PARA-UNIFORMITIES, PARA-PROXIMITIES, AND H-CLOSED EXTENSIONS

STEPHAN C. CARLSON AND CHARLES VOTAW

ABSTRACT. A generalized uniformity, called a para-uniformity, and its induced generalized proximity, called a para-proximity, are introduced and applied to the investigation of *H*-closed spaces and *H*-closed extensions of Hausdorff spaces.

H-closed spaces are characterized in terms of these structures, and the H-closed extensions of a Hausdorff space are characterized in terms of extensions of these structures. Moreover, collections of para-uniformities called superstructures are used to obtain all strict H-closed extensions of a non-H-closed Hausdorff space. Thus, the S-equivalence classes of H-closed extensions are described by a method similar to that of Fedorčuk for describing the R-equivalence classes.

0. Introduction. Alexandroff [1] remarked in 1960 that no method of systematically determining the H-closed extensions of a Hausdorff space had been found. In classifying (the isomorphism classes of) such extensions, the introduction of two equivalence relations discussed in [18] is helpful. We declare two H-closed extensions of a given space to be R-equivalent if they are θ -isomorphic and to be S-equivalent if their corresponding strict (or simple) extensions are isomorphic. In attempts to answer Alexandroff's remark, various authors have sought methods for obtaining all isomorphism classes, all R-equivalence classes, or all S-equivalence classes. (See, for instance, [2, 4, 7, 10, 11, 17 or 21].)

Fedorčuk [7] refers to the particular problem of constructing the *H*-closed extensions of a given Hausdorff space by means of uniformity or proximity-like structures as "Tychonoff's problem." He [7], Porter and Votaw [18] have shown that in general there are not enough such structures on a set to yield all isomorphism classes of either semiregular *H*-closed extensions or strict *H*-closed extensions of one of its Hausdorff topologies. According to results in [18] this implies that neither the *R*-equivalence classes nor the *S*-equivalence classes can be obtained in this manner, and

AMS subject classification: Primary 54D25, 54E05, 54E15; Secondary 54D30.

Key words and phrases: para-uniformity, para-proximity, H-closed extension.

Received by the editors on April 2, 1984 and in revised form on June 1, 1985.

Copyright © 1986 Rocky Mountain Mathematics Consortium

thus Tychonoff's problem has no solution. However, Fedorčuk [7] uses "H-structures," which are collections of generalized proximities called " θ -proximities," to construct all semiregular H-closed extensions of a semiregular Hausdorff space. (In [16] θ -proximities on regular topological spaces are shown to coincide with particular f-proximities.) Thus, we may use H-structures to describe all R-equivalence classes of H-closed extensions of a given Hausdorff space. Although nearness structures have been used by J.W. Carlson [4] to construct the strict H-closed extensions (and, hence, the S-equivalence classes of H-closed extensions) of a given space, the following question has remained unanswered in the literature: can collections of generalized uniformities or proximities be used to obtain the S-equivalence classes of H-closed extensions of a given Hausdorff space? In this paper we provide an affirmative answer to this question.

In particular we shall introduce a generalized uniformity, called a para-uniformity, and its associated generalized proximity, called a para-proximity. These notions enable us to obtain new characterizations of *H*-closed spaces and of *H*-closed extensions of Hausdorff spaces. Canonical completions of these structures yield a rather large class of strict *H*-closed extensions (those with "relatively completely regular outgrowth"), and this class is shown to include the extensions with "relatively zero-dimensional outgrowth" studied by Flachsmeyer [8]. Moreover, collections of para-uniformities called superstructures will be used to obtain a representative from each isomorphism class of strict *H*-closed extensions. Thus, we obtain a new description of the *S*-equivalence classes of *H*-closed extensions of a given Hausdorff space by means of superstructures.

Fedorčuk [5] has previously introduced generalized uniformities called " θ -uniformities," which he later used to construct members of a class of H-closed extensions as canonical completions [6]. We shall develop a relation between these completions and those of para-uniformities. We are thankful to the referee for bringing to our attention [13], where Kulpa develops generalized covering uniformities which correspond to the (diagonal) para-uniformities introduced here. Hence, many results in this paper extend and illuminate results of [13].

The development of the theory of para-uniform and para-proximity spaces to a great extent parallels that of uniform and proximity spaces. Thus, many details of the proofs of the early basic results are left to the reader, who might find reference to [3], [14], [15], [22], or [24] helpful.

A few comments about notation and terminology are appropriate now. If (Y, σ) is a topological space, $X \subset Y$, and $y \in Y$, then $O_{\sigma}^{y,X}$ denotes $\{G \cap X : y \in G \in \sigma\}$. Thus, $O_{\sigma}^{y,Y}$ is the collection of open neighborhoods of y in Y. If (Y, σ) is an extension of (X, τ) , then the associated strict (respectively, simple) extension is denoted by (Y, σ^{\sharp}) (respectively, (Y, σ^{+})).

Recall [18] that a basis for the topology σ^{\sharp} on Y is $\{G^{\sharp}: G \in \tau\}$ where $G^{\sharp} = \{y \in Y: G \in O_{\sigma}^{y,X}\}$, while a basis for the topology σ^{+} on Y is $\{G \cup \{y\}: G \in O_{\sigma}^{y,X}, y \in Y\}$. Moreover, $\sigma^{\sharp} \subset \sigma \subset \sigma^{+}$ and $O_{\sigma}^{y,X} = O_{\sigma^{\sharp}}^{y,X} = O_{\sigma^{\sharp}}^{y,X}$, for each $y \in Y$. An extension (Y, σ) of (X, τ) is called a strict (respectively, simple) extension if $\sigma = \sigma^{\sharp}$ (respectively, $\sigma = \sigma^{+}$). If \mathscr{F} is a filter on a space (X, τ) , then \mathscr{F} will be called an open filter or τ -filter if \mathscr{F} has a base of open sets.

The study of para-uniform spaces was initiated in the Ph. D. dissertation of the second author [23].

1. Para-uniform spaces. If X is a set and A is a subset of X, then we shall let $\triangle(A) = \{(x, x) : x \in A\}$. If $U \subset X \times X$ we let dom $U = \{x : (x, y) \in U \text{ for some } y \in X\}$, $U^0 = \triangle(\text{dom } U)$, and $U^{-1} = \{(y, x) : (x, y) \in U\}$. Also, if $U \subset X \times X$ and $A \subset X$, let $U[A] = \{y : (x, y) \in U \text{ for some } x \in A\}$. When $U, V \subset X \times X$ we let $U \circ V = \{(x, y) : \text{ for some } z \in X, (x, z) \in V \text{ and } (z, y) \in U\}$.

DEFINITION 1.1. Let X be a set and let $\mathscr U$ be a collection of subsets of $X \times X$ which satisfies:

- (U1) $X \times X \in \mathcal{U}$;
- (U2) if $U \in \mathcal{U}$, then $U^0 \subset U$;
- (U3) if $U \in \mathcal{U}$, then $U \cap U^{-1} \in \mathcal{U}$;
- (U4) if $U, V \in \mathcal{U}$, then there is $W \in \mathcal{U}$ such that $W \circ W \subset U \cap V$ and $W^0 = (U \cap V)^0$:
- (U5) if $U \in \mathcal{U}$ and $U \subset V \subset X \times X$ with $U^0 = V^0$, then $V \in \mathcal{U}$; and (U6) if $U, V \in \mathcal{U}$ and $x \in X$ with $U[x] \neq \emptyset$, then $U[x] \cap \text{dom } V \neq \emptyset$. Then \mathcal{U} is called a para-uniformity on X, and (X, \mathcal{U}) is called a para-uniform space. The members of \mathcal{U} are called entourages.

Note that if condition (U2) is strengthened to require that $\Delta(X) \subset U$ for every $U \in \mathcal{U}$, then \mathcal{U} is a uniformity on X. Of course, in this case, some of the conditions (U1) – (U6) are redundant, but this shows that the conditions are consistent and that the collection of para-uniformities on a set is nontrivial in general.

If $\mathscr U$ is a para-uniformity on X and $x \in X$, let $\mathscr U(x) = \{U[x] \colon U \in \mathscr U\} - \{\varnothing\}$. It may be shown easily, using conditions (U1) - (U5), that $\{\mathscr U(x) \colon x \in X\}$ is a neighborhood system on X. The resulting topology on X will be denoted by $\tau(\mathscr U)$. Note that $G \in \tau(\mathscr U)$ if and only if $x \in G$ implies there is some $U \in \mathscr U$ such that $x \in U[x] \subset G$. Condition (U6) simply says that, for each entourage $U \in \mathscr U$, dom U is $\tau(\mathscr U)$ -dense in X. Note that if $\mathscr U$ and $\mathscr V$ are para-uniformities on X and $\mathscr U \subset \mathscr V$, then $\tau(\mathscr U) \subset \tau(\mathscr V)$.

DEFINITION 1.2. Let (X, \mathcal{U}) be a para-uniform space. (a) \mathcal{U} is said to be compatible with a topology τ on X if $\tau = \tau(\mathcal{U})$. (b) If $(X, \tau(\mathcal{U}))$ is Hausdorff, then \mathcal{U} is called a separated para-uniformity.

Throughout this paper many useful elementary results concerning parauniform entourages and topologies will be needed. For example, if \mathcal{U} is a para-uniformity on a set X, U is a symmetric entourage in \mathcal{U} , and $x \in \text{dom } U$, then

- (1) $U[x] \times U[x] \subset U \circ U$;
- (2) $y \in U[x]$ implies $\overline{U[y]} \subset (U \circ U)[x]$; and
- (3) $\overline{U[x]} \subset \text{dom } U \text{ implies } \overline{U[x]} \subset (U \circ U) [x].$

Similar results occasionally will be noted as needed.

As in the theory of uniform spaces, it is convenient to consider collections with certain properties which generate, in a specified manner, unique para-uniformities.

DEFINITION 1.3. Let X be a set. (a) Let \mathscr{B} be a collection of subsets of $X \times X$ which satisfies (U2), (U4), and (U6) of Definition 1.1 and (B3): if $B \in \mathscr{B}$, then there is some $D \in \mathscr{B}$ such that $D \subset B \cap B^{-1}$ and $D^0 = B_0$. Then \mathscr{B} is called a para-uniform basis on X. (b) Let \mathscr{S} be a collection of subsets of $X \times X$ which satisfies (U2) and (U6) of Definition 1.1 and (S4): if $S \in \mathscr{S}$, then there is some $T \in \mathscr{S}$ such that $T \circ T \subset S \cap S^{-1}$ and $T^0 = S^0$. Then \mathscr{S} is called a para-uniform subbasis on X.

If \mathscr{B} is a para-uniform basis on X, then it may be shown easily that $\mathscr{U}(\mathscr{B}) = \{X \times X\} \cup \{U \subset X \times X : \text{ for some } B \in \mathscr{B}, \ B \subset U \text{ and } B^0 = U^0\}$ is the smallest para-uniformity on X which contains \mathscr{B} . If \mathscr{S} is a para-uniform subbasis on X, then it may also easily be verified that $\mathscr{B}(\mathscr{S}) = \{ \cap \mathscr{T} : \mathscr{T} \text{ is a finite subcollection of } \mathscr{S} \}$ (where $\cap \phi = X \times X$) is a para-uniform basis on X and that $\mathscr{U}(\mathscr{B}(\mathscr{S}))$ is the smallest para-uniformity on X containing \mathscr{S} . $\mathscr{U}(\mathscr{B}(\mathscr{S}))$ may also be denoted by $\mathscr{U}(\mathscr{S})$.

We will freely use the fact that the collection of symmetric entourages of a para-uniformity $\mathscr U$ which are open in the product topology $\tau(\mathscr U) \times \tau(\mathscr U)$ is a basis for $\mathscr U$.

A para-uniformity on X may be described in terms of uniformities on subsets of X. This is the content of the next two propositions, whose straightforward proofs are omitted.

PROPOSITION 1.4. Let (X, \mathcal{U}) be a para-uniform space and set $\mathcal{A}_{\mathcal{U}} = \{\text{dom } U \colon U \in \mathcal{U}\}$. For each $A \in \mathcal{A}_{\mathcal{U}}$, $\mathcal{B}_A = \{V \in \mathcal{U} \colon V = V^{-1} \text{ and dom } V = A\}$ is a basis for a uniformity \mathcal{U}_A on A. Moreover, the following properties are satisfied:

- (i) $X \in \mathcal{A}_{\mathcal{U}}$ and $\mathcal{A}_{\mathcal{U}}$ is closed under finite intersections;
- (ii) if A_1 , $A_2 \in \mathcal{A}_{\mathscr{U}}$ and $V_i \in \mathcal{U}_{A_i}$ (i = 1, 2), then $V_1 \cap V_2 \in \mathcal{U}_{A_1 \cap A_2}$; and
- (iii) if $A_1, A_2 \in \mathcal{A}_{\mathcal{U}}, V \in \mathcal{U}_{A_1}$, and $x \in X$ with $V[x] \neq \emptyset$, then $V[x] \cap A_2 \neq \emptyset$.

PROPOSITION 1.5. Let X be a set, let $\mathscr A$ be a collection of subsets of X, and for each $A \in \mathscr A$ let $\mathscr V_A$ be a uniformity on $\mathscr A$. Moreover, assume that the following properties are satisfied:

- (i) $X \in \mathcal{A}$ and \mathcal{A} is closed under finite intersections;
- (ii) if A_1 , $A_2 \in \mathcal{A}$ and $V_i \in \mathcal{V}_{A_i}$ (i = 1, 2), then $V_1 \cap V_2 \in \mathcal{V}_{A_1 \cap A_2}$; and
- (iii) if $A_1, A_2 \in \mathcal{A}$, $V \in \mathcal{V}_{A_1}$, and $x \in X$ with $V[x] \neq \emptyset$, then $V[x] \cap A_2 \neq \emptyset$.

Then $\mathscr{B} = \bigcup_{A \in \mathscr{A}} \mathscr{V}_A$ is a para-uniform basis for a para-uniformity \mathscr{U} on X, and $\mathscr{V}_A = \mathscr{U}_A$, where \mathscr{U}_A is the uniformity on A with basis $\{V \in \mathscr{U}: V = V^{-1} \text{ and dom } V = A\}$.

If (X, \mathcal{U}) is a para-uniform space, $A \in \mathcal{A}_{\mathcal{U}}$, and \mathcal{U}_A is the uniformity on A induced by \mathcal{U} as in Proposition 1.4, then it is clear that $\tau(\mathcal{U}_A) \subset \tau(\mathcal{U})$, where $\tau(\mathcal{U}_A)$ is the uniform topology on A induced by \mathcal{U}_A . (Observe first that A is $\tau(\mathcal{U})$ -open in X since it is the domain of an entourage.)

The preceding characterization of a para-uniform space demonstrates that a para-uniformizable topology may be obtained from uniformizable topologies on dense subsets. It follows from the next result that every topology is of this type.

THEOREM 1.6. Let (X, τ) be a topological space, and let β be a subbasis for τ . For each $G \in \beta$ let $S(G) = (G \times G) \cup [(X - \overline{G}) \times (X - \overline{G})]$. Then $\mathscr{S} = \{S(G) : G \in \beta\}$ is a subbasis for a compatible para-uniformity on (X, τ) .

PROOF. For $G \in \beta$, $S(G) \circ S(G) = S(G)$, $S(G)^{-1} = S(G)$, and if $x \in X$ with $S(G)[x] \neq \emptyset$, then S(G)[x] = G or $X - \overline{G}$. With these observations, it is straightforward to verify (U2), (U6), and (S4) for $\mathscr S$ and that $\tau(\mathscr U(\mathscr S)) = \tau$.

Note that if σ is a subbase for the topology τ on X and σ consists of open dense subsets of X, then $\{G \times G : G \in \sigma\}$ also serves as a subbasis for a compatible para-uniformity on (X, τ) .

Certain subsets of para-uniform spaces become para-uniform spaces in the natural manner.

