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PARA-UNIFORMITIES, PARA-PROXIMITIES, AND
H-CLOSED EXTENSIONS

STEPHAN C. CARLSON AND CHARLES VOTAW

ABSTRACT. A generalized uniformity, called a para-uniformity,
and its induced generalized proximity, called a para-proximity,
are introduced and applied to the investigation of H-closed spaces
and H-closed extensions of Hausdorff spaces.

H-closed spaces are characterized in terms of these structures,
and the H-closed extensions of a Hausdorff space are characterized
in terms of extensions of these structures. Moreover, collections of
para-uniformities called superstructures are used to obtain all
strict H-closed extensions of a non-H-closed Hausdorff space.
Thus, the S-equivalence classes of H-closed extensions are des-
cribed by a method similar to that of Fedorduk for describing the
R-equivalence classes.

0. Introduction. Alexandroff [1] remarked in 1960 that no method
of systematically determining the H-closed extensions of a Hausdorff
space had been found. In classifying (the isomorphism classes of) such
extensions, the introduction of two equivalence relations discussed in
[18] is helpful. We declare two H-closed extensions of a given space to
be R-equivalent if they are §-isomorphic and to be S-equivalent if their
corresponding strict (or simple) extensions are isomorphic. In attempts
to answer Alexandroff’s remark, various authors have sought methods for
obtaining all isomorphism classes, all R-equivalence classes, or all S-
equivalence classes. (See, for instance, [2, 4, 7, 10, 11, 17 or 21].)

Fedorcuk [7] refers to the particular problem of constructing the H-
closed extensions of a given Hausdorff space by means of uniformity or
proximity-like structures as “Tychonoff’s problem.”” He [7], Porter and
Votaw [18] have shown that in general there are not enough such structures
on a set to yield all isomorphism classes of either semiregular H-closed
extensions or strict H-closed extensions of one of its Hausdorff topologies.
According to results in [18] this implies that neither the R-equivalence
classes nor the S-equivalence classes can be obtained in this manner, and
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thus Tychonoff’s problem has no solution. However, Fedoréuk [7] uses
““H-structures,” which are collections of generalized proximities called
““f-proximities,” to construct all semiregular H-closed extensions of a
semiregular Hausdorff space. (In [16] #-proximities on regular topological
spaces are shown to coincide with particular f~-proximities.) Thus, we
may use H-structures to describe all R-equivalence classes of H-closed
extensions of a given Hausdorff space. Although nearness structures
have been used by J.W. Carlson [4] to construct the strict H-closed ex-
tensions (and, hence, the S-equivalence classes of H-closed extensions)
of a given space, the following question has remained unanswered in the
literature: can collections of generalized uniformities or proximities be
used to obtain the S-equivalence classes of H-closed extensions of a given
Hausdorff space? In this paper we provide an affirmative answer to this
question.

In particular we shall introduce a generalized uniformity, called a
para-uniformity, and its associated generalized proximity, called a para-
proximity. These notions enable us to obtain new characterizations of
H-closed spaces and of H-closed extensions of Hausdorff spaces. Canoni-
cal completions of these structures yield a rather large class of strict H-
closed extensions (those with “‘relatively completely regular outgrowth’),
and this class is shown to include the extensions with “relatively zero-
dimensional outgrowth” studied by Flachsmeyer [8]. Moreover, collec-
tions of para-uniformities called superstructures will be used to obtain
a representative from each isomorphism class of strict H-closed extensions.
Thus, we obtain a new description of the S-equivalence classes of H-
closed extensions of a given Hausdorff space by means of superstructures.

Fedorcuk [5] has previously introduced generalized uniformities called
“@-uniformities,”” which he later used to construct members of a class of
H-closed extensions as canonical completions [6]. We shall develop a
relation between these completions and those of para-uniformities. We
are thankful to the referee for bringing to our attention [13], where Kulpa
develops generalized covering uniformities which correspond to the
(diagonal) para-uniformities introduced here. Hence, many results in this
paper extend and illuminate results of [13].

The development of the theory of para-uniform and para-proximity
spaces to a great extent parallels that of uniform and proximity spaces.
Thus, many details of the proofs of the early basic results are left to the
reader, who might find reference to [3], [14], [15], [22], or [24] helpful.

A few comments about notation and terminology are appropriate now.
If (Y, o) is a topological space, X < Y, and y e ¥, then Oy% denotes
{G N X:yeGeg}. Thus, O3 is the collection of open neighborhoods of
yin Y. If (Y, o) is an extension of (X, ), then the associated strict (res-
pectively, simple) extension is denoted by (Y, ¢¥) (respectively, (¥, ¢*)).
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Recall [18] that a basis for the topology ¢* on Y is {G*: G ez} where
G* = {y € Y: G € Oy*}, while a basis for the topology ¢* on Yis {G U
{y}: GeOyX, yeY}. Moreover, ¢* = g < g* and O¥¥ = 03X =
0¥, for each y € Y. An extension (Y, o) of (X, 7) is called a strict (res-
pectively, simple) extension if ¢ = ¢* (respectively, ¢ = ¢%). If & is a
filter on a space (X, 7), then & will be called an open filter or z-filter if
& has a base of open sets.

The study of para-uniform spaces was initiated in the Ph. D. disserta-
tion of the second author [23].

1. Para-uniform spaces. If X is a set and A4 is a subset of X, then we shall
let A(4) = {(x, x):x€A}.fUc X x Xweletdom U = {x: (x,») e U
for some y € X}, U® = A(dom U), and U1 = {(y, x): (x, y) € U}. Also, if
Uc X x Xand 4 < X, let U[A4] = {y: (x, y) € U for some x € A}. When
U VcXxXwelet UeV = {(x, y): for some ze X, (x, z)€ V and

(z, ) e U}.

DerINITION 1.1. Let X be a set and let % be a collection of subsets of
X x X which satisfies:

Ul X x Xeu,

(U2) if Ue %, then U° = U;

(U3) if Ue¥,then U N U le,;

(U4) if U, V e %, then there is We % such that Wo W < U () V and
wo=(UnN ¥

(US) if Ue and U = V =« X x X with U% = V0, then Ve %;and

(U6) if U, Ve % and x € X with U[x] # @, then U[x] [ dom V # &.
Then % is called a para-uniformity on X, and (X, %) is called a para-
uniform space. The members of % are called entourages.

Note that if condition (U2) is strengthened to require that A(X) c U
for every U € %, then % is a uniformity on X. Of course, in this case, some
of the conditions (Ul) - (U6) are redundant, but this shows that the
conditions are consistent and that the collection of para-uniformities on a
set is nontrivial in general.

If % is a para-uniformity on X and x € X, let #(x) = {U[x]: Ue %} —
{@}. It may be shown easily, using conditions (Ul) - (U5), that {#(x):
x € X} is a neighborhood system on X. The resulting topology on X will be
denoted by 7(%). Note that G € ¢(%) if and only if x € G implies there is
some U € % such that x € U[x] = G. Condition (U6) simply says that, for
each entourage U € %, dom U is 7(%)-dense in X. Note that if  and ¥~
are para-uniformities on X and % < ¥, then (%) < ©(¥").

DEFINITION 1.2, Let (X, %) be a para-uniform space. (a) % is said to
be compatible with a topology 7 on X if 7 = 7(%). (b) If (X, ©(%)) is
Hausdorff, then % is called a separated para-uniformity.
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Throughout this paper many useful elementary results concerning para-
uniform entourages and topologies will be needed. For example, if % is a
para-uniformity on a set X, U is a symmetric entourage in %, and x € dom
U, then

() Ulx] x Ulx] « U- U;

(2) y € U[x] implies U[y] = (U~ U) [x]; and

(3) U[x] = dom U implies U[x] < (U - U) [x].

Similar results occasionally will be noted as needed.

As in the theory of uniform spaces, it is convenient to consider collec-
tions with certain properties which generate, in a specified manner, unique
para-uniformities.

DEerINITION 1.3. Let X be a set. (a) Let & be a collection of subsets
of X x X which satisfies (U2), (U4), and (U6) of Definition 1.1 and
(B3):if B e &, then there is some D € #suchthat D « B ()} B~land DY =
B,. Then £ is called a para-uniform basis on X. (b) Let & be a collection of
subsets of X x X which satisfies (U2) and (U6) of Definition 1.1 and
(S4): if S € &, then there is some T € & such that 7o T < S (] S7! and
70 = SO Then & is called a para-uniform subbasis on X.

If # is a para-uniform basis on X, then it may be shown easily that
UB) ={X x X} U{Uc X x X: for some Be 4, B< U and B’ =
U% is the smallest para-uniformity on X which contains #. If & is a para-
uniform subbasis on X, then it may also easily be verified that #(%) =
{N 7: 7 is a finite subcollection of &} (where | ¢ = X x X) is a para-
uniform basis on X and that %(#(%)) is the smallest para-uniformity on
X containing &. %(%4(%)) may also be denoted by #(%).

We will freely use the fact that the collection of symmetric entourages
of a para-uniformity % which are open in the product topology z(#) x
(%) is a basis for %.

A para-uniformity on X may be described in terms of uniformities on
subsets of X. This is the content of the next two propositions, whose
straightforward proofs are omitted.

PrROPOSITION 1.4. Let (X, %) be a para-uniform space and set <f4 =
{dom U: Ue%}. For each A€ ofy, By ={Veu: V="V and dom
V = A} is a basis for a uniformity %, on A. Moreover, the following
properties are satisfied:

(1) X € o4 and of 4 is closed under finite intersections;

(i) if Ay, Aze Ay and V€ Uy (i=1, 2), then V1 () V3 € U 4,04,; and

(iil) if Ay, Ay ALy, VEU,, and x € X with V[x] # @, then V[x] N
A # O

PROPOSITION 1.5. Let X be a set, let o/ be a collection of subsets of X,

and for each A € of let ¥ 4 be a uniformity on of . Moreover, assume that the
following properties are satisfied:
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(i) X € &7 and s¢ is closed under finite intersections;

(i) if Ay, Ape L and V€ ¥ 4,(i = 1, 2), then V1 (| V2 € ¥ g4, and

(iii) if Ay, Az€e o, VEV 4, and x € X with V[x] # @, then V[x] N
AZ # @.

