.5. Let <g be a compatible superstructure on (X9 z). 
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(a) (&X9 <tfz) is a <g-completion of(X, z). 
(b) (tfX, ^z) is H-closed if and only if, for each free z-ultrafilter <F on 

X, there is <g e M(<g) such that <g* c &. 
(c) If each free z-ultrafilter is <%-Cauchy, then (<gX, <gz) is H-closed. 
(d) If some <%e<g is pre-H-closed, then (VX, <éz), is H-closed. 

PROOF, (a). That (<gX9 <e%) is HausdorfT follows from the fact that 
{&%\ & 6 M(<g)} is free and separated. If & e M{<£), then ^ is a <gz-
adherence point of $F in <$X. So (<£X9 <€x) is a ^-completion of (X, z). 

(b) is easily verified, and (c) follows from (b) since «F* e 8F for every 
$F e M(V). Moreover, (d) follows from (c) since each free r-ultrafilter will 
be ^r-Cauchy when % is a pre-H-closed member of # . 

We are now able to describe all isomorphism classes of strict //-closed 
extensions of a given, non-//-closed, topological space (X, z) as canonical 
^-completions (<£X9 <€z) for certain compatible superstructures <$ on 
(X9 z). But first we need a lemma. Recall that the Katëtov extension 
(fcX, fc) of a topological space (X, z) is projectively larger than any other 
//-closed extension of (X, z). We can take KX = X [j {<F: $F is a free 
r-open ultrafilter on X) so that (/cX, K) is the simple filter extension based 
on the set of free open ultrafilters on (X, z). If (Y, a) is any //-closed 
extension of (X, z) and / : KX -> Y is the unique continuous surjection 
fixing the points of X, then, for any free r-open ultrafilter <F on X, we 
have f{&) = y e Y - JT if and only if 0 * * c ^ . 

LEMMA 5.6. Lef (F, er) èe a« H-closed extension of a non-H-closed space 
(X, z)9 and let y e Y — X be fixed. Then there is a compatible para-uni­
formity °ll(y) on (X, z) such that: 

(a) °U(y) is totally bounded and has a transitive basis, and 
(b) the filter on X generated by 0%>x is a free minimal <%(y)-Cauchy filter, 

and the other free minimal °U(y)-Cauchy filters are the members of nX — 
X which do not contain Oy

a
,x. 

PROOF. Let / : tcX -» F be the unique continuous surjection which fixes 
the points of X. Since z - U f~Ky) is a base for z, ß = 0*x U (z - U 
f~Ky)) is a base for z. Let °U(y) denote the para-uniformity on X gene­
rated by {S(G): G e ß} as in Theorem 1.6. It is clear that <%(y) is compa­
tible, totally bounded, and has a transitive basis. So (a) follows. 

(b). Let & 6 KX - X such that f(^) = y. Then Oy
a

x c & and & is 
^(j>)-Cauchy since %{y) is totally bounded. Let ^ be the minimal <%(y)-
Cauchy filter contained in &. Recall that ^ = {U[F]: Ue<%, Fe &}. 
Now if G e OyX, then S(G)[G] = G. Thus, Oyx cz&.LetBez- (J f'1 

(y). Then y $ c\YB and so X - c\xB = X f) (Y - dYB) e Oy>x. So S(B) 
[x] e Of*, for any xeX - clxB. Therefore, the filter generated on Xby 
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Oy,x is ^(j>)-Cauchy (and hence equals <g) and is a free, minimal °U(yy 
Cauchy filter. 

Now suppose that & e KX - X dina Oyx <£ &. Then & is ^(»-Cauchy 
since fy(y) is totally bounded. There are open sets Be<F and G eOyX 

such that B fl G = 0 . If Fe &, then B f) Fe^ and B f) F e z -
U f~l(y). So 5(5 fi F) [B f] F] = B (] F a F. Thus, J^ is a free, 
minimal ^(^)-Cauchy filter. On the other hand, it is straightforward to 
verify that if & e W(y)X - X and Oyx <£ &, then ^ e KX - X. 

THEOREM 5.7. Let (Y, a) be a topological extension of a non-H-closed 
space (X, z). The following are equivalent. 

(a) ( Y, a) is a strict H-closed extension of (X, z). 
(b) ( Y, a) is isomorphic to (VX, Vz) for some compatible superstructure 

V on (X, z) whose members are pre-H-closed. 

PROOF, (b) => (a) follows from previous results. 
(a) => (b). For each y e Y - X, let m(y) be the para-uniformity on X 

guaranteed by Lemma 5.6. and let V = {<%(y): y eY — X). Then ^ is a 
nonempty collection of compatible, pre-77-closed para-uniformities on 
(X, z). We claim that {j**: SF e M(V)} is precisely the collection of filters 
generated on X by Oy,x for some y e Y — X. To see this, note that (as in 
the proof of Lemma 5.6) Oy,x generates a free ^-Cauchy filter for each 
y e Y — X, and also, for each & G M(V), there is some yeY—X such 
that Oy,x c $F. Since (Y, o) is Hausdorff, it follows that, for each SF G 
M(V) there is some yeY—X such that SF% equals the filter generated by 
Oy,x and, hence, S?* e M(V) for each <F e M(V). The claim follows im­
mediately. Therefore, {SF% : SF G M(V)} is a free and separated set of 
filters, whence ^ is a superstructure. Moreover, VX — X = {£F*\tFe 
M(V)} consists precisely of the filters generated on X by 0$x for some 
yeY - X. The mapping h: (VX, Vz) -* (Y, a) defined by h(x) = x 
(if x e l ) and h(SF) = y (ìì SF e VX - X and 0 * * c ^ ) is an isomorph­
ism since (VX, VT) and (Y, a) are strict extensions of (X, z) with identical 
filter traces. 
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