PROPOSITION 1.7. Let (Y, \mathcal{U}) be a para-uniform space and let X be either $\tau(\mathcal{U})$ -open or $\tau(\mathcal{U})$ -dense in Y. Then $\mathcal{U}|_X = \{U \cap (X \times X) \colon U \in \mathcal{U}\}$ is a para-uniformity on X. Moreover, if \mathcal{B} is a basis (respectively, subbasis) for \mathcal{U} , then $\{B \cap (X \times X) \colon B \in \mathcal{B}\}$ is a basis (respectively, subbasis) for $\mathcal{U}|_X$.

PROOF. It is straightforward to verify (U1) - (U5) for $\mathcal{U}|_X$. Recall that these are the conditions of Definition 1.1 needed to insure that $\mathcal{U}|_X$ induces the topology $\tau(\mathcal{U}|_X)$ on X. Also, it is straightforward to then show that $\tau(\mathcal{U}|_X) = \tau(\mathcal{U})|_X$. So (U6) may be verified by a completely topological argument: the domain of any entourage in $\mathcal{U}|_X$ is $\tau(\mathcal{U}|_X)$ -dense in X since it is the intersection of a $\tau(\mathcal{U})$ -dense and $\tau(\mathcal{U})$ -open subset of Y with a subset of Y which is either $\tau(\mathcal{U})$ -dense or $\tau(\mathcal{U})$ -open.

DEFINITION 1.8. Let (Y, \mathcal{U}) be a para-uniform space and let X be either a $\tau(\mathcal{U})$ -dense or a $\tau(\mathcal{U})$ -open subset of Y. Then $\mathcal{U}|_X$ is called the relative para-uniformity on X.

We shall conclude this section by discussing the generalization of uniformly continuous mappings to the para-uniform case. If $f: X \to Y$ is a function and $V \subset Y \times Y$, then we use $f^{-1}(V)$ to denote $\{(x, y) \in X \times X: (f(x), f(y)) \in V\}$.

DEFINITION 1.9. Let (X, \mathcal{U}) and (Y, \mathcal{V}) be para-uniform spaces and let $f: X \to Y$ be a function.

- (a) f is para-uniformly continuous if, for each $V \in \mathscr{V}$ with $f^{-1}(V) \neq \emptyset$, $f^{-1}(V) \in \mathscr{U}$.
- (b) If f is a para-uniformly continuous bijection and f^{-1} is also para-uniformly continuous, then f is called a para-uniform isomorphism.

PROPOSITION 1.10. If $f: (X, \mathcal{U}) \to (Y, \mathcal{V})$ is para-uniformly continuous, then $f: (X, \tau(\mathcal{U})) \to (Y, \tau(\mathcal{V}))$ is continuous.

The proof is similar to the proof of the analogous result in the uniform case.

Note that if (Y, \mathcal{U}) is a para-uniform space and X is either $\tau(\mathcal{U})$ -dense or $\tau(\mathcal{U})$ -open in Y, then $\mathrm{id}_X \colon (X, \mathcal{U}|_X) \to (Y, \mathcal{U})$ is para-uniformly continuous. Also, it is clear that the composition of para-uniformly continuous functions is para-uniformly continuous.

2. Para-proximity spaces. A given para-uniformity on a set X can be realized in terms of uniformities on subsets of X, and each uniformity induces a proximity. So it is natural to seek a structure on X involving proximities on subsets of X whose relation to para-uniformities is analogous to the relation of proximities to uniformities.

DEFINITION 2.1. Let X be a set, let \mathscr{A} be a collection of sbsets of X, and let $\mathscr{D} = \{\delta_A : A \in \mathscr{A}\}$ where δ_A is a proximity on A for each $A \in \mathscr{A}$.

- (a) The triple $(X, \mathcal{A}, \mathcal{D})$ is called a para-proximity space if the following three conditions hold:
 - (P1) $X \in \mathcal{A}$ and \mathcal{A} is closed under finite intersections;
 - (P2) if $A_1, A_2 \in \mathscr{A}$, then $\delta_{A_1 \cap A_2} \subset \delta_{A_1} \cap \delta_{A_2}$; and
 - (P3) if $A_1, A_2 \in \mathcal{A}$ and $x \in A_1$, then $x \delta_{A_1}(A_1 \cap A_2)$.
- (b) If $(X, \mathscr{A}, \mathscr{D})$ is a para-proximity space, then the para-proximity on X associated with $(X, \mathscr{A}, \mathscr{D})$ is $\delta \subset \mathscr{P}(X) \times \mathscr{P}(X)$ defined by (for B_1 , $B_2 \subset X$) $B_1 \bar{\delta} B_2$ if and only if there is an $A \in \mathscr{A}$ with $B_1 \subset A$ and $B_1 \bar{\delta}_A (B_2 \cap A)$.

If $(X, \mathcal{A}, \mathcal{D})$ is a para-proximity space with associated para-proximity δ , then we may define (for $B \subset X$) $B^{\delta} = \{x \in X : x \delta B\}$. It is straightfor-

ward to verify that $B \to B^{\delta}$ is a Kuratowski closure operator on $\mathcal{P}(X)$ and, hence, $\tau(\delta) = \{X - B^{\delta} : B \subset X\}$ is a topology on X.

Note that if δ_X is a proximity on X, then $(X, \{X\}, \{\delta_X\})$ is a para-proximity space whose associated para-proximity is δ_X . Thus, para-proximity spaces generalize proximity spaces.

The easy proof of the following proposition is omitted.

PROPOSITION 2.2. Let $(X, \mathcal{A}, \mathcal{D})$ be a para-proximity space with associated para-proximity δ , and let B, B_1 , $B_2 \subset X$. (a) $\emptyset \ \bar{\delta} \ B$ and $B \ \bar{\delta} \ \emptyset$.

- (b) $x \delta x$ for all $x \in X$.
- (c) $B \delta (B_1 \cup B_2)$ if and only if $B \delta B_1$ or $B \delta B_2$.
- (d) If $B_1 \bar{\delta} B_2$, then there is $C \subset X$ such that $B_1 \bar{\delta} X C$ and $C \bar{\delta} B_2$.
- (e) If $B_1 \bar{\delta} B_2$, then $B_1 \cap B_2 = \emptyset$.
- (f) If $B_1 \bar{\delta} B_2$ and $C_i \subset B_i$ (i = 1, 2), then $C_1 \bar{\delta} C_2$.

It follows from this proposition that if the para-proximity δ associated with $(X, \mathcal{A}, \mathcal{D})$ is symmetric (that is, $B_1 \delta B_2$ if and only if $B_2 \delta B_1$), then δ is a proximity on X, and, hence, $\tau(\delta)$ is completely regular.

Definition 2.3. Let $(X, \mathcal{A}, \mathcal{D})$ be a para-proximity space with associated para-proximity δ .

- (a) δ is said to be compatible with a topology τ on X if $\tau = \tau(\delta)$.
- (b) $(X, \mathcal{A}, \mathcal{D})$ is called separated if $\tau(\delta)$ is Hausdorff.

Note that $\tau(\delta)$ is T_0 if and only if $x, y \in X$ with $x\delta y$ and $y\delta x$ implies x = y, and $\tau(\delta)$ is T_1 if and only if $x, y \in X$ with $x\delta y$ implies x = y. Two other consequences concerning the para-proximity topology are recorded in the next proposition.

Proposition 2.4. Let $(X, \mathcal{A}, \mathcal{D})$ be a para-proximity space with associated para-proximity δ .

- (a) For $x \in X$ and $B \subset X$, $x \ \overline{\delta} \ X B$ if and only if $x \in \text{int } B$.
- (b) For B_1 , $B_2 \subset X$, $B_1 \ \overline{\delta} \ X B_2$ implies $B_1 \subset \text{int } B_2$.

We begin to develop the relation between para-uniform spaces and para-proximity spaces in the next theorem, whose proof is quite similar to the proof of the analogous result in the uniform-proximity case.

THEOREM 2.5. Let (X, \mathcal{U}) be a para-uniform space. Let $\mathcal{A}_{\mathcal{U}} = \{ \text{dom } U: U \in \mathcal{U} \}$, for each $A \in \mathcal{A}_{\mathcal{U}}$ let \mathcal{U}_A be the uniformity on A induced by \mathcal{U} (as in Proposition 1.4), and let δ_A be the proximity induced on A by \mathcal{U}_A . Set $\mathcal{D}_{\mathcal{U}} = \{ \delta_A : A \in \mathcal{A}_{\mathcal{U}} \}$. Then $(X, \mathcal{A}_{\mathcal{U}}, \mathcal{D}_{\mathcal{U}})$ is a para-proximity space. Moreover, $\tau(\mathcal{U}) = \tau(\delta_{\mathcal{U}})$, where $\delta_{\mathcal{U}}$ is the para-proximity on X associated with $(X, \mathcal{A}_{\mathcal{U}}, \mathcal{D}_{\mathcal{U}})$ given by (for $B_1, B_2 \subset X$) $B_1 \overline{\delta_{\mathcal{U}}}$ B_2 if and only if there is $U \in \mathcal{U}$ with $B_1 \subset \text{dom } U$ and $U[B_1] \cap U[B_2 \cap \text{dom } U] = \emptyset$.

The result, together with Theorem 1.6. tells us that any topology is para-proximizable.

Before we observe that every para-proximity space is induced by a para-uniform space in the manner prescribed by Theorem 2.5, it is appropriate to introduce the notion of a totally bounded para-uniformity.

DEFINITION 2.6. A para-uniform space (X, \mathcal{U}) is totally bounded if, for each $U \in \mathcal{U}$, there is a finite collection \mathscr{C} of subsets of X such that $X = \bigcup \{\bar{C}: C \in \mathscr{C}\}$ and $\bigcup \{C \times C: C \in \mathscr{C}\} \subset U$.

Note that the definition is equivalent to the usual definition of totally bounded in case $\mathscr U$ is a uniformity, since then $\bar C \subset V[C]$ for every $V \in \mathscr U$. (Also, it is equivalent to assume that $\varnothing \notin \mathscr C$.) Moreover, we have the following straightforward characterizations of totally bounded parauniformity.

PROPOSITION 2.7. Let (X, \mathcal{U}) be a para-uniform space and let $\mathcal{A}_{\mathcal{U}} = \{\text{dom } U: U \in \mathcal{U}\}$. The following are equivalent:

- (a) (X, \mathcal{U}) is totally bounded.
- (b) For each $U \in \mathcal{U}$ there is a finite subset $F \subset X$ such that $X = \overline{U[F]}$.
- (c) \mathcal{U}_A is totally bounded, for each $A \in \mathcal{A}_{\mathcal{U}}$.

THEOREM 2.8. Let $(X, \mathcal{A}, \mathcal{D})$ be a para-proximity space. For each $A \in \mathcal{A}$, let \mathcal{V}_A be the unique totally bounded uniformity on A which induces δ_A . Then $\mathcal{B} = \bigcup \{ \mathcal{V}_A : A \in \mathcal{A} \}$ is a basis for the unique totally bounded para-uniformity \mathcal{U} on X such that $(X, \mathcal{A}, \mathcal{D}) = (X, \mathcal{A}_{\mathcal{U}}, \mathcal{D}_{\mathcal{U}})$.

PROOF. Everything follows easily once we have verified (ii) of Proposition 1.5. To this end note that a basis for \mathscr{V}_A is $\mathscr{B}_A = \{\bigcup_{j=1}^m H_j \times H_j : K_j \overline{\partial}_A A - H_j, H_j \subset A \ (j=1,2,\ldots,m), \ A = \bigcup_{j=1}^m K_j \}.$ Let $A_1, A_2 \in \mathscr{A}$. To verify (ii) of Proposition 1.5 it suffices to show that if $B_i \in \mathscr{B}_{A_i}$ (i=1,2), then $B_1 \cap B_2 \in \mathscr{V}_{A_1 \cap A_2}$. So let $K_j^i \overline{\partial}_{A_i} A_i - H_j^i, H_j^i \subset A_i \ (j=1,2,\ldots,m_i), \ A_i = \bigcup_{j=1}^m K_j^i \ (i=1,2) \ \text{and} \ B_i = \bigcup_{j=1}^m H_j^i \times H_j^i \ (i=1,2).$ Then $(A_1 \cap A_2) \times (A_1 \cap A_2) \supset B_1 \cap B_2 \supset \bigcup_{j=1}^m \bigcup_{k=1}^m ((H_j^1 \cap H_k^2) \times (H_j^1 \cap H_k^2)) \in \mathscr{B}_{A_1 \cap A_2}$. So $B_1 \cap B_2 \in \mathscr{V}_{A_1 \cap A_2}$.

If $(X, \mathscr{A}, \mathscr{D})$ is a para-proximity space, then it follows from Theorem 2.8 and the remarks following Proposition 1.5 that $\tau(\delta_A) \subset \tau(\delta)$, for each $A \in \mathscr{A}$. Also, in view of Theorem 2.8, the next results about relative paraproximities are not suprising.

PROPOSITION 2.9. Let $(Y, \mathscr{A}, \mathscr{D})$ be a para-proximity space with associated para-proximity δ , and let X be either $\tau(\delta)$ -open or $\tau(\delta)$ -dense in Y. Let $\mathscr{A}|_X = \{A \cap X : A \in \mathscr{A}\}$ and $\mathscr{D}|_X = \{\delta_A|_{A\cap X} : A \in \mathscr{A}\}$. Then $(X, \mathscr{A}|_X, \mathscr{D}|_X)$ is a para-proximity space with associated para-proximity $\delta|_X$ defined by $(\text{for } B_1, B_2 \subset X)$ $B_1 \delta|_X$ B_2 if and only if $B_1 \delta B_2$. Also $\tau(\delta|_X) = \tau(\delta)|_X$.

DEFINITION 2.10. Let $(Y, \mathcal{A}, \mathcal{D})$ be a para-proximity space with associated para-proximity δ and let X be either $\tau(\delta)$ -open or $\tau(\delta)$ -dense in Y. Then $\delta|_X$ is called the relative para-proximity on X.

PROPOSITION 2.11. Let (Y, \mathcal{U}) be a para-uniform space, let $(Y, \mathcal{A}, \mathcal{D})$ be the para-proximity space induced by (Y, \mathcal{U}) , and let δ be the associated para-proximity on Y. Let $\tau = \tau(\mathcal{U}) = \tau(\delta)$ and let X be either τ -open or τ -dense in Y. Then $(X, \mathcal{A}_{\mathcal{U}|X}, \mathcal{D}_{\mathcal{U}|X}) = (X, \mathcal{A}|_X, \mathcal{D}|_X)$ and $\delta_{\mathcal{U}|X} = \delta|_X$.

The notion of a proximity mapping also generalizes easily to the paraproximity case.

DEFINITION 2.12. Let $(X_i, \mathcal{A}_i, \mathcal{D}_i)$ be a para-proximity space with associated para-proximity δ_i (i = 1, 2) and let $f: X_1 \to X_2$ be a function. (a) f is a para-proximity mapping if, whenever $x, y \in X_1$ and $x \delta_1 y$, then $f(x) \delta_2 f(y)$. (b) If f is a para-proximity bijection and f^{-1} is also a para-proximity mapping, then f is called a para-proximity isomorphism.

PROPOSITION. 2.13. (a) A para-proximity mapping is continuous with respect to the para-proximity topologies. (b) A para-uniformly continuous mapping is a para-proximity mapping with respect to the induced para-proximities. (c) The composition of para-proximity mappings is a para-proximity mapping.

3. Extensions of para-uniform and para-proximity spaces. Throughout the remainder of this paper we shall use "para-uniform space" to mean separated para-uniform space, "para-proximity space" to mean separated para-proximity space, and "topological space" to mean Hausdorff topological space. It is worth noting now that when a para-uniform space (X, \mathcal{U}) is separated it is not necessarily true that the uniformity \mathcal{U}_A induced on $A = \text{dom } U(U \in \mathcal{U})$ is separated. (In fact, the compatible para-uniformity \mathcal{U} induced on the real line with the usual topology, in the manner prescribed by Theorem 1.6 using the usual topology as its own subbase, has the property that, for all $A \in \mathcal{A}_{\mathcal{U}}$, \mathcal{U}_A is not separated.) A similar word of caution holds for para-proximity spaces.

In order to develop the theory of para-uniform and para-proximal extensions, we need to introduce the notions of Cauchy filter and round filter.