Then B = \J gacyw ¥ 4 is a para-uniform basis for a para-uniformity U
on X, and ¥ 4 = U 4, where U, is the uniformity on A with basis {V €
U: V=V and dom V = A}.

If (X, %) is a para-uniform space, 4 € o7,, and %, is the uniformity
on A induced by # as in Proposition 1.4, then it is clear that 7(%,) =
7(%), where 7(% 4) is the uniform topology on 4 induced by % 4. (Observe
first that A4 is 7(#%)-open in X since it is the domain of an entourage.)

The preceding characterization of a para-uniform space demonstrates
that a para-uniformizable topology may be obtained from uniformizable
topologies on dense subsets. It follows from the next result that every
topology is of this type.

THEOREM 1.6. Let (X, 7) be a topological space, and let 8 be a subbasis for
7. For each Gef let S(G) = (G x G) U [(X — G) x (X — G). Then
& = {S(G): GepB} is a subbasis for a compatible para-uniformity on
X, 7).

ProoF. For G e, S(G) - S(G) = S(G), S(G)-! = S(G), and if x e X
with S(G) [x] # &, then S(G) [x] = G or X — G. With these observations,
it is straightforward to verify (U2), (U6), and (S4) for & and that o(% (%))
=T.

Note that if ¢ is a subbase for the topology 7 on X and ¢ consists of
open dense subsets of X, then {G x G: G € g} also serves as a subbasis for
a compatible para-uniformity on (X, 7).

Certain subsets of para-uniform spaces become para-uniform spaces in
the natural manner.

ProposITION 1.7. Let (Y, %) be a para-uniform space and let X be either
7(U)-open or (U)-dense in Y. Then |y = {U (N (X x X): Ue%} is a
para-uniformity on X. Moreover, if & is a basis (respectively, subbasis)
Sfor U, then {B N (X x X): Be $} is a basis (respectively, subbasis) for
%lx.

Proor. It is straightforward to verify (Ul) — (US) for #|x. Recall that
these are the conditions of Definition 1.1 needed to insure that %|y induces
the topology 7(#|x) on X. Also, it is straightforward to then show that
©(%|x) = ©(%)|x. So (U6) may be verified by a completely topological
argument: the domain of any entourage in %|y is 7(%|x)-dense in X since
it is the intersection of a 7(%)-dense and z(%)-open subset of Y with a
subset of Y which is either ¢(#)-dense or z(%)-open.
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DEFINITION 1.8. Let (Y, %) be a para-uniform space and let X be either
a 7(#%)-dense or a t(%)-open subset of Y. Then %|y is called the relative
para-uniformity on X.

We shall conclude this section by discussing the generalization of uni-
formly continuous mappings to the para-uniform case. If f/: X - Y is a
function and ¥V < Y x Y, then we use f~1(¥) to denote {(x, y) e X x X:

(fx), f(y) eV}

DEFINITION 1.9. Let (X, «) and (Y, ¥) be para-uniform spaces and let
f+ X — Y be a function.

(a) f is para-uniformly continuous if, for each Ve ¥~ with f~1(V) # @,
fiwvyea.

(b) If fis a para-uniformly continuous bijection and f~1is also para-
uniformly continuous, then f is called a para-uniform isomorphism.

ProposiTiON 1.10. If f: (X, %) — (Y, ¥°) is para-uniformly continuous,
then f: (X, ©(%)) — (Y, ©(¥")) is continuous.

The proof is similar to the proof of the analogous result in the uniform
case.

Note that if (Y, %) is a para-uniform space and X is either 7(%)-dense
or t(#)-open in Y, then idy: (X, %|x) — (Y, %) is para-uniformly con-
tinuous. Also, it is clear that the composition of para-uniformly con-
tinuous functions is para-uniformly continuous.

2. Para-proximity spaces. A given para-uniformity on a set X can be
realized in terms of uniformities on subsets of X, and each uniformity in-
duces a proximity. So it is natural to seek a structure on X involving
proximities on subsets of X whose relation to para-uniformities is an-
alogous to the relation of proximities to uniformities.

DEFINITION 2.1. Let X be a set, let .o be a collection of sbsets of X,
and let 9 = {§,: A € o/} where §, is a proximity on 4 for each 4 € «/.

(a) The triple (X, &, 2) is called a para-proximity space if the following
three conditions hold:

(P1) X e & and & is closed under finite intersections;

(P2) if Ay, Az € o7, then §4,04, < 04, () 4,5 and

(P3) if A, A;€ o/ and x € A, then x §4,(A4; (1 43).

(b) If (X, &7, 2) is a para-proximity space, then the para-proximity on
X associated with (X, o, 9) is § = 2(X) x 2(X) defined by (for By,
B, = X) B, 0 B, if and only if there is an A € o7 with B; = A and B, 0,4
(B2 N A).

If (X, o, 9) is a para-proximity space with associated para-proximity
0, then we may define (for B = X) B’ = {x € X: x § B}. It is straightfor-
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ward to verify that B — B° is a Kuratowski closure operator on 2(X)
and, hence, 7(9) = {X — B%: B « X} is a topology on X.

Note that if gy is a proximity on X, then (X, {X}, {dx}) is a para-pro-
Ximity space whose associated para-proximity is §x. Thus, para-proximity
spaces generalize proximity spaces.

The easy proof of the following proposition is omitted.

ProposITION 2.2. Let (X, o7, D) be a para-proximity space with associated
para-proximity 9, and let B, B;, B, = X. (a) @ 0 B and B3 .

(b) x 0 x for all x € X.

() Bo(By U By) if and only if B B, or B¢ B,.

(d) If By 0 B,, then there is C = X such that By 6 X — C and C § B,.

(e) UBlng, then B1 N Bz = .

() If ByoByand C; = B, (i = 1, 2), then C;0 C,.

It follows from this proposition that if the para-proximity § associated
with (X, o/, @) is symmetric (that is, By § B, if and only if B, § B;), then
0 is a proximity on X, and, hence, 7(J) is completely regular.

DEeFINITION 2.3. Let (X, o/, 2) be a para-proximity space with associated
para-proximity 9.

(a) dis said to be compatible with a topology z on X if z = 7(9).

(b) (X, o, 2) is called separated if 7(§) is Hausdorff.

Note that z(d) is Ty if and only if x, y € X with xdy and ydx implies
x = y, and 7(§) is T; if and only if x,y € X with xdy implies x = y. Two
other consequences concerning the para-proximity topology are recorded
in the next proposition.

PROPOSITION 2.4. Let (X, o7, 2) be a para-proximity space with associated
para-proximity 0.

(a) Forxe XandB c X,x 90 X — Bifand only if x € int B.

(b) For By, B, = X, B, 0 X — B, implies B; — int B,.

We begin to develop the relation between para-uniform spaces and
para-proximity spaces in the next theorem, whose proof is quite similar
to the proof of the analogous result in the uniform-proximity case.

THEOREM 2.5. Let (X, %) be a para-uniform space. Let s/, = {dom
U:Ue}, for each A€ sfy let U, be the uniformity on A induced by
% (as in Proposition 1.4), and let § 4 be the proximity induced on A by U 4.
Set Dy = {04: A€ Ay} Then (X, oy, Dq) is a para-proximity space.
Moreover, (%) = ©(0q), where 04 is the para-proximity on X associated
with(X, of 4, Dq,) given by (for By, B, = X) B, 64 B, if and only if there is
Ue % with B; « dom U and U[By] () U[B; ) dom U] = @.
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The result, together with Theorem 1.6. tells us that any topology is
para-proximizable.

Before we observe that every para-proximity space is induced by a
para-uniform space in the manner prescribed by Theorem 2.5, it is ap-
propriate to introduce the notion of a totally bounded para-uniformity.

DEFINITION 2.6. A para-uniform space (X, %) is totally bounded if,
for each U e %, there is a finite collection ¥ of subsets of X such that
X=U{C:Ce®}and U {C x C:Ce¥} = U.

Note that the definition is equivalent to the usual definition of totally
bounded in case % is a uniformity, since then C = V[C] for every V € %.
(Also, it is equivalent to assume that @ ¢ ¥.) Moreover, we have the
following straightforward characterizations of totally bounded para-
uniformity.

PROPOSITION 2.7. Let (X, %) be a para-uniform space and let s/, = {dom
U:U e %}. The following are equivalent:

(@) (X, %) is totally bounded.

(b) For each U €% there is a finite subset F < X such that X = U[F].

(c) U, is totally bounded, for each A € of 4.

THEOREM 2.8. Let (X, o/, D) be a para-proximity space. For each A € of,
let v~ 4 be the unique totally bounded uniformity on A which induces 6 4. Then
B = U {¥ 4:4 € o} is abasis for the unique totally bounded para-unifor-
mity U on X such that (X, o, 2) = (X, ¥, Dg)-

ProOF. Everything follows easily once we have verified (ii) of Proposi-
tion 1.5. To this end note that a basis for ¥ 4is B4 = {U%y H; x H;:
KA —Hj,Hic A(j=1,2,...,m), A= U7 K;}. Let 4}, Ay € o.
To verify (ii) of Proposition 1.5 it suffices to show that if B, € ,, (i =
1, 2), then B; () By € ¥ 44, SO let Kidy A; — Hiy Hi = A; (j =1,
2,....m), Ad; = UM, Ki(i=1,2)and B; = U H; x Hi(i = 1, 2).
Then (4; N A2) x (41 N 42) 2 By N By o UM, U (H) N HY) x
(H} N HY)) € Banay S0 By | B2€ ¥ apa,

If (X, o, 9) is a para-proximity space, then it follows from Theorem
2.8 and the remarks following Proposition 1.5 that z(d,4) < 7(9), for each
A € o/. Also, in view of Theorem 2.8, the next results about relative para-
proximities are not suprising.