DEFINITION 3.1. Let (X, \mathcal{U}) be a para-uniform space and let \mathscr{F} be a filter on X. \mathscr{F} is Cauchy (or \mathscr{U} -Cauchy) if for each $U \in \mathscr{U}$, there is an $x \in X$ such that $U[x] \in \mathscr{F}$.

The easy proof of the following characterizations of Cauchy filter is omitted.

PROPOSITION 3.2. Let (X, \mathcal{U}) be a para-uniform space, let $\mathcal{A}_{\mathcal{U}} = \{\text{dom }$

 $U:U \in \mathcal{U}$, and let \mathcal{U}_A be the uniformity induced on A by \mathcal{U} for each $A \in \mathcal{A}_{\mathcal{U}}$. Then the following are equivalent for a filter \mathcal{F} on X.

- (a) F is W-Cauchy.
- (b) For each $U \in \mathcal{U}$ there is $F \in \mathcal{F}$ with $F \times F \subset U$.
- (c) $\mathscr{F}|_A$ is \mathscr{U}_A -Cauchy for each $A \in \mathscr{A}_{\mathscr{U}}$.

Note that if \mathscr{F} is \mathscr{U} -Cauchy, then dom $U \in \mathscr{F}$, for every $U \in \mathscr{U}$. Accordingly, there are examples of $\tau(\mathscr{U})$ -convergent filters on some parauniform spaces (X, \mathscr{U}) which are not \mathscr{U} -Cauchy. In fact, the neighborhood filter of a point $x \in X$ is \mathscr{U} -Cauchy if and only if $x \in X$ dom $x \in X$ is $x \in X$. Thus, every neighborhood filter is $x \in X$ -Cauchy if and only if $x \in X$ a uniformity on $x \in X$.

As in the uniform case, a \mathscr{U} -Cauchy filter converges to each of its adherence points, as can be verified easily. Also every \mathscr{U} -Cauchy filter \mathscr{F} on X contains a smallest \mathscr{U} -Cauchy filter $\mathscr{F}_m = \{U[F]: U \in \mathscr{U}, F \in \mathscr{F}\}$ called the minimal \mathscr{U} -Cauchy filter contained in \mathscr{F} .

DEFINITION. 3.3. Let $(X, \mathcal{A}, \mathcal{D})$ be a para-proximity space with associated para-proximity δ .

- (a) A filter \mathscr{F} on X is round (or δ -round) if $\mathscr{A} \subset \mathscr{F}$ and $F_1 \in \mathscr{F}$ implies there is an $F_2 \in \mathscr{F}$ with $F_2 \ \bar{\delta} \ X F_1$.
- (b) Let \mathscr{F} be a filter on X such that $\mathscr{A} \subset \mathscr{F}$. The δ -round hull of \mathscr{F} is defined to be $\mathscr{F}_r = \{ H \subset X : F \overline{\delta} X H \text{ for some } F \in \mathscr{F} \}.$

The proof of the next proposition requires only a slight modification of the proof of the corresponding results in the proximity case (see, for instance [20]) and is omitted.

PROPOSITION 3.4. Let $(X, \mathcal{A}, \mathcal{D})$ be a para-proximity space and let δ be the associated para-proximity on X.

- (a) If \mathcal{F} is a filter on X and $\mathcal{A} \subset \mathcal{F}$, then \mathcal{F} , is a δ -round filter and $\mathcal{F}_r \subset \mathcal{F}$.
 - (b) Each δ -round filter is contained in a maximal δ -round filter.
- (c) If \mathscr{F} is a maximal δ -round filter and B_1 and B_2 are subsets of X such that $B_1 \ \overline{\delta} \ X B_2$ and B_1 meets \mathscr{F} , then $B_2 \in \mathscr{F}$.
- (d) A δ -round filter \mathscr{F} is a maximal δ -round filter if and only if B_1 , $B_2 \subset X$ with $B_1 \ \overline{\delta} \ X B_2$ implies $X B_1 \in \mathscr{F}$ or $B_2 \in \mathscr{F}$.
- (e) If \mathcal{F}_1 and \mathcal{F}_2 are two distinct maximal δ -round filters on X, then there are $F_1 \in \mathcal{F}_1$ and $F_2 \in \mathcal{F}_2$ with $F_1 \cap F_2 = \emptyset$.

Note that if $(X, \mathcal{A}, \mathcal{D})$ is a para-proximity space, then \mathcal{A} has f.i.p., and, hence, there are δ -round filters on X.

When we say that a filter on a para-uniform space is round, it is understood to be round with respect to the para-proximity induced by the para-uniformity.

PROPOSITION 3.5. (a) A minimal Cauchy filter on a para-uniform space is a maximal round filter. (b) A maximal round filter on a totally bounded para-uniform space is a minimal Cauchy filter.

PROOF. Let (X, \mathcal{U}) be a para-uniform space, $\mathscr{A} = \mathscr{A}_{\mathscr{U}} = \{\text{dom } U: U \in \mathscr{U}\}, \mathscr{D} = \mathscr{D}_{\mathscr{U}}, \text{ and } \delta = \delta_{\mathscr{U}}.$

- (a). Let \mathscr{F} be a minimal \mathscr{U} -Cauchy filter. Then \mathscr{F} , is a δ -round filter contained in \mathscr{F} . Let $U \in \mathscr{U}$. If $V \in \mathscr{U}$ with $V^0 = U^0$, $V = V^{-1}$, and $V \circ V \circ V \subset U$, and if $F \in \mathscr{F}$ with $F \times F \subset V$, then $V[F] \in \mathscr{F}$, and $V[F] \times V[F] \subset U$. So \mathscr{F} , is \mathscr{U} -Cauchy, and $\mathscr{F} = \mathscr{F}$, is δ -round. To see that \mathscr{F} is maximal δ -round, let B_1 , $B_2 \subset X$ with $B_1 \bar{\delta} X B_2$. Then there is $U \in \mathscr{U}$ with $B_1 \subset \text{dom } U = A$ and $B_1 \bar{\delta}_A (X B_2) \cap A$; so $B_1 \bar{\delta}_A (A B_2)$. Let \mathscr{U}_A^T be the totally bounded uniformity on A induced by δ_A . Then $H = [(B_2 \cap A) \times (B_2 \cap A)] \cup [(A B_1) \times (A B_1)] \in \mathscr{U}_A^T \subset \mathscr{U}_A \subset \mathscr{U}$. Since \mathscr{F} is \mathscr{U} -Cauchy, there is an $F \in \mathscr{F}$ with $F \times F \subset H$. So either $F \subset B_2 \cap A$ or $F \subset A B_1$, whence either $B_2 \in \mathscr{F}$ or $X B_1 \in \mathscr{F}$. By Proposition 3.4(d), \mathscr{F} is a maximal δ -round filter.
- (b). Let \mathscr{F} be a maximal δ -round filter. Since \mathscr{U} is totally bounded, a basis for \mathscr{U} is $\mathscr{B} = \bigcup \{\mathscr{B}_A : A \in \mathscr{A}\}$ where, for $A \in \mathscr{A}$, $\mathscr{B}_A = \{\bigcup_{j=1}^m H_j \times H_j : H_j \subset A, K_j \overline{\delta_A} A H_j (j = 1, 2, \dots, m), A = \bigcup_{j=1}^m K_j \}$. Let $B \in \mathscr{B}$. Then there is an $A \in \mathscr{A}$ such that $B = \bigcup_{j=1}^m H_j \times H_j$ where $H_j \subset A$, $K_j \overline{\delta_A} A H_j (j = 1, 2, \dots, m)$ and $A = \bigcup_{j=1}^m K_j$. Since \mathscr{F} is a maximal δ -round filter, for each $j = 1, 2, \dots, m$ either $X K_j \in \mathscr{F}$ or $H_j \in \mathscr{F}$. But since $A \in \mathscr{F}$, there is some $j \in \{1, 2, \dots, m\}$ for which $H_j \in \mathscr{F}$. Then $H_j \times H_j \subset B$. So \mathscr{F} is \mathscr{U} -Cauchy. Now \mathscr{F}_m is a maximal δ -round filter by (a), and $\mathscr{F}_m \subset \mathscr{F}$. Thus, $\mathscr{F} = \mathscr{F}_m$ is a minimal \mathscr{U} -Cauchy filter.

DEFINITION. 3.6. (a) A para-uniform space (X, \mathcal{U}) is complete if every \mathcal{U} -Cauchy filter on X is $\tau(\mathcal{U})$ -convergent.

- (b) A para-uniform space (Y, \mathscr{V}) is a para-uniform extension of a para-uniform space (X, \mathscr{U}) if X is a $\tau(\mathscr{V})$ -dense subset of Y and $\mathscr{U} = \mathscr{V}|_X$.
- (c) A para-uniform extension (Y, \mathcal{V}) of (X, \mathcal{U}) is said to have relatively uniform outgrowth (r.u.o.) if $Y X \subset \text{dom } V$, for every $V \in \mathcal{V}$.
- (d) A para-uniform completion of a para-uniform space is a complete para-uniform extension.
- (e) A para-proximity space is full if each round filter has non-void adherence with respect to the para-proximity topology.
- (f) A para-proximity space $(Y, \mathcal{A}', \mathcal{D}')$ is a para-proximal extension of a para-proximity space $(X, \mathcal{A}, \mathcal{D})$ if X is a $\tau(\delta')$ -dense subset of $Y, \mathcal{A} = \mathcal{A}'|_{X}$, and $\mathcal{D} = \mathcal{D}'|_{X}$.
- (g) A para-proximal extension $(Y, \mathcal{A}', \mathcal{D}')$ of $(X, \mathcal{A}, \mathcal{D})$ is said to have relatively proximal outgrowth (r.p.o.) if $Y X \subset A$ for each $A \in \mathcal{A}'$.

Note that if (Y, \mathcal{V}) is a para-uniform extension of (X, \mathcal{U}) , then (Y, \mathcal{V})

 $\mathscr{A}_{\mathscr{V}}, \mathscr{D}_{\mathscr{V}}$) is a para-proximal extension of $(X, \mathscr{A}_{\mathscr{U}}, \mathscr{D}_{\mathscr{U}})$. Also note that if (Y, σ) is a topological extension of (X, τ) and \mathscr{V} is compatible with σ , then $\mathscr{V}|_{X}$ is compatible with τ , and (Y, \mathscr{V}) is a para-uniform extension of $(X, \mathscr{V}|_{X})$.

The next two propositions relate para-uniform extensions to simple and strict topological extensions. If $U \subset Y \times Y$ and $S \subset Y$, then we use U(S) to denote $U \cap (S \times S)$.

PROPOSITION 3.7. Let (Y, σ) be a topological extension of (X, τ) and let $\mathscr V$ be a compatible para-uniformity on Y. Then $\mathscr B^+ = \{U(S): X \subset S \subset Y, U \in \mathscr V\}$ is a basis for a para-uniformity $\mathscr V^+$ on $Y, \mathscr V \subset \mathscr V^+$, $\tau(\mathscr V^+) = \sigma^+$, and $(Y, \mathscr V^+)$ is a para-uniform extension of $(X, \mathscr V|_X)$.

PROOF. It is straightforward to verify that \mathscr{B}^+ is a para-uniform basis on Y, and clearly $\mathscr{V} \subset \mathscr{V}^+$. To see that $\sigma^+ \subset \tau(\mathscr{V}^+)$, it is enough to observe that if $y \in Y$ and $G \in \mathcal{O}_{\sigma}^{y,X}$, then there is $V \in \mathscr{V}$ for which $y \in V[X]$ and $\emptyset \neq X \cap V[y] \subset G$ and, hence, $V(\{y\} \cup X)[y] \subset G \cup \{y\}$. Now let $y \in Y$ and let $U \in \mathscr{V}$ be such that U is open in the product topology on $Y \times Y$ and $y \in U[y]$. Then $(U[y] \cap X) \cup \{y\} \in \sigma^+$ and $(U[y] \cap X) \cup \{y\} \subset U(S)[y]$, for all S with $X \cup \{y\} \subset S \subset Y$. Since the open entourages in \mathscr{V} form a basis for \mathscr{V} , this shows that $\tau(\mathscr{V}^+) \subset \sigma^+$. It is then clear that X is $\tau(\mathscr{V}^+)$ -dense in Y and that $\mathscr{V}^+|_X = \mathscr{V}|_X$.

Since $\mathscr{V} \subset \mathscr{V}^+$, $\mathrm{id}_Y : (Y, \mathscr{V}^+) \to (Y, \mathscr{V})$ is para-uniformly continuous.

PROPOSITION 3.8. Let (Y, σ) be a topological extension of (X, τ) and let $\mathscr V$ be a compatible para-uniformity on Y such that $Y - X \subset \text{dom } V$ for each $V \in \mathscr V$. If $V \in \mathscr V$, let $V^{\sharp} = V(X) \cup \{(x, y) \in Y \times Y : G \times G \subset V, for some <math>G \in O_{\sigma}^{x, X} \cap O_{\sigma}^{y, X}\}$. Then $\mathscr B^{\sharp} = \{V^{\sharp} : V \in \mathscr V\}$ is a basis for $\mathscr V$. Moreover, $\sigma = \sigma^{\sharp}$. Thus, any para-uniform extension of a para-uniform space with r.u.o. yields a strict topological extension.

PROOF. We must first show that \mathscr{B}^* is a para-uniform basis on Y. To verify (U2), let $U \in \mathscr{V}$ and let $V \in \mathscr{V}$ with $V^0 = U^0$, $V^{-1} = V$, $V \circ V \subset U$, and V open in the product topology on $Y \times Y$. Now if $y \in Y - X$, then $G = V[y] \cap X \in O_{\sigma}^{y,X}$ and $G \times G \subset U$. Thus, $\Delta(Y - X) \subset U^*$. Also $(U^*)^0(X) = U^0(X)$. Therefore, $(U^*)^0 \subset U^*$. To see that (B3) is satisfied, note that if $U, V \in \mathscr{V}$, then $U^* \cap V^* = (U \cap V)^*$ and $U^* \cap (U^*)^{-1} = (U \cap U^{-1})^*$. To verify (U4), let $U, V \in \mathscr{V}$ and let $W \in \mathscr{V}$ with $W^0 = (U \cap V)^0$, $W^{-1} = W$, W open in the product topology on $Y \times Y$, and $W \circ W \circ W \subset U \cap V$. One may easily verify that $(W^*)^0 = (U^* \cap V^*)^0$ and $W^* \subset U^* \cap V^*$. Finally, (U6) is satisfied for \mathscr{D}^* since (U6) is satisfied for $\mathscr{V}|_X$ and $Y - X \subset \text{dom } V^*$, for all $V \in \mathscr{V}$. So \mathscr{B}^* is a para-uniform basis on Y.

If $U \in \mathscr{V}$ and $V \in \mathscr{V}$ with $V^0 = U^0$, $V^{-1} = V$, and $V \circ V \circ V \subset U$, then $U^0 = V^0 = (U^{\sharp})^0 = (V^{\sharp})^0$, $V \subset U^{\sharp}$, and $V^{\sharp} \subset U$. It follows that $\mathscr{V} = \mathscr{U}(\mathscr{B}^{\sharp})$. So it remains to show that $\tau(\mathscr{U}(\mathscr{B}^{\sharp})) = \sigma^{\sharp}$.

Let $y \in G \in \sigma^{\sharp}$ and assume, without loss of generality, that $G = \{x \in Y : G \cap X \in O_{\sigma}^{x,X}\}$. Since $\sigma^{\sharp} \subset \sigma$, there is $U \in \mathscr{V}$ such that $y \in U[y] \subset G$. Let $V \in \mathscr{V}$ with $V^0 = U^0$, $V^{-1} = V$, and $V \circ V \subset U$. We claim that $V^{\sharp}[y] \subset G$. To see this, let $x \in V^{\sharp}[y]$. First observe that if $x \in V(X)[y]$, then $x \in G$. So assume $(y, x) \notin V(X)$. Then there is $H \in O_{\sigma}^{x,X} \cap O_{\sigma}^{y,X}$ such that $H \times H \subset V$. Now $H \cap V[y] \neq \emptyset$. Letting $h \in H \cap V[y]$, we have $H \subset V[h] \subset (V \circ V)[y] \subset U[y] \subset G$, whence $x \in G$. So indeed $V^{\sharp}[y] \subset G$. Thus, $\sigma^{\sharp} \subset \tau(\mathscr{U}(\mathscr{B}^{\sharp}))$.

Now let $U \in \mathscr{V}$ and let $y \in Y$ such that $y \in U^*[y]$. Then we are able to find $G \in O_\sigma^{y,X}$ such that $G \times G \subset U$. (In case $y \in X$ take G = V(X) [y], where $V \in \mathscr{V}$ with $V^0 = U^0$, $V^{-1} = V$, and $V \circ V \subset U$.) Then $y \in G \cup \{x \in Y: G \in O_\sigma^{y,X}\} \subset U^*[y]$. So $\tau(\mathscr{U}(\mathscr{B}^*)) \subset \sigma^*$.

In the remainder of this section we shall construct and investigate canonical para-uniform completions and canonical full para-proximal extensions. Recall that a filter on a topological space (X, τ) is τ -free (or simply free) when it has void adherence. We will call a filter on a para-uniform space or para-proximity space free if it is free with respect to the induced topology.

DEFINITION 3.9. Let (X, \mathcal{U}) be a para-uniform space.

- (a) Define $\mathscr{U}X$ to be $X \cup \{\mathscr{F} : \mathscr{F} \text{ is a free minimal } \mathscr{U}\text{-Cauchy filter on } X\}$.
- (b) For $U \in \mathcal{U}$, define $U_* = U \cup \{(\mathscr{F}, x), (x, \mathscr{F}) : \mathscr{F} \in \mathcal{U}X X, x \in X, \text{ and for some } F \in \mathscr{F} \cap \mathcal{U}(x), F \times F \subset U\} \cup \{(\mathscr{F}, \mathscr{G}) : \mathscr{F}, \mathscr{G} \in \mathcal{U}X X \text{ and for some } F \in \mathscr{F} \cap \mathscr{G}, F \times F \subset U\}.$

THEOREM 3.10. Let (X, \mathcal{U}) be a para-uniform space. Then $\mathcal{B}_* = \{U_* : U \in \mathcal{U}\}$ is a basis for a para-uniformity \mathcal{U}_* on $\mathcal{U}X$, and $(\mathcal{U}X, \mathcal{U}_*)$ is a para-uniform completion of (X, \mathcal{U}) with r. u. o. Thus, $(\mathcal{U}X, \tau(\mathcal{U}_*))$ is a strict extension of $(X, \tau(\mathcal{U}))$.

PROOF. The proof that \mathscr{B}_* is a para-uniform basis on X is similar to the proof for \mathscr{B}^* in Proposition 3.8 and is left to the reader. It is then easily verified that X is $\tau(\mathscr{U}_*)$ -dense in $\mathscr{U}X$, $\mathscr{U}_*|_X = \mathscr{U}$, and $\mathscr{U}X - X \subset \operatorname{dom} V$ for all $V \in \mathscr{U}_*$. So it remains to show that $(\mathscr{U}X, \mathscr{U}_*)$ is complete.

Let \mathscr{F} be a free minimal \mathscr{U}_* -Cauchy filter on $\mathscr{U}X$. Then $\mathscr{F}|_X$ is a $\tau(\mathscr{U})$ -free minimal \mathscr{U} -Cauchy filter on X, so that there is $\mathscr{G} \in \mathscr{U}X - X$ for which $\mathscr{G} \subset \mathscr{F}|_X$. Then $F \cap V_*[\mathscr{G}] \neq \emptyset$, for every $F \in \mathscr{F}$ and every $V \in \mathscr{U}$, whence \mathscr{G} is a $\tau(\mathscr{U}_*)$ -adherence point of \mathscr{F} . This contradicts the assumption that \mathscr{F} is free. So there are no free \mathscr{U}_* -Cauchy filters on $\mathscr{U}X$.

Note that if \mathcal{U} is a uniformity on X, then \mathcal{U}_* is a uniformity on $\mathcal{U}X$.

THEOREM 3.11. Let (X, \mathcal{U}) be a para-uniform space. Then $\mathcal{U}^* = (\mathcal{U}_*)^+$ is a para-uniformity on $\mathcal{U}X$ and $(\mathcal{U}X, \mathcal{U}^*)$ is a para-uniform completion of (X, \mathcal{U}) . Moreover, $\tau(\mathcal{U}_*)^+ = \tau(\mathcal{U}^*)$ and $\tau(\mathcal{U}^*)^\sharp = \tau(\mathcal{U}_*)$.

PROOF. Everything is clear from Proposition 3.7 and Theorem 3.10 except for the completeness of $(\mathcal{U}X, \mathcal{U}^*)$. Suppose \mathscr{G} is a free \mathcal{U}^* -Cauchy filter on $\mathcal{U}X$. Since $X \times X \in \mathcal{U}^*$, \mathscr{G} contains a free minimal \mathcal{U} -Cauchy filter \mathscr{F} . But $\{F \cup \{\mathscr{F}\}: F \in \mathscr{F}\}$ is a $\tau(\mathcal{U}^*)$ -neighborhood base at \mathscr{F} . Thus, $\mathscr{G} \tau(\mathcal{U}^*)$ -converges to $\mathscr{F} \in \mathcal{U}X$, which contradicts the assumption that \mathscr{G} is free. So $(\mathcal{U}X, \mathcal{U}^*)$ is complete.

By Theorem, 3.10 it follows that every para-uniform space has a parauniform completion which coincides with the unique uniform completion for a uniform space. Moreover, according to Theorem 3.11, any noncomplete para-uniform space has more than one para-uniform completion. (Even a non-complete uniform space has more than one para-uniform completion!) Thus, it is natural to ask in what sense each of these canonical completions is unique. This question is answered by the next several results.

LEMMA 3.12. Let $f: (X, \mathcal{U}) \to (Y, \mathcal{V})$ be a para-uniformly continuous mapping of para-uniform spaces with f(X) $\tau(\mathcal{V})$ -dense in Y and (Y, \mathcal{V}) complete. Then there is a unique para-uniformly continuous mapping $g: (\mathcal{U}X, \mathcal{U}^*) \to (Y, \mathcal{V})$ such that f(x) = g(x), for all $x \in X$.

PROOF. For each $x \in X$ define g(x) = f(x). We must define g(x) for $x \in \mathcal{U}X - X$. In this case, $x = \mathcal{F}$, a free minimal \mathcal{U} -Cauchy filter on X. Now $\{f(F): F \in \mathcal{F}\}$ is a filterbase on Y and is \mathcal{V} -Cauchy since f(X) is dense in Y. Let $\mathcal{G}(x) = \{G \subset Y: f(F) \subset G \text{ for some } F \in \mathcal{F}\}$. Then $\mathcal{G}(x)$ is a \mathcal{V} -Cauchy filter on Y and converges to a unique point $g(x) \in Y$. Thus, $g: \mathcal{U}X \to Y$ is defined.

To show that g is para-uniformly continuous, let $V \in \mathscr{V}$ and let $W \in \mathscr{V}$ with $W^0 = V^0$, $W^{-1} = W$, and $W \circ W \circ W \subset V$. Then $f^{-1}(W) \in \mathscr{U}$ since f(X) is dense in Y. Set $U = f^{-1}(W)$ and $H = X \cup \text{dom } g^{-1}(W)$. Then $X \subset H \subset \mathscr{U}X$ and $U_* \in \mathscr{U}_*$. So $U_*(H) \in \mathscr{U}^*$. We claim that $U_*(H) \subset g^{-1}(V)$ and that $U_*(H)^0 = g^{-1}(V)^0$ (whence it follows that $g^{-1}(V) \in \mathscr{U}^*$). Let $(x, y) \in U_*(H)$. We shall verify that $(x, y) \in g^{-1}(V)$ in the case where $x = \mathscr{F}_1 \in \mathscr{U}X - X$ and $y = \mathscr{F}_2 \in \mathscr{U}X - X$. Let $G \in \mathscr{F}_1 \cap \mathscr{F}_2$ with $G \times G \subset U$. Now $\mathscr{G}(x)$ converges to g(x), g(y) converges to g(y), and $f(G) \in \mathscr{G}(x) \cap \mathscr{G}(y)$. So g(x), $g(y) \in \operatorname{cl}_Y f(G)$. Also $x, y \in H - X$. So $x, y \in \operatorname{dom} g^{-1}(W)$, whence g(x), $g(y) \in \operatorname{dom} W$. Thus, W[g(x)] and W[g(y)] are $\tau(\mathscr{V})$ -neighborhoods of g(x) and g(y), respectively. Therefore, we may select $p \in W[g(x)] \cap f(G)$ and $q \in W[g(y)] \cap f(G)$. So $(p, q) \in f(G) \times f(G) \subset W$, $(g(x), p) \in W$, and $(q, g(y)) \in W$. It follows that $(g(x), g(y)) \in W \circ W \circ W \subset V$; i.e., $(x, y) \in g^{-1}(V)$. The proof that $U_*(H)^0$

 $= g^{-1}(V)^0$ involves similar notions and is left to the reader.

That g is the unique para-uniformly continuous extension of f follows from the fact that g is continuous and X is dense in $\mathcal{U}X$.

THEOREM 3.13. Let (X, \mathcal{U}) be a para-uniform space. Then $(\mathcal{U}X, \mathcal{U}^*)$ is the (up to para-uniform isomorphism) unique para-uniform completion of (X, \mathcal{U}) satisfying property (C^*) : If (Y, \mathcal{V}) is any para-uniform completion of (X, \mathcal{U}) , then there is a unique para-uniformly continuous mapping p^* : $(\mathcal{U}X, \mathcal{U}^*) \to (Y, \mathcal{V}^+)$ such that $p^*(x) = x$ for all $x \in X$; i.e., the diagram

$$(\mathscr{U}X, \mathscr{U}^*) \xrightarrow{p^*} (Y, \mathscr{V}^+)$$

$$\downarrow_{\mathrm{id}_X} \qquad \qquad \downarrow_{\mathrm{id}_Y}$$

$$(X, \mathscr{U}) \xrightarrow{\mathrm{id}_X} (Y, \mathscr{V})$$

commutes.

PROOF. To show that $(\mathscr{U}X, \mathscr{U}^*)$ satisfies (C^*) let (Y, \mathscr{V}) be an arbitrary para-uniform completion of (X, \mathscr{U}) . Then (Y, \mathscr{V}^+) is a para-uniform extension of (X, \mathscr{U}) , and (Y, \mathscr{V}^+) is complete since $\mathscr{V} \subset \mathscr{V}^+$. So $\mathrm{id}_X \colon (X, \mathscr{U}) \to (Y, \mathscr{V}^+)$ satisfies the hypothesis of Lemma 3.12, whence there is a unique para-uniformly continuous mapping $p^* \colon (\mathscr{U}X, \mathscr{U}^*) \to (Y, \mathscr{V}^+)$ such that $p^*(x) = x$, for all $x \in X$.

Now suppose that (Z, \mathcal{W}) is a para-uniform completion of (X, \mathcal{U}) satisfying (C^*) . Then we can find para-uniformly continuous mappings $p^*: (\mathcal{U}X, \mathcal{U}^*) \to (Z, \mathcal{W})$ and $q^*: (Z, \mathcal{W}) \to (\mathcal{U}X, \mathcal{U}^*)$ such that $p^*(x) = q^*(x) = x$, for all $x \in X$. So p^* is a para-uniform isomorphism.

LEMMA 3.14. Let $f: (Y, \mathscr{V}) \to (X, \mathscr{U})$ be a para-uniformly continuous mapping of para-uniform spaces such that, for each $U \in \mathscr{U}$, $f(Y) \cap \text{dom } U \neq \emptyset$ and such that if \mathscr{F} is a free \mathscr{V} -Cauchy filter on Y then the filter induced by \mathscr{F} under f is a free filter on X. If (Z, \mathscr{W}) is any para-uniform extension of (Y, \mathscr{V}) with r.u.o., then there is a unique para-uniformly continuous mapping $g: (Z, \mathscr{W}) \to (\mathscr{U}X, \mathscr{U}_*)$ such that g(y) = f(y), for all $y \in Y$.

PROOF. For $y \in Y$ define g(y) = f(y). Let $z \in Z - Y$. Then $O_{\tau(X)}^{z}(Z)$ is a filterbase on Z, and since (Z, \mathcal{W}) is an r.u.o. para-uniform extension of (Y, \mathcal{V}) , $O_{\tau(X)}^{z}(Z)$ is a \mathcal{W} -Cauchy filterbase. So $O_{\tau(X)}^{z}(X)$ is a free \mathcal{V} -Cauchy filterbase on Y. Now the filter $\mathcal{F}(z)$ generated by $\{f(G): G \in O_{\tau(X)}^{z}(Y)\}$ is a $\tau(\mathcal{U})$ -free filter on X. If $U \in \mathcal{U}$, then $f(Y) \cap \text{dom } U \neq \emptyset$ so that $f^{-1}(U) \neq \emptyset$. Since f is para-uniformly continuous, $f^{-1}(U) \in \mathcal{V}$. Thus, there is $G \in O_{\tau(X)}^{z}(Y)$ with $G \times G \subset f^{-1}(U)$. Then $f(G) \in \mathcal{F}(z)$ and $f(G) \times f(G) \subset U$. So $\mathcal{F}(z)$ is \mathcal{U} -Cauchy. Let $g(z) = \mathcal{G}(z)$, the unique minimal \mathcal{U} -Cauchy filter contained in $\mathcal{F}(z)$. $\mathcal{G}(z)$ is $\tau(\mathcal{U})$ -free since $\mathcal{F}(z)$ is $\tau(\mathcal{U})$ -free. So $g(z) \in \mathcal{U}X - X$. Thus, $g: Z \to \mathcal{U}X$ is defined.

To see that g is para-uniformly continuous, let $U \in \mathcal{U}$ and suppose that

 $g^{-1}(U_*) \neq \phi$. We must show that $g^{-1}(U_*) \in \mathcal{W}$. To this end, let $V \in \mathcal{U}$ with $V^0 = U^0$, $V^{-1} = V$, and $V \circ V \circ V \subset U$. Then, since $f(Y) \cap \text{dom } V \neq \emptyset$, $f^{-1}(V) \in \mathcal{V}$. So there is $W \in \mathcal{W}$ such that $f^{-1}(V) = W(Y)$. Now $W^{\sharp} = f^{-1}(V) \cup \{(x, y) \in Z \times Z : \text{ for some } G \in O^{\star, Y}_{\tau(\mathcal{W})} \cap O^{y, Y}_{\tau(\mathcal{W})}, G \times G \subset f^{-1}(V)\} \in \mathcal{W}$. Also, it is straightforward to verify that $W^{\sharp} \subset g^{-1}(U_*)$ and $(W^{\sharp})^0 = g^{-1}(U_*)^0$. So indeed $g^{-1}(U_*) \in \mathcal{W}$.

That g is the unique extension of f follows from the continuity of g and the fact that Y is dense in Z.

Theorem 3.15. Let (X, \mathcal{U}) be a para-uniform space. Then $(\mathcal{U}X, \mathcal{U}_*)$ is the (up to para-uniform isomorphism) unique para-uniform completion of (X, \mathcal{U}) with r.u.o. satisfying property (C_*) : If (Y, \mathcal{V}) is a para-uniform completion of (X, \mathcal{U}) with r.u.o., then there is a unique para-uniformly continuous mapping $p_*: (Y, \mathcal{V}) \to (\mathcal{U}X, \mathcal{U}_*)$ such that $p_*(x) = x$, for all $x \in X$; i.e., the diagram

commutes.

PROOF. To see that $(\mathcal{U}X, \mathcal{U}_*)$ satisfies (C_*) , let (Y, \mathscr{V}) be an arbitrary para-uniform completion of (X, \mathcal{U}) with r.u.o. Then $\mathrm{id}_X \colon (X, \mathcal{U}) \to (X, \mathcal{U})$ and (Y, \mathscr{V}) satisfy the hypothesis of Lemma 3.14. So there is a unique para-uniformly continuous mapping $p_* \colon (Y, \mathscr{V}) \to (\mathcal{U}X, \mathcal{U}_*)$ such that $p_*(x) = x$, for all $x \in X$.

The proof of uniqueness is essentially identical to the proof of uniqueness in Theorem 3.13.

We now turn our attention to finding full para-proximal extensions of para-proximity spaces.