PROPOSITION 2.9. Let (Y, o, D) be a para-proximity space with associated
para-proximity §, and let X be either t(0)-open or ©(d)-dense in Y. Let of |x
={AN X:A e} and D|x = {04lanx: A € &}. Then (X, |x, Dlx)
is a para-proximity space with associated para-proximity J|x defined by
(for By, B, = X) B, 6|x B, if and only if B, § B,. Also 7(dlx) = 7(d)|x-
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DerINITION 2.10. Let (Y, &/, 2) be a para-proximity space with asso-
ciated para-proximity § and let X be either 7(§)-open or z(d)-dense in Y.
Then 4§y is called the relative para-proximity on X.

ProrosiTiON 2.11. Let (Y, %) be a para-uniform space, let (Y, of, D)
be the para-proximity space induced by (Y, %), and let § be the associated
para-proximity on Y. Let © = ©(%) = ©(6) and let X be either t-open or
7-dense in Y. Then (X, o g1y, Dary) = (X, A|x, D|x) and 04, = 0lx.

The notion of a proximity mapping also generalizes easily to the para-
proximity case.

DEeFINITION 2.12. Let (X;, «/;, 9,) be a para-proximity space with as-
sociated para-proximity ¢; (i = 1, 2) and let f:X; — X, be a function. (a)
fis a para-proximity mapping if, whenever x, y € X; and x §; y, then f(x)
02 f(»). (b) If fis a para-proximity bijection and f-! is also a para-proxi-
mity mapping, then f is called a para-proximity isomorphism:

ProPOSITION. 2.13. (a) A para-proximity mapping is continuous with
respect to the para-proximity topologies. (b) A para-uniformly continuous
mapping is a para-proximity mapping with respect to the induced para-
proximities. (c¢) The composition of para-proximity mappings is a para-
proximity mapping.

3. Extensions of para-uniform and para-proximity spaces. Throughout
the remainder of this paper we shall use “para-uniform space” to mean
separated para-uniform space, ‘‘para-proximity space” to mean separated
para-proximity space, and ‘““topological space” to mean Hausdorff topo-
logical space. It is worth noting now that when a para-uniform space
(X, %) is separated it is not necessarily true that the uniformity %, in-
duced on 4 = dom U (U € %) is separated. (In fact, the compatible para-
uniformity % induced on the real line with the usual topology, in the man-
ner prescribed by Theorem 1.6 using the usual topology as its own sub-
base, has the property that, for all 4 € o7,, %, is not separated.) A sim-
ilar word of caution holds for para-proximity spaces.

In order to develop the theory of para-uniform and para-proximal
extensions, we need to introduce the notions of Cauchy filter and round
filter.

DeriniTION 3.1. Let (X, %) be a para-uniform space and let & be a
filter on X. & is Cauchy (or #-Cauchy) if for each U € %, there is an x €
X such that U[x] € &.

The easy proof of the following characterizations of Cauchy filter is
omitted.

PROPOSITION 3.2. Let (X, %) be a para-uniform space, let s/, = {dom
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U:Ue}, and let U 4 be the uniformity induced on A by % for each A
€ &/ 4. Then the following are equivalent for a filter & on X.

(a) & is U-Cauchy.

(b) For each U €% there is Fe & with F x F < U.

(€) Fla is U 4-Cauchy for each A € of 4.

Note that if & is #-Cauchy, then dom U € &, for every U e %. Ac-
cordingly, there are examples of 7(#)-convergent filters on some para-
uniform spaces (X, %) which are not %-Cauchy. In fact, the neighborhood
filter of a point x € X is %-Cauchy if and only if x e dom U for every
U € %. Thus, every neighborhood filter is #-Cauchy if and only if #
a uniformity on X.

As in the uniform case, a #-Cauchy filter converges to each of its ad-
herence points, as can be verified easily. Also every #-Cauchy filter &
on X contains a smallest #-Cauchy filter #,, = {U[F]:Ue%, Fe %}
called the minimal #-Cauchy filter contained in &.

DEFINITION. 3.3. Let (X, o7, &) be a para-proximity space with associated
para-proximity o.

(a) A filter # on X is round (or d-round) if o/ ¢ &% and F; € & im-
plies there is an F,€ & with F, 6 X — F.

(b) Let # be a filter on X such that o = %. The §-round hull of &
is defined to be #, = {H =« X:Fd X — H for some Fe #}.

The proof of the next proposition requires only a slight modification of
the proof of the corresponding results in the proximity case (see, for in-
stance [20]) and is omitted.

PROPOSITION 3.4. Let (X, o/, @) be a para-proximity space and let § be
the associated para-proximity on X.

(@) If & is a filter on X and o/ = &, then &, is a d-round filter and
F,c F.

(b) Each §-round filter is contained in a maximal d-round filter.

(c) If & is a maximal o-round filter and B, and B, are subsets of X such
that B, 6 X — B; and B, meets &, then By € F.

(d) A d-round filter & is a maximal §-round filter if and only if B;, B,
< X with B, 6 X — By implies X — By € & or B, &.

(e) If ¥, and &, are two distinct maximal §-round filters on X, then
there are F1€ %1 and Foe Fowith F1 (| Fy = @.

Note that if (X, &7, 9) is a para-proximity space, then .o/ has f.i.p., and,
hence, there are §-round filters on X.

When we say that a filter on a para-uniform space is round, it is under-
stood to be round with respect to the para-proximity induced by the
para-uniformity.
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PROPOSITION 3.5. (a) A minimal Cauchy filter on a para-uniform space
is a maximal round filter. (b) A maximal round filter on a totally bounded
para-uniform space is a minimal Cauchy filter.

PRrOOF. Let (X, %) be a para-uniform space, o/ = &7, = {dom U:U
EU}, D = Dy, and § = y.

(a). Let # be a minimal %-Cauchy filter. Then &, is a §-round filter
contained in &. Let Ue%. If Ve % with V0 = U0, V = V-1 and Vo
VoV < U, and if Fe % with F x F c V, then V[F]le %, and V[F]
x V[F] = U. So &, is %-Cauchy, and & = &, is §-round. To see that
& is maximal §-round, let B;, B, ¢ X with B; § X — B,. Then there is
Ue% with By c dom U = A and B, 6, (X — By) () A; 50 B1 o4 (4 —
B5). Let 7 be the totally bounded uniformity on A4 induced by §,. Then
H=[B,NA) x BN A UIA—-B)x (A~ B) e c
9. Since & is %-Cauchy, there is an F € & with F x F < H. So either
Fc B,) A or Fc A — By, whence either B,e % or X — B, € &.
By ProrosiTioN 3.4(d), & is a maximal §-round filter.

(b). Let & be a maximal §-round filter. Since # is totally bounded, a
basis for % is B = |J {#B4:A € o} where, for A€ of, By = {U7y Hj X
HjIH_,' < A, Kj(;_AA - H/(_]= 1,2,..., m), A= U;’n:IKj}- Let Be #.
Then there is an 4 € o/ such that B = (J7, H; x H;where H; < 4, K;
04A—H;j(j=1,2,...,m)and 4 = U7, K,. Since & is a maximal §-
round filter, foreachj = 1,2,..., meither X — K; € & or H; € &. But
since 4 € &, thereissomej € {1,2,...., m} for which H; e &#. Then H;
x H; < B. So & is %-Cauchy. Now &, is a maximal §-round filter by
(a), and &, =« &#. Thus, # = &, is a minimal %-Cauchy filter.

DEeFINITION. 3.6. (a) A para-uniform space (X, %) is complete if every
-Cauchy filter on X is 7(%)-convergent.

(b) A para-uniform space (Y, ¥") is a para-uniform extension of a para-
uniform space (X, ) if X is a ¢(¥")-dense subset of Y and % = ¥|x.

(c) A para-uniform extension (Y, %) of (X, %) is said to have relatively
uniform outgrowth (r.u.0.) if ¥ — X < dom V, for every Ve y".

(d) A para-uniform completion of a para-uniform space is a complete
para-uniform extension.

(e) A para-proximity space is full if each round filter has non-void ad-
herence with respect to the para-proximity topology.

(f) A para-proximity space (Y, &', @') is a para-proximal extension of
a para-proximity space (X, o/, 9) if X is a t(d")-dense subset of Y, o/ =
o' |x, and 9 = P'|x.

(g) A para-proximal extension (Y, &', 9') of (X, o/, 9) is said to have
relatively proximal outgrowth (r.p.o.) if ¥ — X < A for each A € o/'.

Note that if (Y, ¥°) is a para-uniform extension of (X, %), then (¥,
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oy, Dy) is a para-proximal extension of (X, &7,, P,). Also note that if
(Y, o) is a topological extension of (X, z) and ¥~ is compatible with g, then
+"|x is compatible with 7, and (Y, ¥°) is a para-uniform extension of (X,
¥ x)-

The next two propositions relate para-uniform extensions to simple and
strict topological extensions. If U = Y x Y and S < Y, then we use
U(S) to denote U N (S x S).

PROPOSITION 3.7. Let (Y, o) be a topological extension of (X, t) and let
¥ be a compatible para-uniformity on Y. Then #+ = {U(S):X «¢ S c Y,
U € ¥} is a basis for a para-uniformity ¥~ on Y, ¥ < ¥+, t¢(¥"*) = o*,
and (Y, %) is a para-uniform extension of (X, ¥ |x).

ProoF. It is straightforward to verify that #+ is a para-uniform basis
on Y, and clearly ¥ < ¥"*. To see that ¢t < 7(¥*), it is enough to ob-
serve that if y € Y and G € Oy %, then there is V' € ¥~ for which y € V[X]
and @ # X N V[y] =« G and, hence, V({y} U X)[y] =« G U {»}
Now let ye Y and let U e ¥~ be such that U is open in the product to-
pology on Y x Y and ye U[y]l. Then (U[y] N X) U {y} € ¢+ and
Wyl nNxX)yuU {y < US) [y, for all Swith X U {y} = S < Y. Since
the open entourages in ¥~ form a basis for ¥, this shows that ¢(¥"*) < ¢*+.
It is then clear that X is ¢(#"*)-dense in Y and that ¥ *|y = ¥7|.