DEFINITION 3.16. Let $(X, \mathcal{A}, \mathcal{D})$ be a para-proximity space with associated para-proximity δ .

- (a) Let δX denote $X \cup \{\mathscr{F} : \mathscr{F} \text{ is a free maximal } \delta\text{-round filter on } X\}$.
- (b) For $B \subset X$, define $O(B) = B \cup \{ \mathscr{F} \in \delta X X : B \in \mathscr{F} \}$.

Note that $\delta X = O(X)$ and that if $A \in \mathcal{A}$, then $O(A) = A \cup (\delta X - X)$.

THEOREM 3.17. Let $(X, \mathcal{A}, \mathcal{D})$ be a para-proximity space with associated para-proximity δ . Let $\mathcal{A}_* = \{O(A): A \in \mathcal{A}\}$ and, for $A \in \mathcal{A}$, define $\delta_{O(A)} \subset \mathcal{P}(O(A)) \times \mathcal{P}(O(A))$ by (for T_1 , $T_2 \subset O(A)$) T_1 $\overline{\delta_{O(A)}}$ T_2 if and only if there are B_1 , $B_2 \subset A$ with B_1 $\overline{\delta_A}$ B_2 and $T_i \subset O(B_i)$ (i = 1, 2). Then $\delta_{O(A)}$ is a proximity on O(A). Moreover, if we set $\mathcal{D}_* = \{\delta_{O(A)}: A \in \mathcal{A}\}$, then $(\delta X, \mathcal{A}_*, \mathcal{D}_*)$ is a full para-proximal extension of $(X, \mathcal{A}, \mathcal{D})$ with r.p.o. We shall let δ_* denote the associated para-proximity on δX .

PROOF. We shall verify the strong axiom of proximities for $\partial_{O(A)}$. Suppose that $T_1, T_2 \subset O(A)$ and $T_1 \overline{\delta_{O(A)}}$ T_2 . Then there are $B_1, B_2 \subset A$ such that $B_1 \overline{\delta_A} B_2$ and $T_i \subset O(B_i)$ (i=1,2). Since δ_A is a proximity on A, there is $C \subset A$ such that $B_1 \overline{\delta_A} A - C$ and $C \overline{\delta_A} B_2$. Set T = O(C). Then it is clear that $T \overline{\delta_{O(A)}} T_2$. Since $B_1 \overline{\delta_A} A - C$, there is $D \subset A$ such that $B_1 \overline{\delta_A} A - C$ and $D \overline{\delta_A} A - C$. Then $D(A) - D(A - D) \subset D(C)$ and hence $D(A) - D(C) \subset D(A) - D(A) - D(A - D) = D(A - D)$. So $D(A) - T \subset D(A - D)$, D(A) = D(A), and D(A) = D(A) - D. Thus, D(A) = D(A) - D.

Verification of the other proximity axioms for $\delta_{O(A)}$ is routine, as is the proof that $(\delta X, \mathcal{A}_*, \mathcal{D}_*)$ is a para-proximal extension of $(X, \mathcal{A}, \mathcal{D})$. Noting that $\{O(B): B \in \tau(\delta)\}$ is an open basis for the topology $\tau(\delta_*)$, it is clear that X is a $\tau(\delta_*)$ -dense subset of δX .

It remains to show that $(\delta X, \mathcal{A}_*, \mathcal{D}_*)$ is full. Suppose that \mathscr{F} is a free δ_* -round filter on δX . Then $\mathscr{F}|_X$ is a δ -round filter on X, and so is contained in a maximal δ -round filter $\mathscr{G} \in \delta X - X$. Let $F \in \mathscr{F}$. Then $F \cap O(A) \in \mathscr{F}$, for each $A \in \mathscr{A}$ and $F \cap A \in \mathscr{F}|_X \subset \mathscr{G}$. So $\mathscr{G} \in O(F \cap A)$. Thus, $\mathscr{G} \delta_{O(A)} F \cap A$, for all $A \in \mathscr{A}$, and so $\mathscr{G} \delta_* F$. Therefore, \mathscr{G} is a $\tau(\delta_*)$ -adherence point of \mathscr{F} .

Note that for the para-proximity space $(X, \{X\}, \{\delta_X\})$, where δ_X is a separated proximity on X, $(\delta X, \tau(\delta_*))$ is the Smirnov compactification of (X, δ_X) [20].

THEOREM 3.18. Let (X, \mathcal{U}) be a totally bounded para-uniform space. Then $(\mathcal{U}X, \mathcal{A}_{\mathcal{U}_*}, \mathcal{D}_{\mathcal{U}_*}) = (\delta_{\mathcal{U}}X, (\mathcal{A}_{\mathcal{U}})_*, (\mathcal{D}_{\mathcal{U}})_*)$.

PROOF. Clearly $\mathscr{U}X = \delta_{\mathscr{U}}X$ (see Proposition 3.5) and $\mathscr{A}_{\mathscr{U}_*} = (\mathscr{A}_{\mathscr{U}})_*$. $\mathscr{D}_{\mathscr{U}_*} = (\mathscr{D}_{\mathscr{U}})_*$ will follow once we have shown that, for T_1 , $T_2 \subset O(A) \in \mathscr{A}_{\mathscr{U}_*} = (\mathscr{A}_{\mathscr{U}})_*$, $T_1 \overline{\delta_{O(A)}} T_2$ if and only if T_1 and T_2 are distant in the proximity induced on O(A) by $(\mathscr{U}_*)_{O(A)}$. Suppose $T_1 \overline{\delta_{O(A)}} T_2$. Then there are B_1 , $B_2 \subset A$ such that $B_1 \overline{\delta_A} B_2$ and $T_i \subset O(B_i)$ (i = 1, 2). So there is $V \in \mathscr{U}$ with dom V = A, $V^{-1} = V$, and $V[B_1] \cap V[B_2] = \varnothing$. Then $V_* \in \mathscr{U}_*$, dom $V_* = O(A)$, and it is a straightforward exercise to verify that $V_*[T_1] \cap T_2 = \varnothing$. So T_1 and T_2 are distant in the proximity induced on O(A) by $(\mathscr{U}_*)_{O(A)}$.

Conversely, suppose that T_1 and T_2 are distant in the proximity induced on O(A) by $(\mathscr{U}_*)_{O(A)}$. Then there is $U_* \in \mathscr{U}_*$ with dom $U_* = O(A)$, $U_*^{-1} = U_*$, and $U_*[T_1] \cap U_*[T_2] = \emptyset$. Let $V_* \in \mathscr{U}_*$ such that dom $V_* = O(A)$, $V_*^{-1} = V_*$ and $V_* \circ V_* \circ V_* \subset U_*$. Set $B_i = V[V_*[T_i] \cap A]$ (i = 1, 2). Then $B_1 \overline{\delta_A} B_2$ and $T_i \subset O(B_i)$ (i = 1, 2). Therefore, $T_1 \overline{\delta_{O(A)}} T_2$.

COROLLARY 3.19. Let $(X, \mathcal{A}, \mathcal{D})$ be a para-proximity space. Then $(\delta X, \mathcal{A}_*, \mathcal{D}_*)$ is the (up to para-proximity isomorphism) unique full para-proximal extension of $(X, \mathcal{A}, \mathcal{D})$ with r.p.o. satisfying property (F_*) : If $(Y, \mathcal{A}', \mathcal{D}')$ is a full para-proximal extension of $(X, \mathcal{A}, \mathcal{D})$ with r.p.o., then there

is a unique para-proximity mapping $q_*: (Y, \mathscr{A}', \mathscr{D}') \to (\delta X, \mathscr{A}_*, \mathscr{D}_*)$ such that $q_*(x) = x$, for all $x \in X$.

PROOF. To see that $(\delta X, \mathcal{A}_*, \mathcal{D}_*)$ satisfies (F_*) , suppose that $(Y, \mathcal{A}', \mathcal{D}')$ is an arbitrary full para-proximal extension of $(X, \mathcal{A}, \mathcal{D})$ with r.p.o. Let \mathscr{V} be the unique totally bounded para-uniformity on Y inducing $(Y, \mathcal{A}', \mathcal{D}')$, and let \mathscr{U} be the unique totally bounded para-uniformity on X inducing $(X, \mathcal{A}, \mathcal{D})$. Then $\mathscr{U} = \mathscr{V}|_X$. So (Y, \mathscr{V}) is a para-uniform completion of (X, \mathscr{U}) with r.u.o. and, thus, by Theorem 3.15 there is a para-uniformly continuous mapping $q_*: (Y, \mathscr{V}) \to (\mathscr{U}X, \mathscr{U}_*)$ such that $q_*(x) = x$, for all $x \in X$. By Proposition 2.13 $q_*: (Y, \mathscr{A}', \mathscr{D}') \to (\delta X, \mathscr{A}_*, \mathscr{D}_*)$ is a para-proximity mapping. The uniqueness, again, follows easily.

Another canonical full para-proximal extension can be constructed which corresponds to the para-uniform completion \mathcal{U}^* . The next few results are analogous to Theorem 3.17, Theorem 3.18, and Corollary 3.19, and their proofs are left to the reader.

Theorem 3.20. Let $(X, \mathcal{A}, \mathcal{D})$ be a para-proximity space with associated para-proximity δ . Let $\mathcal{A}^* = \{O(A) \cap H: A \in \mathcal{A}, X \subset H \subset \delta X\}$ and let $\mathcal{D}^* = \{\delta_{O(A)}|_{O(A)\cap H}: A \in \mathcal{A}, X \subset H \subset \delta X\}$. Then $(\delta X, \mathcal{A}^*, \mathcal{D}^*)$ is a full para-proximal extension of $(X, \mathcal{A}, \mathcal{D})$. We shall let δ^* denote the associated para-proximity on δX .

THEOREM 3.21. Let (X, \mathcal{U}) be a totally bounded para-uniform space. Then $(\mathcal{U}X, \mathcal{A}_{\mathcal{U}^*}, \mathcal{D}_{\mathcal{U}^*}) = (\delta_{\mathcal{U}}X, (\mathcal{A}_{\mathcal{U}})^*, (\mathcal{D}_{\mathcal{U}})^*).$

COROLLARY 3.22. Let $(X, \mathcal{A}, \mathcal{D})$ be a para-proximity space. Then $(\delta X, \mathcal{A}^*, \mathcal{D}^*)$ is the (up to para-proximity isomorphism) unique full para-proximal extension of $(X, \mathcal{A}, \mathcal{D})$ satisfying property (F^*) : If $(Y, \mathcal{A}', \mathcal{D}')$ is a full para-proximal extension of $(X, \mathcal{A}, \mathcal{D})$, then there is a unique para-proximity mapping q^* : $(\delta X, \mathcal{A}^*, \mathcal{D}^*) \to (Y, \mathcal{A}', \mathcal{D}')$ such that $q^*(x) = x$, for all $x \in X$.

4. H-closed extensions. In this section we shall investigate the relationship between *H*-closed extensions of a topological space and its compatible para-uniformities and para-proximities. We begin with another characterization of totally bounded para-uniformity which leads to a characterization of *H*-closed spaces.

PROPOSITION 4.1. Let (X, \mathcal{U}) be a para-uniform space. Then \mathcal{U} is totally bounded if and only if every $\tau(\mathcal{U})$ -open ultrafilter on X is \mathcal{U} -Cauchy.

PROOF. First suppose that \mathscr{U} is totally bounded, and let \mathscr{F} be an open ultrafilter on $(X, \tau(\mathscr{U}))$. Let $U \in \mathscr{U}$, and let $V \in \mathscr{U}$ with $V^0 = U^0$, $V^{-1} = V$, and $V \circ V \subset U$. There is a finite set $F \subset X$ for which $\overline{V[F]} = X$. Now, for each $a \in F$, $V[a] \subset \text{int } U[a]$, and so $\overline{\bigcup}$ {int $\overline{U[a]}$: $a \in \overline{F}$ } = X. Since \mathscr{F} is

an open ultrafilter, \mathscr{F} must contain int U[a] for some $a \in F$, and for that a we have $U[a] \in \mathscr{F}$. Thus, \mathscr{F} is \mathscr{U} -Cauchy.

Conversely, suppose that every open ultrafilter on $(X, \tau(\mathcal{U}))$ is \mathscr{U} -Cauchy, and let $U \in \mathscr{U}$. Let $V \in \mathscr{U}$ with $V^0 = U^0$, $V^{-1} = V$, and $V \circ V \subset U$. If, for every finite subset $F \subset X$, $\overline{V[F]} \neq X$, then $\{X - \overline{V[F]}\}$: F is finite forms a base for an open filter on $(X, \tau(\mathscr{U}))$ which is contained in an open ultrafilter \mathscr{F} . Now \mathscr{F} is \mathscr{U} -Cauchy; so there is $a \in X$ for which $V[a] \in \mathscr{F}$, a contradiction since $X - \overline{V[a]} \in \mathscr{F}$. Thus, there is a finite subset $F \subset X$ such that $\overline{V[F]} = X$, and $\overline{U[F]} = X$ too. Therefore, \mathscr{U} is totally bounded.

Theorem 4.2. The following are equivalent for a topological space X.

- (a) X is H-closed.
- (b) Every compatible para-uniformity on X is complete.
- (c) Every compatible totally bounded para-uniformity on X is complete.
- (d) There is a complete, compatible, totally bounded para-uniformity on X.
- (e) Every compatible para-proximity on X is full.
- (f) There is a full compatible para-proximity on X.

PROOF. (a) \Rightarrow (b). Since X is H-closed, every open ultrafilter on X is convergent. If $\mathscr U$ is a compatible para-uniformity on X and $\mathscr F$ is a $\mathscr U$ -Cauchy filter on X, then $\mathscr F$ is an open filter and is contained in an open ultrafilter $\mathscr G$. Since $\mathscr G$ converges and $\mathscr F$ is Cauchy, $\mathscr F$ converges too. So $(X, \mathscr U)$ is complete.

- (b) \Rightarrow (c). Trivial.
- (c) \Rightarrow (d). The compatible para-uniformity on X provided by Theorem 1.6 is totally bounded. If (c) holds, then it is also complete.
- (d) \Rightarrow (a). Let \mathscr{F} be an open ultrafilter on X and let \mathscr{U} be any complete, compatible, totally bounded para-uniformity on X. By Proposition 4.1, \mathscr{F} is \mathscr{U} -Cauchy and, hence, converges. So X is H-closed.

The equivalences (c) \Leftrightarrow (e) and (d) \Leftrightarrow (f) follow from results of §3.

The *H*-closed extensions of a given topological space may also be characterized in terms of para-uniformities and para-proximities.

THEOREM 4.3. Let (Y, σ) be a topological extension of (X, τ) . The following are equivalent.

- (a) (Y, σ) is H-closed.
- (b) (Y, σ) is the underlying topological space of a para-uniform completion of a compatible totally bounded para-uniformity on (X, τ) .
- (c) (Y, σ) is the underlying topological space of a full para-proximal extension of a compatible para-proximity on (X, τ) .
- PROOF. (a) \Rightarrow (b). By Theorem 4.2 there is a complete, compatible, totally bounded para-uniformity $\mathscr V$ on (Y, σ) . So $\mathscr V|_X$ is a compatible totally

bounded para-uniformity on (X, τ) and (Y, \mathscr{V}) is a completion of $(X, \mathscr{V}|_X)$.

- (b) \Rightarrow (a). Suppose there is a complete compatible para-uniformity $\mathscr V$ on (Y, σ) such that $\mathscr V|_X$ is totally bounded. Then $\mathscr V$ must be totally bounded, too. So, by Theorem 4.2, (Y, σ) is H-closed.
 - (b) \Leftrightarrow (c). This follows from results of §3.

It is clear from [7] or [18] that no one-to-one correspondence between the H-closed extensions of (X, τ) and compatible totally bounded parauniformities (or compatible para-proximities) on (X, τ) exists, in spite of Theorem 4.3. In fact, Theorem 4.3 can be established only since a given para-uniform space may have many completions. Also note that a para-uniform space (X, \mathcal{U}) may indeed be H-closed even when \mathcal{U} is not totally bounded (see Example 4.6 below).

DEFINITION 4.4. A para-uniformity \mathscr{U} on a set X is called pre-H-closed if every $\tau(\mathscr{U})$ -free, $\tau(\mathscr{U})$ -open ultrafilter on X is \mathscr{U} -Cauchy.

Note that, according to Proposition 4.1, a totally bounded para-uniformity is pre-*H*-closed.

THEOREM 4.5. Let (X, \mathcal{U}) be a para-uniform space. The following are equivalent.

- (a) W is pre-H-closed.
- (b) $(\mathscr{U}X, \ \tau(\mathscr{U}_*))$ is H-closed.
- (c) $(\mathcal{U}X, \tau(\mathcal{U}^*))$ is H-closed.
- (d) $(Y, \tau(\mathscr{V}))$ is H-closed for every para-uniform completion (Y, \mathscr{V}) of (X, \mathscr{U}) .
- (e) $(Y, \tau(\mathscr{V}))$ is H-closed for some para-uniform completion (Y, \mathscr{V}) of (X, \mathscr{U}) with r.u.o.
- **PROOF.** (a) \Rightarrow (b). Let \mathscr{F} be a $\tau(\mathscr{U}_*)$ -open ultrafilter on $\mathscr{U}X$. Either \mathscr{F} converges or \mathscr{F} is free. If \mathscr{F} is free, then $\mathscr{F}|_X$ is a $\tau(\mathscr{U})$ -free, $\tau(\mathscr{U})$ -open ultrafilter on X and so is \mathscr{U} -Cauchy. Let \mathscr{G} be the minimal \mathscr{U} -Cauchy filter contained in $\mathscr{F}|_X$. Then \mathscr{G} is a $\tau(\mathscr{U}_*)$ -adherence point of \mathscr{F} .
- (b) \Rightarrow (a). If \mathscr{F} is a free τ (\mathscr{U})-open ultrafilter on X, then $\{G \in \tau \ (\mathscr{U}_*): G \cap X \in \mathscr{F}\}$ generates a τ (\mathscr{U}_*)-open filter \mathscr{G} on $\mathscr{U}X$. Since ($\mathscr{U}X, \tau \ (\mathscr{U}_*)$) is H-closed, \mathscr{G} has an adherence point $\mathscr{H} \in \mathscr{U}X X$. Now $O_{\tau(\mathscr{U}_*)}^{\mathscr{H}_{\tau}X} = \mathscr{H} \cap \tau(\mathscr{U})$, and so every member of \mathscr{H} must meet every member of \mathscr{F} . So $\mathscr{H} \subset \mathscr{F}$, since \mathscr{F} is an open ultrafilter. Thus, \mathscr{F} is \mathscr{U} -Cauchy, since \mathscr{H} is \mathscr{U} -Cauchy.
- (b) \Rightarrow (c). Since $\tau(\mathcal{U}^*) = \tau(\mathcal{U}_*)^+$, $(\mathcal{U}X, \tau(\mathcal{U}^*))$ is H-closed if $(\mathcal{U}X, \tau(\mathcal{U}_*))$ is H-closed.
- (c) \Rightarrow (d). Any para-uniform completion of (X, \mathcal{U}) is a para-uniformly continuous image of $(\mathcal{U}X, \mathcal{U}^*)$ by Theorem 3.13. So $(Y, \tau(\mathcal{V}))$ is *H*-closed as the continuous image of $(\mathcal{U}X, \tau(\mathcal{U}^*))$.

- (d) \Rightarrow (e). $(\mathcal{U}X, \tau(\mathcal{U}_*))$ is H-closed, by (d).
- (e) \Rightarrow (b). By Theorem 3.15, $(\mathcal{U}X, \mathcal{U}_*)$ is a para-uniformly continuous image of (Y, \mathcal{V}) . So $(\mathcal{U}X, \tau(\mathcal{U}_*))$ is *H*-closed as the continuous image of $(Y, \tau(\mathcal{V}))$.

The example which follows may be helpful to the reader in distinguishing some of the para-uniform concepts being discussed.

EXAMPLE 4.6. Let Y = [0, 1], and let \mathscr{V} be the para-uniformity on Y, with subbasis consisting of all entourages in the usual (metric) uniformity on [0, 1] along with $B = \bigcup_{n=1}^{\infty} [(1/(n+1), 1/n) \times (1/(n+1), 1/n)]$. Then $\tau(\mathscr{V})$ is the usual topology on [0, 1]. Let X = (0, 1], and let $\mathscr{U} = \mathscr{V}|_X$. Then:

- (a) \mathscr{V} is pre-H-closed but not totally bounded. (No open ultrafilter converging to 0 can be \mathscr{V} -Cauchy.)
- (b) $(Y, \tau(\mathscr{Y}))$ is an *H*-closed extension of $(X, \tau(\mathscr{U}))$, but \mathscr{U} is not pre-*H*-closed. (Note that (Y, \mathscr{V}) does not have r.u.o. as a para-uniform extension of (X, \mathscr{U}) .) Thus, a non-pre-*H*-closed para-uniform space may have some *H*-closed para-uniform completions.

For a given totally bounded para-uniform space (or a given para-proximity space) the canonical para-uniform completions (or the canonical full para-proximal extensions), which we constructed in §3, yield the strict and simple *H*-closed extensions belonging to a particular *S*-equivalence class. It is clear from [18] that the set of *S*-equivalence classes so obtained cannot include all *S*-equivalence classes of *H*-closed extensions. Thus, it is of interest to characterize these classes. Such a characterization (in terms of the strict representative) is provided next.

DEFINITION 4.7. [19] A topological extension (Y, σ) of (X, τ) is said to have relatively completely regular outgrowth. (r.c.r.o.) if, whenever $y \in G$ $\in \sigma$, there is $H \in \sigma$ with $\{y\} \cup (Y - X) \subset H$ and a continuous function $f: (H, \sigma|_H) \to [0, 1]$ such that f(y) = 0 and $f(H - G) \subset \{1\}$.

Theorem 4.8. Let (Y, σ) be a topological extension of (X, τ) . The following are equivalent.

- (a) (Y, σ) is an H-closed extension of (X, τ) with r.c.r.o.
- (b) (Y, σ) is isomorphic to $(\mathcal{U}X, \tau(\mathcal{U}_*))$ for some compatible totally bounded para-uniformity \mathcal{U} on (X, τ) .
- (c) (Y, σ) is isomorphic to $(\delta X, \tau(\delta_*))$ for some compatible para-proximity space $(X, \mathcal{A}, \mathcal{D})$ on (X, τ) .

PROOF. (b) \Rightarrow (a). We show (more generally) that if (Y, \mathscr{V}) is a parauniform completion of (X, \mathscr{U}) with r.u.o. and \mathscr{U} is totally bounded, then $(Y, \tau(\mathscr{V}))$ is an *H*-closed extension of $(X, \tau(\mathscr{U}))$ with r.c.r.o. That $(Y, \tau(\mathscr{V}))$ is *H*-closed follows from Theorem 4.5. Let $y \in G \in \tau(\mathscr{V})$. Then there is $V \in \mathscr{V}$ with $V^{-1} = V$ and $y \in V[y] \subset G$. Set H = dom V and let \mathscr{V}_H be the uniformity induced on H by \mathscr{V} . (Recall that \mathscr{V}_H need not be separated.) Then $\{y\} \cup (Y - X) \subset H$, since (Y, \mathscr{V}) is an r.u.o. para-uniform completion of (X, \mathscr{U}) , and $H \in \tau(\mathscr{V})$. Since $(H, \tau(\mathscr{V}_H))$ is completely regular (not necessarily Tychonoff), there is a continuous function $f: (H, \tau(\mathscr{V}_H)) \to [0, 1]$ such that f(y) = 0 and $f(H - V[y]) \subset \{1\}$. But $\tau(\mathscr{V}_H) \subset \tau(\mathscr{V})$; so $f: (H, \tau(\mathscr{V})|_H) \to [0, 1]$ is continuous, and $f(H - G) \subset \{1\}$ since $V[y] \subset G$.

(a) \Rightarrow (b). Let (Y, σ) be an *H*-closed extension of (X, τ) with r.c.r.o. For each $y \in Y$ and $G \in \sigma$ with $y \in G$, let $H(G, y) \in \sigma$ such that there is a continuous function f(G, y): $H(G, y) \rightarrow [0, 1]$ with $\{y\} \cup (Y - X) \subset$ H(G, y), f(G, y)(y) = 0, and $f(G, y)(H(G, y) - G) \subset \{1\}$. Let $F = \{f(G, y), f(G, y), f(G$ y): $y \in G \in \sigma$, and, for each $f = f(G, y) \in F$, let H(f) = H(G, y). For $f \in F$ and $\varepsilon > 0$, let $V(f, \varepsilon) = (Y - \overline{H(f)}) \times (Y - \overline{H(f)}) \cup \{(x, y) \in H(f)\}$ $\times H(f):|f(x)-f(y)|<\varepsilon$. It is straightforward to show that $\{V(f,\varepsilon):$ $f \in F$, $\varepsilon > 0$ is a subbasis for a compatible totally bounded para-uniformity $\mathscr V$ on (Y, σ) . Let $\mathscr U = \mathscr V|_X$. Then it is clear that $(Y, \mathscr V)$ is a para-uniform completion of (X, \mathcal{U}) with r.u.o. We claim that (Y, \mathcal{V}) and $(\mathcal{U}X, \mathcal{U}_*)$ are para-uniformly isomorphic completions of (X, \mathcal{U}) . By Theorem 3.15, $p_*: (Y, \mathscr{V}) \to (\mathscr{U}X, \mathscr{U}_*)$ is para-uniformly continuous, and $p_*(x) = x$, for all $x \in X$. Define $j: \mathcal{U}X \to Y$ as follows. Set j(x) =x, for all $x \in X$, and, for $\mathscr{F} \in \mathscr{U}X - X$, let $j(\mathscr{F})$ be the unique point of Y to which the \mathscr{V} -Cauchy filter $\{G \subset Y : F \subset G \text{ for some } F \in \mathscr{F}\}\$ converges. To see that j is para-uniformly continuous, let $V = V(f, \varepsilon) \in \mathscr{V}$ and let $W = V(f, \varepsilon/3)$. Set $U = W \cap (X \times X)$. It is straightforward to show that $U_* \subset j^{-1}(V)$ and $(U_*)^0 = j^{-1}(V)^0$, so that $j^{-1}(V) \in \mathcal{U}_*$. Thus, $j: (\mathcal{U}X, \mathcal{U}_*) \to (Y, \mathcal{V})$ is para-uniformly continuous and j(x) =x, for all $x \in X$. It follows that (Y, \mathcal{V}) and $(\mathcal{U}X, \mathcal{U}_*)$ are para-uniformly isomorphic para-uniform extensions of (X, \mathcal{U}) . Thus, $(\mathcal{U}X, \tau(\mathcal{U}_*))$ and $(Y, \tau(\mathscr{V}))$ are is omorphic topological extensions of $(X, \tau(\mathscr{U}))$.

(b) \Leftrightarrow (c) follows from previous results.

It follows that an extension of a topological space with r.c.r.o. is a strict extension. (This was also pointed out in [19].) It is clear that there must be strict extensions of some topological spaces without r.c.r.o. An example of such an extension is given now.

EXAMPLE 4.9. Let $X = \{(n, m): n \in \mathbb{N}, m \in \mathbb{Z} - \{0\}\}$ and τ be the discrete topology on X. Let p = (0, 1), q = (0, -1), and $Y = X \cup \{p, q\} \cup \{(n, 0): n \in \mathbb{N}\}$. For $n, k \in \mathbb{N}$, let $G(n, k) = \{(n, 0)\} \cup \{(n, m) \in X: |m| > k\}$, let $G(p, k) = \{p\} \cup \{(j, m) \in X: j > k, m > 0\}$, and $G(q, k) = \{q\} \cup \{(j, m) \in X: j > k, m < 0\}$. Let σ be the topology on Y generated by the basis $\{\{x\}: x \in X\} \cup \{G(n, k): n, k \in \mathbb{N}\} \cup \{G(y, k): y \in \{p, q\}, k \in \mathbb{N}\}$.

Then (Y, σ) is a strict *H*-closed extension of (X, τ) , but p and q cannot be separated by any continuous real-valued function on any neighborhood of Y - X. So (Y, σ) does not have r.c.r.o. as an extension of (X, τ) .

A special class of totally bounded para-uniformities may be used to obtain *H*-closed extensions studied by Flachsmeyer [8].

DEFINITION 4.10. (a) [8] A topological extension (Y, σ) of (X, τ) is said to have relatively zero-dimensional outgrowth (r.z.d.o.) if σ has a base β such that $\operatorname{cl}_Y B - B \subset X$, for every $B \in \beta$.

(b) A collection \mathcal{B} of subsets of $X \times X$ is called transitive if $B \circ B \subset B$, for every $B \in \mathcal{B}$.

THEOREM 4.11. Let (Y, σ) be a topological extension of (X, τ) . The following are equivalent.

- (a) (Y, σ) is an H-closed extension of (X, τ) with r.z.d.o.
- (b) (Y, σ) is isomorphic to $(\mathcal{U}X, \tau(\mathcal{U}_*))$ for some compatible totally bounded para-uniformity \mathcal{U} on (X, τ) with a transitive basis.
- PROOF. (b) \Rightarrow (a). If $U \in \mathscr{U}$ with $U^{-1} = U$ and $U \circ U \subset U$, then $U \circ U \circ U \subset U$, whence $U_* \circ U_* \subset U_*$. Let $\beta = \{U_*[p]: U \in \mathscr{U}, U^{-1} = U, U \circ U \subset U, \text{ and } p \in U_*[p]\}$. Then β is a base for σ , and it is straightforward to show that if $B \in \beta$, then $\operatorname{cl}_{\mathscr{U}X} B B \subset X$. So (Y, σ) has r.z.d.o. as an extension of (X, τ) .
- (a) \Rightarrow (b). Let $\beta = \{G \in \sigma : \operatorname{cl}_Y G G \subset X\}$. Since (Y, σ) has r.z.d.o. as an extension of (X, τ) , β is a base for σ . Let $\mathscr V$ be the para-uniformity on Y generated by the subbasis $\{S(G): G \in \beta\}$, where $S(G) = (G \times G) \cup [(Y \operatorname{cl}_Y G) \times (Y \operatorname{cl}_Y G)]$ (as in Theorem 1.6). Then $\mathscr V$ is a compatible para-uniformity on (Y, σ) , and it is easy to verify that $\mathscr V$ has a transitive basis. Let $\mathscr U = \mathscr V|_X$. Then $\mathscr U$ has a transitive basis too. Further, if $y \in G \in \beta$, then define $f(G, y): G \cup (Y \operatorname{cl}_Y G) \to [0, 1]$ by f(G, y) ($G \cup \{0\}$ and $f(G, y): Y \operatorname{cl}_Y G \cup \{1\}$. As in the proof of Theorem 4.8, $\{V(f(G, y), \varepsilon): y \in G \in \beta, 0 < \varepsilon < 1/2\}$ generates a compatible para-uniformity $\mathscr V'$ on (Y, σ) such that, when we set $\mathscr U' = \mathscr V'|_X$, $(Y, \mathscr V')$ and $(\mathscr U'X, \mathscr U'_*)$ are para-uniformly isomorphic completions of $(X, \mathscr U')$. But when $y \in G \in \beta$ and $0 < \varepsilon < 1/2$, $V(f(G, y), \varepsilon) = S(G)$. So $\mathscr V = \mathscr V', \mathscr U = \mathscr U'$, and so $(Y, \mathscr V)$ and $(\mathscr UX, \mathscr U_*)$ are para-uniformly isomorphic completions of $(X, \mathscr U)$. Therefore, (Y, σ) and $(\mathscr UX, \tau(\mathscr U_*))$ are isomorphic topological extensions of (X, τ) .

EXAMPLE 4.12. Let (X, τ) be a topological space, and let $\mathscr U$ be the compatible para-uniformity on X with transitive basis $\{S(G): G \in \tau\}$ (as in Theorem 1.6). Then $(\mathscr UX, \tau(\mathscr U_*))$ is an H-closed extension of (X, τ) with r.z.d.o. In fact, $(\mathscr UX, \tau(\mathscr U_*))$ and $(\mathscr UX, \tau(\mathscr U^*))$ are, respectively, the strict

and simple filter extensions of (X, τ) based on the collection of free τ -open ultrafilters. Thus, $(\mathcal{U}X, \tau(\mathcal{U}_*))$ is the Fomin extension of (X, τ) [9], and $(\mathcal{U}X, \tau(\mathcal{U}^*))$ is the Katětov extension of (X, τ) [12].