Since ¥~ < ¥+, idy : (Y, ¥ *) = (Y, ¥") is para-uniformly continuous.

PRrROPOSITION 3.8. Let (Y, o) be a topological extension of (X, t) and let
+" be a compatible para-uniformity on Y such that Y — X < dom V for
eachVev. . IfVev,let Vi=VX) U {(x,) Y x Y:G x G = V,
for some GeO»X (| Oy*}. Then %* = {V*: Vev} isabasis for ¥.
Moreover, ¢ = o°. Thus, any para-uniform extension of a para-uniform
space with r.u.o. yields a strict topological extension.

PROOF. We must first show that %# is a para-uniform basis on Y. To
verify (U2), let Ue " and let Ve ¥ with V0 = U9, V-1 = V, VoV c
U, and V open in the product topology on Y x Y. Now if ye Y — X,
then G = V[y] | Xe OyX and G x G = U. Thus, A(Y — X) < U%
Also (UH%(X) = U%X). Therefore, (U*)° = U*%. To see that (B3) is satis-
fied, note that if U, Ve ¥", then U* (| V* = (U () V)% and U* N (U%H?
= (U N U2 To verify (U4), let U, Vey and let W e ¥ with W0
= (U N V)Y, W-l = W, W open in the product topology on Y x Y,
and WoWoWo W < U () V. One may easily verify that (W#0? = (U*#
N V#H0and W# < U* () V% Finally, (U6) is satisfied for #* since (U6) is
satisfied for ¥’|y and ¥ — X < dom V# for all ¥ € . So #* is a
para-uniform basis on Y.
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If Ue v and Vey with V0= U0 V-1 =}V, and VoVoV < U,
then U® = V0 = (UH0 = (V¥9, V < U* and V* < U. It follows that
v = 9 (#*%. So it remains to show that (% (%*%) = o*.

Let y € G e g* and assume, without loss of generality, that G = {x
€ Y: G ) Xe 0»X}. Since g* < o, there is Ue ¥ such that y e U[y]
c G. Let Vey with V0 = U0, V-1 = V,and Vo V < U. We claim that
V#{y] = G. To see this, let x € V#y]. First observe that if x € V(X)[y],
then x € G. So assume (y, x) ¢ V(X). Then thereis He O»X (| 03X such
that H x H = V. Now H (| V[y] # @. Letting he H (| V[y], we have
Hc Vil « (Vo V)[y] =« Uly] =€ G, whence x € G. So indeed V*[y]
< G. Thus, ¢* < o(%(%?)).

Now let Ue ¥ and let y € Y such that y € U#[y]. Then we are able
to find G € O¥X such that G x G = U. (In case ye X take G = V(X)
[¥], where V € ¥ with V0 = U0, V1=V, and VoV < U.) Then
yeG U {xeY: Ge 0»*} < U#y]. So ©(%(#*%) < o*.

In the remainder of this section we shall construct and investigate
canonical para-uniform completions and canonical full para-proximal
extensions. Recall that a filter on a topological space (X, 7) is z-free (or
simply free) when it has void adherence. We will call a filter on a para-
uniform space or para-proximity space free if it is free with respect to the
induced topology.

DEerINITION 3.9. Let (X, %) be a para-uniform space.

(a) Define #X to be X |J {&#: & is a free minimal %-Cauchy filter on
X}.

(b) For Ue%, define Uy, =U U {(#, x), (x, F): FeuUX — X,
xe X,andforsome FeF \ U(x), Fx Fc U} U {(#,9): F,9cUX
— Xand forsome FeF# N ¢, F x F < U}.

THEOREM 3.10. Let (X, %) be a para-uniform space. Then B, = {U,:
U € U} is a basis for a para-uniformity U on U X, and (U X, U +) is a para-
uniform completion of (X, U) with r. u. o. Thus, (X, ©(Us)) is a strict
extension of (X, ©(%)).

ProOF. The proof that %, is a para-uniform basis on X is similar to
the proof for #* in Proposition 3.8 and is left to the reader. It is then
easily verified that X is 7(%4)-dense in %X, U 4|y = U, and X — X <
dom V for all V e %,. So it remains to show that (%X, %) is complete.

Let & be a free minimal % ,-Cauchy filter on X. Then % |y is a 7(%)-
free minimal #-Cauchy filter on X, so that there is ¥ € #X — X for which
@ < F|y. Then F (] V. [¥9] # &, for every Fe % and every Ve,
whence € is a 7(% «)-adherence point of . This contradicts the assump-
tion that & is free. So there are no free % ,-Cauchy filters on # X.

Note that if # is a uniformity on X, then %, is a uniformity on #X.
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THEOREM 3.11. Let (X, %) be a para-uniform space. Then U* = (U 4)*
is a para-uniformity on %X and (U X, U¥) is a para-uniform completion of
(X, %). Moreover, t(U )" = ©(U*) and t(U*)* = ©(U ).

Proor. Everything is clear from Proposition 3.7 and Theorem 3.10
except for the completeness of (X, %*). Suppose € is a free #*-Cauchy
filter on #X. Since X x X € %*, % contains a free minimal %-Cauchy
filter #. But {F U {#}: Fe #} is a ¢(#*)-neighborhood base at Z.
Thus, ¢ t(«*)-converges to & € %X, which contradicts the assumption
that ¢ is free. So (X, «*) is complete.

By Theorem, 3.10 it follows that every para-uniform space has a para-
uniform completion which coincides with the unique uniform completion
for a uniform space. Moreover, according to Theorem 3.11, any non-
complete para-uniform space has more than one para-uniform completion.
(Even a non-complete uniform space has more than one para-uniform
completion!) Thus, it is natural to ask in what sense each of these canoni-
cal completions is unique. This question is answered by the next several
results.

LEMMA 3.12. Let f: (X, %) - (Y, ¥°) be a para-uniformly continuous
mapping of para-uniform spaces with f(X) ©(¥")-dense in Y and (Y, ¥°)
complete. Then there is a unique para-uniformly continuous mapping g:
(UX, U*) - (Y, ¥) such that f(x) = g(x), for all x € X.

PRrROOF. For each x € X define g(x) = f(x). We must define g(x) for x €
%X — X.In this case, x = %, a free minimal #-Cauchy filter on X. Now
{f(F): Fe #} is a filterbase on Y and is ¥ -Cauchy since f(X) is dense in
Y. Let 9(x) = {G = Y: f(F) = G for some Fe %}. Then @(x)isa ¥ -
Cauchy filter on Y and converges to a unique point g(x) € Y. Thus, g:
Y X — Y is defined.

To show that g is para-uniformly continuous, let ¥ € ¥ and let We ¥~
with W0 = VO, W-1 = W,and WoW-W < V. Then f~Y(W) € % since f(X)
is dense in Y. Set U = f~1(W) and H = X |J dom g }(W). Then X <
Hc %X and U, € %4. So Uy(H) € «*. We claim that U,(H) = g (V)
and that U (H)? = g 1(V)? (whence it follows that g~}(V)e #*). Let
(x, y) € Uy(H). We shall verify that (x, y) € g71(V) in the case where x =
Fr1eUX — Xandy = FeUX — X. Let GeF, (1 F,wWithG x G
U. Now %(x) converges to g(x), ¢(y) converges to g(y), and f(G)e
2(x) N €(»). So g(x), g(y)eclyf(G). Also x, ye H— X. So x, ye
dom g~1(W), whence g(x), g(y) edom W. Thus, W[g(x)] and W[g(y)]
are 7(#")-neighborhoods of g(x) and g(y), respectively. Therefore, we
may select p € Wig(x)] N f(G) and g € W[g(»)] N f(G). So (p, q) €
AG) x fG) = W, (g(x), p) € W, and (q, g(»)) € W. It follows that (g(x),
gO)eWoWoW < V; ie., (x,y) € g (V). The proof that U,(H)?
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= g~}(V)0involves similar notions and is left to the reader.
That g is the unique para-uniformly continuous extension of f follows
from the fact that g is continuous and X is dense in # X.

THEOREM 3.13. Let (X, %) be a para-uniform space. Then (UX, U*) is
the (up to para-uniform isomorphism) unique para-uniform completion of
(X, %) satisfying property (C¥): If (Y, ¥°) is any para-uniform completion
of (X, U), then there is a unique para-uniformly continuous mapping p*:
(UX, w*) - (Y, v'*) such that p*(x) = x for all x € X; i.e., the diagram

X, %) —L— (Y, 7%

idx[ lidy

X, ) —E% - (v,9)

commutes.

Proor. To show that (%X, #*) satisfies (C*) let (Y, ¥°) be an arbitrary
para-uniform completion of (X, #). Then (Y, ¥*) is a para-uniform ex-
tension of (X, %), and (Y, ¥"*) is complete since ¥~ = ¥+, So idx: (X,
) — (Y, v*) satisfies the hypothesis of Lemma 3.12, whence there is a
unique para-uniformly continuous mapping p*: (%X, ¥*) - (Y, v™*)
such that p*(x) = x, for all x € X.

Now suppose that (Z, #7) is a para-uniform completion of (X, %)
satisfying (C*). Then we can find para-uniformly continuous mappings
p¥i(UX, U*) - (Z, w) and q*: (Z, W) —» (%X, %*) such that p*(x) =
g*(x) = x, for all x € X. So p* is a para-uniform isomorphism.

LEMMA 3.14. Let f: (Y, ¥°) = (X, %) be a para-uniformly continuous
mapping of para-uniform spaces such that, for each Ue€ %, f(Y) () dom
U # @ and such that if & is a free v-Cauchy filter on Y then the filter
induced by & under f is a free filter on X. If (Z, W") is any para-uniform
extension of (Y, ¥°) with r.u.o., then there is a unique para-uniformly con-
tinuous mapping g:(Z, W) — (U X, U ) such that g(y) = f(y), forallye Y.

Proor. For y e Y define g(y) = f(y). Let ze Z — Y. Then 0%%, is a
filterbase on Z, and since (Z, #") is an r.u.o. para-uniform extension of
(Y, ¥), 0%%, is a w-Cauchy filterbase. So 0%} is a free ¥"-Cauchy filter-
base on Y. Now the filter 4 (z) generated by {f(G): G € O%%-}is a 7(%)-
free filter on X. If Ue %, then f(Y) (1 dom U # @ so that f~}(U) # &.
Since f is para-uniformly continuous, f~(U) € ¥". Thus, there is G €
024, with G x G < f~Y(U). Then f(G) € #(z) and f(G) x f(G) = U.
So #(z) is %-Cauchy. Let g(z) = #(z), the unique minimal #-Cauchy
filter contained in % (z). ¥(2) is 7(%)-free since F(z) is 7(%)-free. So g(z)
eUX — X.Thus, g: Z - %X is defined.

To see that g is para-uniformly continuous, let U € % and suppose that



820 S.C. CARLSON AND C. VOTAW

g 1(Uy) # ¢. We must show that g-1(U,) € #". To this end, let ¥V € % with
Vo = U0 V-1 =V, and VoVoV < U. Then, since f{(Y) ) dom V # &,
S~ (V)e . So there is Wew such that f~{(V) = W(Y). Now W% =
SAV)Y U {(x, ) €Z x Z: for some Ge Ox%y N 0¥y, G x G = f1
(V)} e w. Also, it is straightforward to verify that W# < g~1(U,) and
(W#)0 = g~1(U,). So indeed g~1(U,) € %"

That g is the unique extension of f follows from the continuity of g and
the fact that Y is dense in Z.

THEOREM 3.15. Let (X, %) be a para-uniform space. Then (UX, Uy) is
the (up to para-uniform isomorphism) unique para-uniform completion of
(X, %) with r.u.o. satisfying property (Cy): If (Y, ¥°) is a para-uniform
completion of (X, %) with r.u.o., then there is a unique para-uniformly con-
tinuous mapping py: (Y, ¥°) = (%X, U 4) such that p,(x) = x, forall x e X;

i.e., the diagram
(Y,7)
idx L.u.o. \

(X, %) idy (UX, Uy

commutes.

PRrROOF. To see that (%X, %) satisfies (C,), let (Y, ¥°) be an arbitrary
para-uniform completion of (X, %) with r.u.o. Then idy: (X, %) — (X,
%) and (Y, ¥") satisfy the hypothesis of Lemma 3.14. So there is a unique
para-uniformly continuous mapping py: (Y, ¥°) = (%X, %) such that
p«(x) = x, for all xe X.

The proof of uniqueness is essentially identical to the proof of uni-
queness in Theorem 3.13.

We now turn our attention to finding full para-proximal extensions of
para-proximity spaces.

DEFINITION 3.16. Let (X, «/, ) be a para-proximity space with as-
sociated para-proximity g.

(a) Let X denote X U {#: & is a free maximal §-round filter on X}.

(b) For B c X, define O(B) = B |J {# €0X — \:Be F}.

Note that §X = O(X) and that if 4 € o7, then O(4) = 4 U (6X — X).

THEOREM 3.17. Let (X, <, 9) be a para-proximity space with associated
para-proximity 0. Let o/, = {O(A): A€/} and, for A€ s/, define
docay = P(O(A)) x P(O(A)) by (for Ty, T, = O(A)) Ty doay T2 if and
only if there are By, By = A with By 04 Byand T; = O(B,) (i = 1, 2). Then
doca is a proximity on O(A). Moreover, if we set Dy = {0pa): A € 4},
then (60X, oZ«, D) is a full para-proximal extension of (X, </, D) with
r.p.o. We shall let §, denote the associatrd para-proximity on ¢ X.



PARA-UNIFORMITIES 821

Proor. We shall verify the strong axiom of proximities for 9y,4,. Sup-
pose that Ty, T, = O(A) and T; §o(a, T». Then there are B;, B, = A such
that By 64 B;and T; = O(B;) (i = 1,2). Since §, is a proximity on 4, there
is C = AsuchthatB,; 6,4 — Cand C§, B,. Set T = O(C). Then itis clear
that T 0o 4 _T,. Since By 64A — C, there is D c A such that B;§, A
— Dand D, A — C. Then O(4) — O(4 — D) = O(C) and hence O(A)
— 0(C) = 0(4) — [0(4A) — O(4 — D)] = O(4 — D). So 0O4) — T c
O(A — D), T, = O(By), and B, g4, A — D. Thus, T} o4y O(A) —

Verification of the other proximity axioms for Jy,, is routine, as is
the proof that (X, o7, 9,) is a para-proximal extension of (X, «7, 2).
Noting that {O(B): B € ¢(§)} is an open basis for the topology (), it is
clear that X is a 7(04)-dense subset of §.X.

It remains to show that (0X, o7, 2,) is full. Suppose that & is a free
dx-round filter on §X. Then %|y is a §-round filter on X, and so is con-
tained in a maximal g-round filter € X — X. Let Fe &#. Then F
O(A) e #, for each Ae s and F (V| Ae Flxy €« @. So ¥ € O(F () A).
Thus, ¥ 0ps) F () 4, forall A€ o7, and so & 4 F. Therefore, ¢ is a 7(J4)
-adherence point of &

Note that for the para-proximity space (X, {X}, {dx}), where dx is a
separated proximity on X, (60X, 7(d,)) is the Smirnov compactification of
(X, 0x) [20].

THEOREM 3.18. Let (X, %) be a totally bounded para-uniform space. Then
(UX, Aa Da.) = (00X, (La)xs (Da)x)-

Proor. Clearly #X = 04X (see Proposition 3.5) and /4, = (4)4-
Da. = (Dg) s Will follow once we have shown that, for Ty, T, = O(A4) €
AL, = (L)% T100n T2 if and only if T; and T, are distant in the pro-
ximity induced on O(A4) by (%4)pca)- Suppose Ty doa, To. Then there are
By, B, c Asuchthat B;5,B,and T; = O(B,) (i = 1, 2). So there is V e %
with dom ¥V = A, V-1 =V, and V[B,] N V[Bs] = @&. Then V, € %y,
dom V, = O(A), and it is a straightforward exercise to verify that V,[T4]
N T; = @. So T; and T, are distant in the proximity induced on O(A)
by (%x)oca-

Conversely, suppose that T; and T, are distant in the proximity in-
duced on O(A) by (% 4)o(ay- Then there is Uy € %, with dom U, = O(A),
Uil = Uy, and U[Ti] N ULlT,]l = @. Let V, € %, such that dom V, =
O(A), Vil = Vi and VeoVyoV, < U,. Set B, = V[V I[T]1 N Al (i =1,
2). Then By, B, and T, = O(B;) (i = 1, 2). Therefore, T1 0,4y T

COROLLARY 3.19. Let (X, o/, @) be a para-proximity space. Then (0X,
A, Dy) is the (up to para-proximity isomorphism) unique full para-proxi-
mal extension of (X, £, D) with r.p.o. satisfying property (Fy): If (Y, <,
2') is a full para-proximal extension of (X, s/, D) with r.p.o., then there
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is a unique para-proximity mapping qy: (Y, o/', 9') = (0X, A %, Dy) such
that q4(x) = x, for all x € X.

Proor. To see that (30X, 74, @,) satisfies (Fy), suppose that (Y, o7/,
9') 1s an arbitrary full para-proximal extension of (X, &/, 2) with r.p.o.
Let ¥~ be the unique totally bounded para-uniformity on Y inducing
(Y, &', 2'), and let % be the unique totally bounded para-uniformity on
X inducing (X, &/, 2). Then % = ¥’|x. So (Y, #°) is a para-uniform
completion of (X, #) with r.u.o. and, thus, by Theorem 3.15 there is a
para-uniformly continuous mapping g4: (Y, ¥°) — (%X, %) such that
g+(x) = x, for all x € X. By Proposition 2.13 g.: (Y, &', Z') = (06X,
o ., Dy) 1s a para-proximity mapping. The uniqueness, again, follows
easily.

Another canonical full para-proximal extension can be constructed
which corresponds to the para-uniform completion #*. The next few
results are analogous to Theorem 3.17, Theorem 3.18, and Corollary 3.19,
and their proofs are left to the reader.

THEOREM 3.20. Let (X, o/, ) be a para-proximity space with associated
para-proximity §. Let o7* = {O(A) N H: Ae o, X =« H < §X} and let
g* = {50(A)IO(A)HH: Ae 7, Xc Hc (SX}. Then (5X, ﬂ*, 9*) is afull
para-proximal extension of (X, of, @). We shall let §* denote the associated
para-proximity on 0X.

THEOREM 3.21. Let (X, %) be a totally bounded para-uniform space. Then
(qu, ﬂ%‘, 9%‘) = (EWIX’ (‘52{%)*’ (941)*)'

COROLLARY 3.22. Let (X, <7, @) be a para-proximity space. Then (0X,
*, D*) is the (up to para-proximity isomorphism) unique full para-proximal
extension of (X, &/, &) satisfying property (F*): If (Y, o/', 9') is a full
para-proximal extension of (X, o/, D), then there is a unique para-proximity
mapping q*: (0X, o/*, %) - (Y, &', D') such that g*(x) = x, forall x € X.

4. H-closed extensions. In this section we shall investigate the relation-
ship between H-closed extensions of a topological space and its compatible
para-uniformities and para-proximities. We begin with another charac-
terization of totally bounded para-uniformity which leads to a charac-
terization of H-closed spaces.

PROPOSITION 4.1. Let (X, %) be a para-uniform space. Then % is totally
bounded if and only if every t(U)-open ultrafilter on X is %-Cauchy.