Flachsmeyer [8] studied H-closed extensions with r.z.d.o. and noted that, up to isomorphism, they could be obtained as filter extensions based on the set of maximal filters from a collection of open sets called a π -basis. (A π -basis on (X, τ) is a base β for τ such that $G \in \beta$ implies $X - \bar{G} \in \beta$.) Using the idea of a full π -basis, he showed that there is a one-to-one correspondence between the full π -bases on (X, τ) and the isomorphism classes of H-closed extensions of (X, τ) with r.z.d.o. (A full π -basis may be defined as a π -basis, β , with the property that $G \in \beta$ if every open ultrafilter containing G contains a subset of G which is an element of G.) This yields the result that there is a one-to-one correspondence between the isomorphism classes of G-closed extensions of G-closed extensi

Also note that it follows immediately from Theorems 4.8 and 4.11 that an *H*-closed extension with r.z.d.o. has r.c.r.o. However, there are some topological spaces which have *H*-closed extensions with r.c.r.o. and without r.z.d.o., as the existence of Hausdorff compactifications of a non-rim compact Tychonoff space shows. Thus, the method presented in Theorem 4.8 for obtaining *H*-closed extensions yields a larger class of *H*-closed extensions than does the method of Flachsmeyer.

We shall conclude this section by developing a relationship between the H-closed extensions obtained as canonical para-uniform completions and those obtained as canonical θ -uniform completions. The notion of θ -uniformity was introduced by Fedorčuk in [5].

Definition 4.13. [5, 6] Let (X, τ) be a topological space.

- (a) A family α of subsets of X is a θ -cover of locally finite type if the members of α are regular open and if, for any point $x \in X$, there exist finitely many members V_1, \ldots, V_n of α with $x \in \text{int } \bigcup_{i=1}^n \text{cl } V_i$.
- (b) A collection μ of θ -covers of locally finite type is a θ -uniformity on (X, τ) (and (X, μ) is a θ -uniform space on (X, τ)) if the following conditions are satisfied:
- (F1) if $\alpha \in \mu$ and β is a θ -cover of locally finite type such that α refines β , then $\beta \in \mu$;
 - (F2) if α , $\beta \in \mu$, then α and β have a common star-refinement $\gamma \in \mu$;
- (F3) if x and y are distinct points in X, then there are neighborhoods G of x and H of y and $\alpha \in \mu$ such that $G \cap st(H, \alpha) \neq \emptyset$; and
- (F4) if $x \in X$ and G is a regular open neighborhood of x, then there is a neighborhood N of x and $\alpha \in \mu$ such that st $(N, \alpha) \subset G$.

A θ -uniformity does not determine the underlying topology, although a

certain amount of "compatibility" is required. Also a θ -uniformity μ on (X, τ) is a θ -uniformity on (X, σ) if σ and τ are θ -homeomorphic.

If μ is a θ -uniformity on a topological space (X, τ) , then a filter \mathscr{F} on X is called μ -Cauchy if, for every $\alpha \in \mu$, $\mathscr{F} \cap \alpha \neq \emptyset$. Every μ -Cauchy filter \mathscr{F} contains a unique minimal μ -Cauchy filter \mathscr{F}_0 and the regular open members of \mathscr{F}_0 form a filterbase which generates \mathscr{F}_0 .

If μ is a θ -uniformity on a topological space (Y, σ) and X is a dense subset of Y, then $\mu_X = \{\alpha_X : \alpha \in \mu\}$, where $\alpha_X = \{V \cap X : V \in \alpha\}$, forms a θ -uniformity on $(X, \sigma|_X)$.

DEFINITION 4.14. [5, 6] (a) A θ -uniformity μ on a topological space (Y, σ) is complete if every minimal μ -Cauchy filter converges

- (b) Let (Y, σ) be a topological extension of (X, τ) , let ν be a θ -uniformity on (Y, σ) , and let μ be a θ -uniformity on (X, τ) . (Y, ν) is a θ -uniform extension of (X, μ) if $\mu = \nu|_X$.
 - (c) A θ -uniform completion is a complete θ -uniform extension.
- (d) A θ -uniformity μ on (X, τ) is pre-compact if μ has a (covering-type) basis consisting of finite θ -covers of locally finite type.

It is clear from Proposition 10 in [6] that a θ -uniform space may have a number of distinct completions. Let μ be a θ -uniformity on (X, τ) . A canonical θ -uniform completion of (X, μ) is constructed in [6] as follows. Let \hat{X} be the set whose members are elements of X or free minimal μ -Cauchy filters on X. Define a topology $\hat{\tau}$ on \hat{X} by taking as a neighborhood basis at each point of X, all its neighborhoods in X, and at $\mathscr{F} \in \hat{X} - X$, all sets of the form $\{\mathscr{F}\} \cup G$ where $G \in \tau$ and int cl $G \in \mathscr{F}$. Then $(\hat{X}, \hat{\tau})$ is a topological (Hausdorff) extension of (X, τ) . Define a θ -uniformity $\hat{\mu}$ on $(\hat{X}, \hat{\tau})$ as follows. For $G \in \tau$, let \hat{G} denote the largest open subset of X such that $G = X \cap \hat{G}$. (Note that if G is regular open, then $\hat{G} = \inf_{\hat{X}} \operatorname{cl}_{\hat{X}}G$). For $\alpha \in \mu$ let $\hat{\alpha} = \{\hat{G}: G \in \alpha\}$ and set $\hat{\mu} = \{\hat{\alpha}: \alpha \in \mu\}$. Then $\hat{\mu}$ is indeed a complete θ -uniformity on $(\hat{X}, \hat{\tau})$ and $(\hat{X}, \hat{\mu})$ is a θ -uniform completion of (X, μ) . Moreover, if μ is pre-compact, then $(\hat{X}, \hat{\tau})$ is H-closed.

The theorem which follows shows that any totally bounded parauniform space induces a pre-compact θ -uniformity on its underlying topological space in a natural way.

THEOREM 4.15. Let (X, \mathcal{U}) be a totally bounded para-uniform space, and let $\tau = \tau(\mathcal{U})$.

- (a) For $U \in \mathcal{U}$, U symmetric, $\alpha(U) = \{ \text{int cl } U[x] : x \in X \}$ is a θ -cover of locally finite type on (X, τ) .
- (b) $\mu(\mathcal{U}) = \{\beta \colon \beta \text{ is a } \theta\text{-cover of locally finite type refined by } \alpha(U) \text{ for some symmetric } U \in \mathcal{U} \}$ is a pre-compact θ -uniformity on (X, τ) .
- PROOF. (a) Let $U \in \mathcal{U}$ be symmetric. Clearly, $\alpha(U)$ is a family of regular open subsets of (X, τ) . Now let $V \in \mathcal{U}$ be symmetric and open in the pro-

duct topology on $X \times X$ with $V^0 = U^0$ and $V \subset U$. Since \mathscr{U} is totally bounded, there is a finite set $F = \{x_1, \ldots, x_n\} \subset X$ such that $X = \operatorname{cl} V[F] = \operatorname{cl} \bigcup_{i=1}^n V[x_i] = \bigcup_{i=1}^n \operatorname{cl} V[x_i]$. Noting that each $V[x_i]$ is open, we have $X = \operatorname{int} X = \operatorname{int} \bigcup_{i=1}^n \operatorname{cl} V[x_i] = \operatorname{int} \bigcup_{i=1}^n \operatorname{cl} \operatorname{int} \operatorname{cl} V[x_i] \subset \operatorname{int} \bigcup_{i=1}^n \operatorname{cl} \operatorname{int} \operatorname{cl} U[x_i]$.

(b) We shall verify (F2) and the pre-compactness of $\mu(\mathcal{U})$, leaving the verification of (F3) and (F4) to the reader and noting that (F1) is obvious. Let $\alpha_1, \alpha_2 \in \mu(\mathcal{U})$. Then there are symmetric entourages $U_1, U_2 \in \mathcal{U}$ with $\alpha(U_i)$ refining α_i (i=1, 2). Let $V \in \mathcal{U}$ be symmetric and open in the product topology on $X \times X$ with $V^0 = (U_1 \cap U_2)^0$ and $V \circ V \circ V \subset U_1 \cap U_2$. Then it is straightforward to verify that $\alpha(V)$ is a common star refinement of $\alpha(U_1)$ and $\alpha(U_2)$, hence of α_1 and α_2 . Thus (F2) holds.

In order to verify that $\mu(\mathcal{U})$ is pre-compact, let $\alpha \in \mu(\mathcal{U})$. We must find a finite family $\beta \in \mu(\mathcal{U})$ such that β refines α . Let $U \in \mathcal{U}$ be symmetric with $\alpha(U)$ refining α . Let $V \in \mathcal{U}$ be symmetric and open in the product topology on $X \times X$ with $V^0 = U^0$ and $V \circ V \circ V \subset U$. Since \mathcal{U} is totally bounded, there is a finite set $F = \{x_1, \ldots, x_n\} \subset X$ such that cl V[F] = X. Now, as in the proof of (a), $\beta = \{\text{int cl } U[x_i]: i = 1, \ldots, n\}$ is a finite θ -cover of locally finite type. Also it may be verified easily that $\alpha(V)$ refines β . So $\beta \in \mu(\mathcal{U})$ and clearly β refines $\alpha(U)$ (and hence α).

Now, for a totally bounded para-uniform space (X, \mathcal{U}) , the canonical θ -uniform completion of $(X, \mu(\mathcal{U}))$ is $(\hat{X}, \hat{\mu}(\mathcal{U}))$ whose underlying topological space $(\hat{X}, \hat{\tau}(\mathcal{U}))$ is an H-closed extension of $(X, \tau(\mathcal{U}))$. Of course, the extensions $(\mathcal{U}X, \tau(\mathcal{U}_*))$ and $(\mathcal{U}X, \tau(\mathcal{U}^*))$ are also H-closed extensions of $(X, \tau(\mathcal{U}))$ which represent a single R-equivalence class of H-closed extensions. The next theorem asserts that $(\hat{X}, \hat{\tau}(\mathcal{U}))$ also represents this R-equivalence class.

THEOREM 4.16. Let (X, \mathcal{U}) be a totally bounded para-uniform space. Then $(\mathcal{U}X, \tau(\mathcal{U}^*))$ is θ -isomorphic to $(\hat{X}, \hat{\tau}(\mathcal{U}))$ as topological extensions of $(X, \tau(\mathcal{U}))$.

PROOF. First note that if \mathscr{F} is a \mathscr{U} -Cauchy filter on (X, \mathscr{U}) , then \mathscr{F} is a $\mu(\mathscr{U})$ -Cauchy filter on the θ -uniform space $(X, \mu(\mathscr{U}))$. Moreover, if \mathscr{F} is a minimal \mathscr{U} -Cauchy filter on (X, \mathscr{U}) , then the unique minimal $\mu(\mathscr{U})$ -Cauchy filter \mathscr{F}_0 on $(X, \mu(\mathscr{U}))$ contained in \mathscr{F} has $\{\text{int cl } F \colon F \in \mathscr{F}\}$ as a filterbase.

Now define $j\colon \mathscr{U}X\to \hat{X}$ by $j(x)=x\ (x\in X)$ and $j(\mathscr{F})=\mathscr{F}_0\ (\mathscr{F}\in \mathscr{U}X-X)$, where \mathscr{F}_0 is the unique minimal $\mu(\mathscr{U})$ -Cauchy filter contained in \mathscr{F} . (We have $j(\mathscr{F})=\mathscr{F}_0\in \hat{X}-X$, since \mathscr{F}_0 being free follows from \mathscr{F} being free.) If \mathscr{F}_1 , $\mathscr{F}_2\in \mathscr{U}X-X$ and $\mathscr{F}_1\neq \mathscr{F}_2$, then there are open members $F_1\in \mathscr{F}_1$ and $F_2\in \mathscr{F}_2$ with $F_1\cap F_2=\phi$. So int cl $F_1\cap$ int cl $F_2=\emptyset$. Since int cl $F_i\in (\mathscr{F}_i)_0\ (i=1,2)$, it follows that $(\mathscr{F}_1)_0\neq (\mathscr{F}_2)_0$. Thus, j is one-to-one.

If $\mathscr{F} \in \mathscr{U}X - X$, then a neighborhood basis at \mathscr{F} in $\tau(\mathscr{U}^*)$ consists of sets of the form $\{\mathscr{F}\} \cup G$, where G is an open member of \mathscr{F} , and a neighborhood basis at $\mathscr{F}_0 = j(\mathscr{F})$ in $\widehat{\tau}(\mathscr{U})|_{j(\mathscr{U}X)}$ consists of sets of the form $\{\mathscr{F}_0\} \cup G$ where G is open and int cl $G \in \mathscr{F}_0$. It follows in a straightforward manner that $j \colon \mathscr{U}X \to j(\mathscr{U}X)$ is a θ -continuous, open surjection. Now, $j(\mathscr{U}X)$, being the θ -continuous image of an H-closed space, is H-closed itself. Since $j(\mathscr{U}X)$ contains $X, j(\mathscr{U}X)$ is dense in \widehat{X} . Thus, $j(\mathscr{U}X) = \widehat{X}$, whence j is onto.

Therefore, j is a θ -isomorphism, as desired.

If we identify the points of \hat{X} with the points of $\mathcal{U}X$ via the θ -isomorphism of the preceding theorem, then $\hat{\mu}(\mathcal{U})$ becomes a complete θ -uniformity on $(\mathcal{U}X, \tau(\mathcal{U}^*))$ (and also on $(\mathcal{U}X, \tau(\mathcal{U}_*))$), according to Proposition 10 in [6]). (Also $\mu(\mathcal{U}^*)$ and $\mu(\mathcal{U}_*)$ are θ -uniformities on $\mathcal{U}X$ with any topology σ for which $(\mathcal{U}X, \sigma)$ is θ -isomorphic to $(\mathcal{U}X, \tau(\mathcal{U}_*))$. In fact it can be shown that, as θ -uniformities on $(\mathcal{U}X, \sigma)$, $\hat{\mu}(\mathcal{U})$, $\mu(\mathcal{U}^*)$, and $\mu(\mathcal{U}_*)$ are identical.) Thus, we have the following corollary.

COROLLARY 4.17. Let (Y, σ) be an H-closed extension of (X, τ) with r.c.r. o. Then there is a pre-compact θ -uniformity μ on (X, τ) such that the underlying topological space $(\hat{X}, \hat{\tau})$ of the canonical θ -uniform completion $(\hat{X}, \hat{\mu})$ belongs to the R-equivalence class of (Y, σ) .

The R-equivalence classes of H-closed extensions of a given topological space which are represented by canonical θ -uniform completions of precompact θ -uniformities on the space have not been characterized. However, it is clear that any such R-equivalence class contains an H-closed extension whose outgrowth is completely regular. The example which follows shows not only that an H-closed extension with completely regular outgrowth need not have r.c.r.o., but in fact need not be θ -isomorphic to an extension with r.c.r.o.

EXAMPLE 4.18. Let (X, τ) and (Y, σ) be the topological spaces introduced in Example 4.9. Recall that (Y, σ) is a strict *H*-closed extension of (X, τ) but does not have r.c.r.o. since the points p and q in Y-X cannot be separated by any real-valued continuous function on any neighborhood of Y-X.

Now Y-X is completely regular since it is discrete in the relative topology inherited from Y. Moreover, (Y, σ) cannot be θ -isomorphic to any extension of (X, τ) with r.c.r.o. For, suppose that (Z, η) is an extension of (X, τ) with r.c.r.o. and $h: Y \to Z$ is a θ -isomorphism. Since h(p) and h(q) are two distinct points of Z-X, there is a neighborhood $H \in \eta$ of Z-X and a continuous function $f: H \to [0, 1]$ with $f(h(p)) \neq f(h(q))$. Set $K = h^{-1}(H)$ and define $g: K \to [0, 1]$ by $g = f \circ h$. Then $K \in \sigma$, $Y-X \subset K$, and G is continuous since G is regular. Thus G separates G and G a contradiction.