Proor. First suppose that % is totally bounded, and let & be an open
ultrafilter on (X, ¢(%)). Let U € %, and let V'€ ¢ with V0 = U0, V-1 =V,
and VoV < U. Thereis a finite set F = X for which V[F] = X. Now, for
each ae F, V[a] < int Ula], and so U {int U[a]: a € F} = X. Since & is




PARA-UNIFORMITIES 823

an open ultrafilter, # must contain int U[a] for some g € F, and for that
awe have Ula] € #. Thus, & is %-Cauchy.

Conversely, suppose that every open ultrafilter on (X, (%)) is %-
Cauchy, and let Ue %. Let Ve ¢ with V0 = U, V-1 = V,and VoV < U.
If, for every finite subset F = X, V[F] # X, then {X — V[F]: F is finite}
forms a base for an open filter on (X, z(%)) which is contained in an open
ultrafilter #. Now & is %-Cauchy; so there is a € X for which V[d] € 7,

a contradiction since X — V[a] € &. Thus, there is a finite subset F < X
such that V[F] = X, and U[F] = X too. Therefore, % is totally bounded.

THEOREM 4.2. The following are equivalent for a topological space X.

(@) X is H-closed.

(b) Every compatible para-uniformity on X is complete.

(c) Every compatible totally bounded para-uniformity on X is complete.

(d) There is a complete, compatible, totally bounded para-uniformity on
X.

(e) Every compatible para-proximity on X is full.

(f) There is a full compatible para-proximity on X.

PRroOF. (a) = (b). Since X is H-closed, every open ultrafilter on X is con-
vergent. If % is a compatible para-uniformity on X and & is a #-Cauchy
filter on X, then & is an open filter and is contained in an open ultrafilter
#. Since ¢ converges and % is Cauchy, & converges too. So (X, %) is
complete.

(b) = (c). Trivial.

(c) = (d). The compatible para-uniformity on X provided by Theorem
1.6 is totally bounded. If (c) holds, then it is also complete.

(d) = (a). Let & be an open ultrafilter on X and let  be any complete,
compatible, totally bounded para-uniformity on X. By Proposition 4.1,
& is 9/-Cauchy and, hence, converges. So X is H-closed.

The equivalences (c) <> (e) and (d) <> (f) follow from results of §3.

The H-closed extensions of a given topological space may also be
characterized in terms of para-uniformities and para-proximities.

THEOREM 4.3. Let (Y, o) be a topological extension of (X, ). The follow-
ing are equivalent.

(a) (Y, o) is H-closed.

(b) (Y, o) is the underlying topological space of a para-uniform completion
of a compatible totally bounded para-uniformity on (X, 7).

(©) (Y, o) is the underlying topological space of a full para-proximal
extension of a compatible para-proximity on (X, 7).

PROOF. (a) => (b). By Theorem 4.2 there is a complete, compatible, to-
tally bounded para-uniformity ¥~ on (Y, ¢). So ¥"|x is a compatible totally
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bounded para-uniformity on (X, 7) and (Y, ¥") is a completion of (X, ¥"|x).
(b) = (a). Suppose there is a complete compatible para-uniformity ¥~
on (Y, o) such that ¥7|x is totally bounded. Then ¥~ must be totally bound-
ed, too. So, by Theorem 4.2, (Y, ¢) is H-closed.
(b) <> (c). This follows from results of §3.

It is clear from [7] or [18] that no one-to-one correspondence between
the H-closed extensions of (X, 7) and compatible totally bounded para-
uniformities (or compatible para-proximities) on (X, 7) exists, in spite
of Theorem 4.3. In fact, Theorem 4.3 can be established only since a
given para-uniform space may have many completions. Also note that
a para-uniform space (X, %) may indeed be H-closed even when # is not
totally bounded (see Example 4.6 below).

DEFINITION 4.4. A para-uniformity % on a set X is called pre-H-closed
if every ¢(%)-free, 7()-open ultrafilter on X is #-Cauchy.

Note that, according to Proposition 4.1, a totally bounded para-uniform-
ity is pre-H-closed.

THEOREM 4.5. Let (X, %) be a para-uniform space. The following are
equivalent.

(a) % is pre-H-closed.

(b) (%X, ©(%sy)) is H-closed.

© (@X, (%) is H-closed.

(d) (Y, z(¥")) is H-closed for every para-uniform completion (Y, ¥°)
of (X, %).

(e) (Y, =(¥)) is H-closed for some para-uniform completion (Y, ¥°)
of (X, ) with r.u.o.

PrOOF. (a) = (b). Let # be a (% 4)-open ultrafilter on #X. Either &
converges or & is free. If & is free, then %|y is a ¢ (%)-free, 7 (%)-open
ultrafilter on X and so is #-Cauchy. Let ¢ be the minimal %-Cauchy
filter contained in & |x. Then & is a 7 (% 4)-adherence point of &.

(b) = (a). If & is a free ¢ (%)-open ultrafiiter on X, then {G € v (%,):
G ) X € #} generates a 7 (%4)-open filter ¥ on % X. Since (%X, © (%+))
is H-closed, ¥ has an adherence point #e#X — X. Now 0%} =
# () ©(%), and so every member of s must meet every member of &.
So # < &, since & is an open ultrafilter. Thus, & is #-Cauchy, since
# is 4-Cauchy.

(b) = (¢). Since 7(%*) = t(U+)*, (UX, ©(U*)) is H-closed if (%X, ©(%+))
is H-closed.

(¢) = (d). Any para-uniform completion of (X, %) is a para-uniformly
continuous image of (%X, %*) by Theorem 3.13. So (Y, z(¥#")) is H-closed
as the continuous image of (X, t(%*)).
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(d) = (e). (%X, ©(%)) is H-closed, by (d).

(e) = (b). By Theorem 3.15, (%X, %) is a para-uniformly continuous
image of (Y, ¥7). So (%X, ©(%4)) is H-closed as the continuous image of
Y, z(»").

The example which follows may be helpful to the reader in distinguish-
ing some of the para-uniform concepts being discussed.

ExAMPLE 4.6. Let Y = [0, 1], and let ¥~ be the para-uniformity on Y,
with subbasis consisting of all entourages in the usual (metric) uniformity
on [0, 1] along with B = J;2, [(1/(rn + 1), 1/n) x (1/(n + 1), 1/n)]. Then
7(¥") is the usual topology on [0, 1]. Let X = (0, 1], and let % = ¥ |.
Then:

(a) ¥ is pre-H-closed but not totally bounded. (No open ultrafilter
converging to 0 can be ¥"-Cauchy.)

(b) (Y, z(#")) is an H-closed extension of (X, 7(%)), but % is not pre-
H-closed. (Note that (Y, ¥) does not have r.u.o. as a para-uniform ex-
tension of (X, %).) Thus, a non-pre-H-closed para-uniform space may
have some H-closed para-uniform completions.

For a given totally bounded para-uniform space (or a given para-pro-
ximity space) the canonical para-uniform completions (or the canonical
full para-proximal extensions), which we constructed in §3, yield the
strict and simple H-closed extensions belonging to a particular S-equi-
valence class. It is clear from [18] that the set of S-equivalence classes so
obtained cannot include all S-equivalence classes of H-closed extensions.
Thus, it is of interest to characterize these classes. Such a characterization
(in terms of the strict representative) is provided next.

DEFINITION 4.7. [19] A topological extension (Y, ¢) of (X, 7) is said to
have relatively completely regular outgrowth. (r.c.r.o.) if, whenever y € G
€ g, there is H € ¢ with {y} U (Y — X) = H and a continuous function
f:(H, alg) - [0, 1]such that f(y) = Oand f(H — G) < {1}.

THEOREM 4.8. Let (Y, ¢) be a topological extension of (X, 7). The follow-
ing are equivalent.

(a) (Y, o) is an H-closed extension of (X, t) with r.c.r.o.

(b) (Y, o) is isomorphic to (UX, t(Us)) for some compatible totally
bounded para-uniformity % on (X, 7).

(©) (Y, o) is isomorphic to (30X, ©(04)) for some compatible para-proximity
space (X, &/, D) on (X, 7).

PRrROOF. (b) = (a). We show (more generally) that if (¥, ¥") is a para-
uniform completion of (X, #) with r.u.o. and % is totally bounded, then
(Y, z(¥")) is an H-closed extension of (X, 7(%)) with r.c.r.o. That (Y, 7(¥"))
is H-closed follows from Theorem 4.5. Let y € G € 7(#"). Then there is
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Vey with V-1 = Vand ye V[y] = G. Set H = dom ¥V and let ¥";; be
the uniformity induced on H by 7. (Recall that ¥y need not be separ-
ated.) Then {y} U (Y — X) < H, since (¥, ¥") is an r.u.o. para-uniform
completion of (X, %), and H € (¥"). Since (H, ©(¥ y)) is completely re-
gular (not necessarily Tychonoff), there is a continuous function f: (H,
(¥ ') — [0, 1] such that f(y) = 0 and f(H — V[)]) = {1}. But (¥ ")
< 7(¥); so f: (H, ©(#)|g) — [0, 1] is continuous, and f(H — G) = {1}
since V[y] <« G.