5. Superstructures and H-closed extensions. In [7] Fedorčuk uses collections of θ -proximities called H-structures to construct all semiregular H-closed extensions of a given semiregular topological space. Thus, the R-equivalence classes of H-closed extensions of a given space may be described in terms of these H-structures. In this section we develop properties of certain collections of para-uniformities, which we shall call superstructures, and we shall be able to describe the S-equivalence classes of H-closed extensions of a given space in terms of these collections.

DEFINITION 5.1. Let $\mathscr C$ be a nonempty collection of pair-wise compatible para-uniformities on a set X. (I.e., if $\mathscr U_1$, $\mathscr U_2 \in \mathscr C$, then $\tau(\mathscr U_1) = \tau(\mathscr U_2)$.)

- (a) A filter \mathscr{F} on X is called \mathscr{C} -Cauchy if \mathscr{F} is \mathscr{U} -Cauchy for some $\mathscr{U} \in \mathscr{C}$.
- (b) $M(\mathscr{C})$ denotes the collection of all free \mathscr{C} -Cauchy filters on X (where adherence is computed with respect to the topology induced commonly by $\mathscr{U} \in \mathscr{C}$).
- (c) Two filters \mathscr{F} and \mathscr{G} in $M(\mathscr{C})$ are said to be contiguous if there is a finite set $\{\mathscr{F}_1, \ldots, \mathscr{F}_n\} \subset M(\mathscr{C})$ such that $\mathscr{F}_1 = \mathscr{F}$, $\mathscr{F}_n = \mathscr{G}$, and \mathscr{F}_i meets \mathscr{F}_{i+1} for $i = 1, \ldots, n-1$.

The relation of "being contiguous" is an equivalence relation on $M(\mathcal{C})$, as may be verified easily.

DEFINITION 5.2. Let \mathscr{C} be as in Definition 5.1. For $\mathscr{F} \in M(\mathscr{C})$, let $m(\mathscr{F})$ denote the equivalence class under "being contiguous" of \mathscr{F} , and let \mathscr{F}^{\sharp} denote the filter on X which is the intersection of all filters in $m(\mathscr{F})$. A set M of filters on a topological space (X, τ) is free if each filter in M is free, and M is separated if any two distinct filters \mathscr{F} and \mathscr{G} in M contain disjoint members $F \in \mathscr{F}$ and $G \in \mathscr{G}$.

DEFINITION 5.3. Let \mathscr{C} be a nonempty collection of pair-wise compatible para-uniformities on a set X.

- (a) $\mathscr C$ is called a superstructure on X if $\{\mathscr F^{\sharp}\colon \mathscr F\in M(\mathscr C)\}$ is free and separated.
- (b) $\mathscr C$ is said to be compatible with a topology τ on X if $\tau(\mathscr U) = \tau$ for every $\mathscr U \in \mathscr C$, in which case we write $\tau(\mathscr C) = \tau$.

DEFINITION 5.4. Let $\mathscr C$ be a compatible superstructure on a topological space $(X,\,\tau)$.

- (a) A topological extension (Y, σ) of (X, τ) is a \mathscr{C} -completion of (X, τ) if every \mathscr{C} -Cauchy filter on X has a σ -adherence point in Y.
- (b) Let $\mathscr{C}X = X \cup \{\mathscr{F}^{\sharp} : \mathscr{F} \in M(\mathscr{C})\}$ and let $\mathscr{C}\tau$ be the topology on $\mathscr{C}X$ such that $(\mathscr{C}X, \mathscr{C}\tau)$ is the strict filter extension of (X, τ) based on $\{\mathscr{F}^{\sharp} : \mathscr{F} \in M(\mathscr{C})\}$ [2].

PROPOSITION 5.5. Let \mathscr{C} be a compatible superstructure on (X, τ) .

- (a) $(\mathscr{C}X, \mathscr{C}\tau)$ is a \mathscr{C} -completion of (X, τ) .
- (b) $(\mathscr{C}X, \mathscr{C}\tau)$ is H-closed if and only if, for each free τ -ultrafilter \mathscr{F} on X, there is $\mathscr{G} \in M(\mathscr{C})$ such that $\mathscr{G}^{\sharp} \subset \mathscr{F}$.
 - (c) If each free τ -ultrafilter is \mathscr{C} -Cauchy, then $(\mathscr{C}X, \mathscr{C}\tau)$ is H-closed.
 - (d) If some $\mathcal{U} \in \mathcal{C}$ is pre-H-closed, then $(\mathcal{C}X, \mathcal{C}\tau)$, is H-closed.

PROOF. (a). That $(\mathscr{C}X, \mathscr{C}\tau)$ is Hausdorff follows from the fact that $\{\mathscr{F}^{\sharp}: \mathscr{F} \in M(\mathscr{C})\}$ is free and separated. If $\mathscr{F} \in M(\mathscr{C})$, then \mathscr{F}^{\sharp} is a $\mathscr{C}\tau$ -adherence point of \mathscr{F} in $\mathscr{C}X$. So $(\mathscr{C}X, \mathscr{C}\tau)$ is a \mathscr{C} -completion of (X, τ) .

(b) is easily verified, and (c) follows from (b) since $\mathscr{F}^{\sharp} \subset \mathscr{F}$ for every $\mathscr{F} \in M(\mathscr{C})$. Moreover, (d) follows from (c) since each free τ -ultrafilter will be \mathscr{U} -Cauchy when \mathscr{U} is a pre-H-closed member of \mathscr{C} .

We are now able to describe all isomorphism classes of strict H-closed extensions of a given, non-H-closed, topological space (X, τ) as canonical \mathscr{C} -completions $(\mathscr{C}X, \mathscr{C}\tau)$ for certain compatible superstructures \mathscr{C} on (X, τ) . But first we need a lemma. Recall that the Katětov extension $(\kappa X, \kappa)$ of a topological space (X, τ) is projectively larger than any other H-closed extension of (X, τ) . We can take $\kappa X = X \cup \{\mathscr{F}: \mathscr{F} \text{ is a free } \tau\text{-open ultrafilter on } X\}$ so that $(\kappa X, \kappa)$ is the simple filter extension based on the set of free open ultrafilters on (X, τ) . If (Y, σ) is any H-closed extension of (X, τ) and $f: \kappa X \to Y$ is the unique continuous surjection fixing the points of X, then, for any free τ -open ultrafilter \mathscr{F} on X, we have $f(\mathscr{F}) = y \in Y - X$ if and only if $O_{\sigma}^{v,X} \subset \mathscr{F}$.

LEMMA 5.6. Let (Y, σ) be an H-closed extension of a non-H-closed space (X, τ) , and let $y \in Y - X$ be fixed. Then there is a compatible para-uniformity $\mathcal{U}(y)$ on (X, τ) such that:

- (a) $\mathcal{U}(y)$ is totally bounded and has a transitive basis, and
- (b) the filter on X generated by $O_{\sigma}^{y,X}$ is a free minimal $\mathcal{U}(y)$ -Cauchy filter, and the other free minimal $\mathcal{U}(y)$ -Cauchy filters are the members of $\kappa X X$ which do not contain $O_{\sigma}^{y,X}$.

PROOF. Let $f: \kappa X \to Y$ be the unique continuous surjection which fixes the points of X. Since $\tau - \bigcup f^{-1}(y)$ is a base for τ , $\beta = O_{\sigma}^{y,X} \bigcup (\tau - \bigcup f^{-1}(y))$ is a base for τ . Let $\mathscr{U}(y)$ denote the para-uniformity on X generated by $\{S(G): G \in \beta\}$ as in Theorem 1.6. It is clear that $\mathscr{U}(y)$ is compatible, totally bounded, and has a transitive basis. So (a) follows.

(b). Let $\mathscr{F} \in \kappa X - X$ such that $f(\mathscr{F}) = y$. Then $O_{\sigma}^{y,X} \subset \mathscr{F}$ and \mathscr{F} is $\mathscr{U}(y)$ -Cauchy since $\mathscr{U}(y)$ is totally bounded. Let \mathscr{G} be the minimal $\mathscr{U}(y)$ -Cauchy filter contained in \mathscr{F} . Recall that $\mathscr{G} = \{U[F]: U \in \mathscr{U}, F \in \mathscr{F}\}$. Now if $G \in O_{\sigma}^{y,X}$, then S(G)[G] = G. Thus, $O_{\sigma}^{y,X} \subset \mathscr{G}$. Let $B \in \tau - \bigcup f^{-1}(y)$. Then $y \notin \operatorname{cl}_Y B$ and so $X - \operatorname{cl}_X B = X \cap (Y - \operatorname{cl}_Y B) \in O_{\sigma}^{y,X}$. So $S(B)[x] \in O_{\sigma}^{y,X}$, for any $x \in X - \operatorname{cl}_X B$. Therefore, the filter generated on X by

 $O_{\sigma}^{y,X}$ is $\mathscr{U}(y)$ -Cauchy (and hence equals \mathscr{G}) and is a free, minimal $\mathscr{U}(y)$ -Cauchy filter.

Now suppose that $\mathscr{F} \in \kappa X - X$ and $O_{\sigma}^{y,X} \not\subset \mathscr{F}$. Then \mathscr{F} is $\mathscr{U}(y)$ -Cauchy since $\mathscr{U}(y)$ is totally bounded. There are open sets $B \in \mathscr{F}$ and $G \in O_{\sigma}^{y,X}$ such that $B \cap G = \emptyset$. If $F \in \mathscr{F}$, then $B \cap F \in \mathscr{F}$ and $B \cap F \in \tau - \bigcup f^{-1}(y)$. So $S(B \cap F)$ $[B \cap F] = B \cap F \subset F$. Thus, \mathscr{F} is a free, minimal $\mathscr{U}(y)$ -Cauchy filter. On the other hand, it is straightforward to verify that if $\mathscr{F} \in \mathscr{U}(y)X - X$ and $O_{\sigma}^{y,X} \not\subset \mathscr{F}$, then $\mathscr{F} \in \kappa X - X$.

THEOREM 5.7. Let (Y, σ) be a topological extension of a non-H-closed space (X, τ) . The following are equivalent.

- (a) (Y, σ) is a strict H-closed extension of (X, τ) .
- (b) (Y, σ) is isomorphic to $(\mathscr{C}X, \mathscr{C}\tau)$ for some compatible superstructure \mathscr{C} on (X, τ) whose members are pre-H-closed.

PROOF. (b) \Rightarrow (a) follows from previous results.

(a) \Rightarrow (b). For each $v \in Y - X$, let $\mathcal{U}(v)$ be the para-uniformity on X guaranteed by Lemma 5.6. and let $\mathscr{C} = \{\mathscr{U}(y): y \in Y - X\}$. Then \mathscr{C} is a nonempty collection of compatible, pre-H-closed para-uniformities on (X, τ) . We claim that $\{\mathscr{F}^{\sharp}: \mathscr{F} \in M(\mathscr{C})\}$ is precisely the collection of filters generated on X by $Q_{\sigma}^{y,X}$ for some $v \in Y - X$. To see this, note that (as in the proof of Lemma 5.6) $O_{\sigma}^{y,X}$ generates a free \mathscr{C} -Cauchy filter for each $y \in Y - X$, and also, for each $\mathcal{F} \in M(\mathscr{C})$, there is some $y \in Y - X$ such that $O^{y,X} \subset \mathcal{F}$. Since (Y, σ) is Hausdorff, it follows that, for each $\mathcal{F} \in$ $M(\mathscr{C})$ there is some $y \in Y - X$ such that \mathscr{F}^{\sharp} equals the filter generated by $O_d^{y,X}$ and, hence, $\mathscr{F}^{\sharp} \in M(\mathscr{C})$ for each $\mathscr{F} \in M(\mathscr{C})$. The claim follows immediately. Therefore, $\{\mathscr{F}^{\sharp}: \mathscr{F} \in M(\mathscr{C})\}$ is a free and separated set of filters, whence \mathscr{C} is a superstructure. Moreover, $\mathscr{C}X - X = \{\mathscr{F}^{\sharp} : \mathscr{F} \in \mathscr{F}\}$ $M(\mathscr{C})$ consists precisely of the filters generated on X by $O_{\sigma}^{y,X}$ for some $y \in Y - X$. The mapping $h: (\mathscr{C}X, \mathscr{C}\tau) \to (Y, \sigma)$ defined by h(x) = x(if $x \in X$) and $h(\mathscr{F}) = y$ (if $\mathscr{F} \in \mathscr{C}X - X$ and $O_{\sigma}^{y,X} \subset \mathscr{F}$) is an isomorphism since $(\mathscr{C}X, \mathscr{C}\tau)$ and (Y, σ) are strict extensions of (X, τ) with identical filter traces.

REFERENCES

- 1. P. Alexandroff, Some results in the theory of topological spaces obtained within the last twenty-five years, Russian Math. Surveys 15 (1960), 23-83.
- 2. B. Banaschewski, Extensions of topological spaces, Canad. Math. Bull. 7 (1964), 1-22.
- 3. N. Bourbaki, General Topology, Part I, Addison-Wesley Publishing Co., Reading, Mass., 1966.
- 4. John W. Carlson, *H-closed and countably compact extensions*, Pacific J. Math 81 (2) (1979), 317-326.

- 5. V.V. Fedorčuk, Uniform spaces and perfect irreducible mappings of topological spaces, DAN SSSR 192 (1970), 1228–1230.
- 6. , Completeness and products of θ -uniform spaces, Colloquia Mathematica Societatis Janos Bolyai, 1972.
- 7. ——, A problem of A. N. Tychonoff on the classification of H-closed extensions, Fund. Math. LXXXVI (1974).
- 8. J. Flachsmeyer, Zur Theorie der H-abgeschlossen Erweiterungen, Math. Z. 94 (1966), 349-381.
- 9. S.V. Fomin, *The theory of H-closed extensions of topological spaces*, (Russian) Mat. Sb. 8 (1940), 285-294.
- 10. A.A. Gryzlov, *H-closed extensions*, Izvestiya VUZ Mathematika, Vol. 18, No. 7 (1974), 21–26.
- 11. A.A. Ivanov, Regular extensions of topological spaces, Izv. Akad. Nauk USSR Ser. Fiz. Mat. 1 (1966), 28-35.
- 12. M. Katětov, Über H-abgeschlossene und bikompakte Raume, Čas. Mat. Fys. 69 (1940), 36-49.
 - 13. W. Kulpa, On a generalization of uniformities, Coll. Math. 25 (1972), 227-240.
- 14. M.G. Murdeshwar and S.A. Naimpally, Quasi-uniform topological spaces, Noordhoff, 1966.
- 15. S.A. Naimpally and B.D. Warrack, *Proximity Spaces*, Cambridge Tracts in Mathematics and Mathematical Physics, No. 59, Cambridge University Press, 1960.
- **16.** R.G. Ori and W.J. Thron, *On* θ -proximities and related f-proximities, Quaes. Math. **5** (1982), 317-329.
- 17. S.G. Ovsepjan, Construction of all Hausdorff and all H-closed extensions of topological spaces, DAN SSSR, 224 (1975), 764-767.
- **18.** J.R. Porter and C. Votaw, *H-closed extensions*. *I*, General Topology and its Applications **3** (1973), 211–224.
 - 19. and , H-closed extensions. II, Trans. A.M.S. 202 (1975), 193-209.
 - 20. Ju. M. Smirnov, On Proximity Spaces, A.M.S. Transl. 38 (1964), 5-38.
- 21. M.H. Stone, Applications of the theory of Boolean rings to general topology, Trans. A.M.S. 41 (1937), 375-401.
- 22. Wolfgang J. Thron, *Topological Structures*, Rinehart and Winston, New York, 1966.
- 23. C. Votaw, *H-closed extensions as para-uniform completions*, Ph.D. Dissertation, Univ. of Kansas, Lawrence, Kansas, 1971.
- 24. Stephen Willard, *General Topology*, Addison-Wesley Publishing Co., Reading, Mass., 1970.

UNIVERSITY OF NORTH DAKOTA, GRAND FORKS, ND 58202 FORT HAYS STATE UNIVERSITY, HAYS, KS 67601