(a) = (b). Let (Y, o) be an H-closed extension of (X, 7) with r.c.r.o.
For each y e Y and G € ¢ with y € G, let H(G, y) € ¢ such that there is a
continuous function f(G, y): H(G, y) - [0, 1] with {y} U (Y - X) =
H(G, y), f(G, ) (») = 0, and f(G, y) (H(G, y) — G) = {1}. Let F = {f(G,
»): ye Geo}, and, for each f = f(G, y)e F, let H(f) = H(G, y). For
feFande > 0,let ¥(f, &) = (Y — H(f)) x (Y — H(f)) U {(x, y) e H(f)
x H(f):|f(x) — f(»| < e}. It is straightforward to show that {V(f; ¢):
feF, e >0} is a subbasis for a compatible totally bounded para-uni-
formity ¥~ on (Y, o). Let % = ¥'|x. Then it is clear that (Y, ¥) is a
para-uniform completion of (X, %) with r.u.o. We claim that (¥, ¥°) and
(X, %) are para-uniformly isomorphic completions of (X, %). By
Theorem 3.15, py: (Y, ¥v°) = (%X, %) is para-uniformly continuous,
and p.(x) = x, for all x € X. Define j: #X — Y as follows. Set j(x) =
x, for all x € X, and, for & e %X — X, let j(#) be the unique point of
Y to which the ¥"-Cauchy filter {G < Y: F = G for some Fe #} con-
verges. To see that j is para-uniformly continuous, let V = V(f, ) e ¥~
and let W = V(f, ¢/3). Set U= W [ (X x X). It is straightforward
to show that U, < j1 (V) and (U,)? = j~Y(V)9, so that j-1(V) € %,.
Thus, j: (%X, %4) = (Y, ¥°) is para-uniformly continuous and j(x) =
x, for all x € X. It follows that (Y, ¥°) and (%X, %) are para-uniformly
isomorphic para-uniform extensions of (X, %). Thus, (#X, (%)) and
(Y, z(¥")) are is omorphic topological extensions of (X, 7(%)).

(b) <= (c) follows from previous results,

It follows that an extension of a topological space with r.c.r.o. is a
strict extension. (This was also pointed out in [19].) It is clear that there
must be strict extensions of some topological spaces without r.c.r.o. An
example of such an extension is given now.

ExaMPLE 4.9. Let X = {(n, m): neN, meZ — {0}} and ¢ be the dis-
crete topology on X. Letp = (0,1),g = (0, —1),and Y = X U {p, q} U
{(n,0): neN}. Forn, k eN, let G(n, k) = {(n, 0)} U {(n, m) e X:|m| >
K}, 1et G(p, k) = {p} U {( m) € X:j > k, m > 0}, and G(g, ¥) = {g} U
{(j,m)e X:j > k, m < 0}. Let ¢ be the topology on Y generated by the
basis {{x}: xe X} U {G(n, k): n, ke N} U {G(», k): ye{p, g}, ke N}.
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Then (Y, o) is a strict H-closed extension of (X, 7), but p and ¢ cannot
be separated by any continuous real-valued function on any neighbor-
hood of ¥ — X. So (Y, ¢) does not have r.c.r.0. as an extension of (X, 7).

A special class of totally bounded para-uniformities may be used to
obtain H-closed extensions studied by Flachsmeyer [8].

DEerINITION 4.10. (a) [8] A topological extension (Y, ¢) of (X, 7) is said
to have relatively zero-dimensional outgrowth (r.z.d.o.) if ¢ has a base
B such that cly B — B < X, for every Be .

(b) A collection 4 of subsets of X x X is called transitive if BoB c B,
for every B e 4.

THEOREM 4.11. Let (Y, 0) be a topological extension of (X, t). The fol-
lowing are equivalent.

(a) (Y, o) is an H-closed extension of (X, t) withr.z.d.o.

(b) (Y, o) is isomorphic to (UX, (%)) for some compatible totally
bounded para-uniformity % on (X, t) with a transitive basis.

PRrOOF. (b) = (a). If Ue  with U1 = U and U-U < U, then U-U-
UoU < U, whence UyoUy < Uy. Let = {Uylpl: Uceu, Ul=1,
UoU < U, and p € U,[p]}. Then §is a base for ¢, and it is straightforward
to show that if Be 8, then clyy B — B = X. So (Y, o) has r.z.d.o. as an
extension of (X, 7).

(@ = (). Let § = {Geo:cly G — G = X}. Since (¥, o) has r.z.d.o.
as an extension of (X, 7), 8 is a base for ¢. Let ¥~ be the para-uniformity
on Y generated by the subbasis {S(G): G € 8}, where S(G) = (G x G) U
[(Y — clyG) x (Y — clyG)] (as in Theorem 1.6). Then ¥~ is a compatible
para-uniformity on (Y, ¢), and it is easy to verify that ¥~ has a transitive
basis. Let % = ¥’|y. Then % has a transitive basis too. Further, if y €
G € B, then define (G, y): G U (Y — clyG) — [0, 1] by f(G, ») (G) = {0}
and f(G, y) (Y — clyG) <= {1}. As in the proof of Theorem 4.8, {V(f(G,
y), €): yeGe B, 0 < ¢ < 1/2} generates a compatible para-uniformity
¥ on (Y, o) such that, when we set %' = ¥”'|x, (Y, ¥"') and (%'X, U’ )
are para-uniformly isomorphic completions of (X, %’). But when y e G €
Band 0 < e < 1/2, V(f(G, y), &) = S(G). So ¥~ = ¥, % = %', and so
(Y, ¥) and (%X, %,) are para-uniformly isomorphic completions of (X,
). Therefore, (Y, ¢) and (%X, ©(%,)) are isomorphic topological ex-
tensions of (X, 7).

ExaMPLE 4.12. Let (X, 7) be a topological space, and let % be the com-
patible para-uniformity on X with transitive basis {S(G): G € 7} (as in
Theorem 1.6). Then (%X, v(%4)) is an H-closed extension of (X, 7) with
r.z.d.o. In fact, (%X, ©(%4)) and (%X, t(%*)) are, respectively, the strict



828 S.C. CARLSON AND C. VOTAW

and simple filter extensions of (X, 7) based on the collection of free z-open
ultrafilters. Thus, (%X, 7(%4)) is the Fomin extension of (X, 7) [9], and
(% X, ©(%*)) is the Katétov extension of (X, 7) [12].

Flachsmeyer [8] studied H-closed extensions with r.z.d.o. and noted
that, up to isomorphism, they could be obtained as filter extensions based
on the set of maximal filters from a collection of open sets called a z-basis.
(A z-basis on (X, 7) is a base § for ¢ such that G € § implies X — G € .)
Using the idea of a full z-basis, he showed that there is a one-to-one cor-
respondence between the full z-bases on (X, 7) and the isomorphism
classes of H-closed extensions of (X, 7) with r.z.d.o. (A full z-basis may
be defined as a z-basis, 3, with the property that G € § if every open ul-
trafilter containing G contains a subset of G which is an element of §.)
This yields the result that there is a one-to-one correspondence between
the isomorphism classes of H-closed extensions of (X, 7) with r.z.d.o.
and the para-uniformities % on X generated by {S(G): G € 5} when
ranges through the full z-bases for 7.

Also note that it follows immediately from Theorems 4.8 and 4.11 that
an H-closed extension with r.z.d.o. has r.c.r.o. However, there are some
topological spaces which have H-closed extensions with r.c.r.o. and with-
out r.z.d.o., as the existence of Hausdorff compactifications of a non-
rim compact Tychonoff space shows. Thus, the method presented in
Theorem 4.8 for obtaining H-closed extensions yields a larger class of
H-closed extensions than does the method of Flachsmeyer.

We shall conclude this section by developing a relationship between the
H-closed extensions obtained as canonical para-uniform completions and
those obtained as canonical f-uniform completions. The notion of §-
uniformity was introduced by Fedoréuk in [5].

DEFINITION 4.13. [5, 6] Let (X, 7) be a topological space.

(a) A family a of subsets of X is a f-cover of locally finite type if the
members of a are regular open and if, for any point x € X, there exist
finitely many members Vi, ..., V,of a with xeint U2, cl V.

(b) A collection yu of §-covers of locally finite type is a f-uniformity on
(X, 7) (and (X, p) is a f-uniform space on (X, 7)) if the following condi-
tions are satisfied:

(F1) if @ €  and B is a f-cover of locally finite type such that « refines
B, then B e yu;

(F2) if a, B €y, then « and 8 have a common star-refinement 7 € u;

(F3) if x and y are distinct points in X, then there are neighborhoods
Gofxand Hof yand a € ysuchthat G (] st(H, &) # @;and

(F4) if x € X and G is a regular open neighborhood of x, then there is
a neighborhood N of x and « € y such that st (N, a) = G.

A @-uniformity does not determine the underlying topology, although a
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certain amount of “‘compatibility” is required. Also a §-uniformity x on
(X, 7) is a f-uniformity on (X, ¢) if ¢ and 7 are §-homeomorphic.

If p is a f-uniformity on a topological space (X, ), then a filter & on
X is called p-Cauchy if, for every a € 4, & (| a # @. Every u-Cauchy
filter & contains a unique minimal y-Cauchy filter &, and the regular
open members of % form a filterbase which generates %,

If pis a @-uniformity on a topological space (Y, ¢) and X is a dense
subset of Y, then uy = {ay: a € u}, where ay = {V' 1 X: Ve a}, forms
a f-uniformity on (X, olx).

DEeFINITION 4.14. [5, 6] (a) A @-uniformity x on a topological space
(Y, o) is complete if every minimal y-Cauchy filter converges

(b) Let (Y, o) be a topological extension of (X, 7), let v be a §-uniformity
on (Y, o), and let 4 be a f-uniformity on (X, 7). (¥, ») is a @-uniform
extension of (X, p) if u = v|x.

(c) A @-uniform completion is a complete f-uniform extension.

(d) A #-uniformity g on (X, ) is pre-compact if x4 has a (covering-type)
basis consisting of finite #-covers of locally finite type.

It is clear from Proposition 10 in [6] that a §-uniform space may have a
number of distinct completions. Let 4 be a §-uniformity on (X, 7). A
canonical f-uniform completion of (X, y) is constructed in [6] as follows.
Let X be the set whose members are elements of X or free minimal y-
Cauchy filters on X. Define a topology # on X by taking as a neighborhood
basis at each point of X, all its neighborhoods in X, and at & € X-X,
all sets of the form {&} (J G where G € z and int cl G € #. Then (X, ?)
is a topological (Hausdorff) extension of (X, 7). Define a f-uniformity
fion (X, %) as follows. For G e, let G denote the largest open subset of
X such that G = X 1 G. (Note that if G is regular open, then G = inty
clzG). For a € ylet @ = {G: Gea} and set 4 = {a: a € p}. Then /i is
indeed a complete f-uniformity on (X, #) and (X, z) is a f-uniform com-
pletion of (X, u). Moreover, if y is pre-compact, then (X, %) is H-closed.

The theorem which follows shows that any totally bounded para-
uniform space induces a pre-compact #-uniformity on its underlying to-
pological space in a natural way.

THEOREM 4.15. Let (X, %) be a totally bounded para-uniform space, and
let 7 = ©(%).

(2) For Ue %, U symmetric, a(U) = {intcl U[x]: x € X} is a 6-cover of
locally finite type on (X, 7).

(b) (%) = {B: B is a O-cover of locally finite type refined by a(U) for
some symmetric U € U} is a pre-compact 0-uniformity on (X, 7).

PRrOOF. (a) Let U € % be symmetric. Clearly, a(U) is a family of regular
open subsets of (X, 7). Now let V' € % be symmetric and open in the pro-
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duct topology on X x X with V? = U% and V < U. Since % is totally
bounded, there is a finite set F = {x;, ..., x,} = X such that X = cl
VIF] =cl U%; VI[x;] = UZ,cl V[x;]. Noting that each V[x,] is open,
we have X = int X = int J2, cl V[x,] = int %, cl int cl V[x;] < int
Uz, cl int cl Ulx,].

(b) We shall verify (F2) and the pre-compactness of (%), leaving the
verification of (F3) and (F4) to the reader and noting that (F1) is obvious.
Let a;, ap € u(%). Then there are symmetric entourages Uy, U, € % with
a (U;) refining o; (i = 1, 2). Let ¥ e % be symmetric and open in the
product topology on X x X with V0= (U, Uy and VoVoV c
U; N U,. Then it is straightforward to verify that a(¥) is a common star
refinement of a(U;) and a(U,), hence of a; and a,. Thus (F2) holds.

In order to verify that ;(%) is pre-compact, let @ € @(%). We must find
a finite family € p(%) such that j refines @. Let U € % be symmetric
with a(U) refining a. Let ¥V € % be symmetric and open in the product
topology on X x X with V0 = U%and Vo Vo V < U. Since % is totally
bounded, there is a finite set F = {xy,..., x,} = X such that cl V[F] =
X. Now, as in the proof of (a), 8 = {intcl U[x;]: i = 1, ..., n} is a finite
#-cover of locally finite type. Also it may be verified easily that a(V) re-
fines 8. So B € w(%) and clearly § refines a(U) (and hence a).

Now, for a totally bounded para-uniform space (X, %), the canonical
@-uniform completion of (X, w(%)) is (X, (%)) whose underlying to-
pological space (X, #(%)) is an H-closed extension of (X, 7(#)). Of course,
the extensions (%X, ©(%4)) and (%X, ©(%*)) are also H-closed extensions
of (X, 7(%)) which represent a single R-equivalence class of H-closed ex-
tensions. The next theorem asserts that (X, #(%)) also represents this
R-equivalence class.

THEOREM 4.16. Let (X, U) be a totally bounded para-uniform space. Then
(X, ©(@*) is O-isomorphic to (X, (%)) as topological extensions of
(X, t(%)).

ProoF. First note that if & is a %-Cauchy filter on (X, %), then & is a
((«)-Cauchy filter on the §-uniform space (X, p(%)). Moreover, if & is
a minimal %-Cauchy filter on (X, %), then the unique minimal w(%)-
Cauchy filter %, on (X, x(%)) contained in & has {intcl F: Fe #} asa
filterbase.

Now define j: #X — X by j(x) = x (x € X) and j(F) = Fo (F € UX
— X), where &, is the unique minimal p(%)-Cauchy filter contained in
Z.(We have j(F) = F,€ X — X, since &, being free follows from &
being free.) If &, F,e %X — X and %, # %,, then there are open
members F, € &% and F, € &, with F; [} F; = ¢. So int cl F; () int cl
F; = @. Since int cl F; € (F,)y (i = 1, 2), it follows that () # (F2)e.
Thus, j is one-to-one.
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If # e X — X, then a neighborhood basis at & in 7(#*) consists of
sets of the form {#} U G, where G is an open member of &%, and a
neighborhood basis at % = j(#) in 7(%)|;wx), consists of sets of the
form {£,} U G where G is open and int cl G € &, It follows in a straight-
forward manner that j: #X — j(#X) is a f-continuous, open surjection.
Now, j(#X), being the §-continuous image of an H-closed space, is H-
closed itself. Since j(#X) contains X, j(#X) is dense in X. Thus, j(#X) =
X, whence j is onto.

Therefore, j is a f-isomorphism, as desired.

If we identify the points of X with the points of # X via the §-isomor-
phism of the preceding theorem, then [(%) becomes a complete §-uni-
formity on (%X, 7(%*)) (and also on (%X, ©(%)), according to Proposi-
tion 10 in [6]). (Also w(%*) and u(%,) are f-uniformities on #X with any
topology ¢ for which (%X, o) is §-isomorphic to (%X, ©(%4)). In fact it
can be shown that, as §-uniformities on (%X, o), (%), W(%*), and p(% )
are identical.) Thus, we have the following corollary.

COROLLARY 4.17. Let (Y, o) be an H-closed extension of (X, t) with r.c.r.
0. Then there is a pre-compact 0-uniformity y on (X, t) such that the under-
lying topological space (X, %) of the canonical 0-uniform completion (X, )
belongs to the R-equivalence class of (Y, o).

The R-equivalence classes of H-closed extensions of a given topological
space which are represented by canonical #-uniform completions of pre-
compact f-uniformities on the space have not been characterized. How-
ever, it is clear that any such R-equivalence class contains an H-closed
extension whose outgrowth is completely regular. The example which
follows shows not only that an H-closed extension with completely regular
outgrowth need not have r.c.r.o., but in fact need not be f-isomorphic to
an extension with r.c.r.o.

ExAMPLE 4.18. Let (X, ) and (Y, ¢) be the topological spaces introduced
in Example 4.9. Recall that (Y, ¢) is a strict H-closed extension of (X, 7)
but does not have r.c.r.o. since the points p and ¢ in ¥ — X cannot be
separated by any real-valued continuous function on any neighborhood
of Y — X,

Now Y — X is completely regular since it is discrete in the relative
topology inherited from Y. Moreover, (Y, ¢) cannot be §-isomorphic to
any extension of (X, r) with r.c.r.o. For, suppose that (Z, ) is an extension
of (X, 7) with r.c.r.o. and 4: Y — Z is a f-isomorphism. Since 4(p) and
h(q) are two distinct points of Z — X, there is a neighborhood H ey
of Z — X and a continuous function f: H — [0, 1] with f{h(p)) # f(h(q)).
Set K = h71(H) and define g: K —» [0, 1] by g = foh. Then Keg, ¥ —
X < K, and g is continuous since [0, 1] is regular. Thus g separates p and
¢, a contradiction.
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5. Superstructures and H-closed extensions. In [7] Fedorcuk uses col-
lections of #-proximities called H-structures to construct all semiregular
H-closed extensions of a given semiregular topological space. Thus, the
R-equivalence classes of H-closed extensions of a given space may be
described in terms of these H-structures. In this section we develop pro-
perties of certain collections of para-uniformities, which we shall call
superstructures, and we shall be able to describe the S-equivalence classes
of H-closed extensions of a given space in terms of these collections.

DEFINITION 5.1. Let ¢ be a nonempty collection of pair-wise compatible
para-uniformities on a set X. (L.e., if %;, %€ €, then ©(%1) = ©(%3).)

(a) A filter # on X is called % -Cauchy if & is %-Cauchy for some
AL

(b) M(%) denotes the collection of all free #-Cauchy filters on X (where
adherence is computed with respect to the topology induced commonly
by % € %).

(c) Two filters & and ¥ in M(¥) are said to be contiguous if there is
a finite set {#, .. ., f,,} c M@)suchthat ¥, =%, %, =%, and &
meets F;, fori=1,...,n— 1.

The relation of “being contiguous” is an equivalence relation on
M(%), as may be verified easily.

DEFINITION 5.2. Let ¢ be as in Definition 5.1. For & € M(%), let m(%)
denote the equivalence class under “being contiguous” of &, and let
Z* denote the filter on X which is the intersection of all filters in m(%).
A set M of filters on a topological space (X, 7) is free if each filter in M
is free, and M is separated if any two distinct filters & and ¢ in M contain
disjoint members Fe & and G € @.

DEFINITION 5.3. Let & be a nonempty collection of pair-wise compatible
para-uniformities on a set X.

(a) € is called a superstructure on X if {#*#: & € M(%)} is free and
separated.

(b) € is said to be compatible with a topology 7 on X if 7(#%) = 7 for
every 4 € €, in which case we write 7(%) = 7.

DEFINITION 5.4. Let @ be a compatible superstructure on a topological
space (X, 7).

(a) A topological extension (Y, o) of (X, 7) is a ¥-completion of (X, 7)
if every ¥-Cauchy filter on X has a g-adherence point in Y.

(b) Let #X = X U {F*%: & € M(¥)} and let ¥z be the topology on
%X such that (¢X, €7) is the strict filter extension of (X, 7) based on
(7% FeM®)} 2]

PROPOSITION 5.5. Let € be a compatible superstructure on (X, 7).
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() (¥X, ¢7) is a @-completion of (X, 7).

(b) (¥X, ¥1) is H-closed if and only if, for each free t-ultrafilter # on
X, there is ¥ € M(%) such that ¢* c &.

(©) If each free t-ultrafilter is €-Cauchy, then (¢X, €<) is H-closed.

(d) If some U € € is pre-H-closed, then (¢X, €x), is H-closed.

ProoF. (a). That (¢X, ¥7) is Hausdorff follows from the fact that
{F#% & € M(%¥)} is free and separated. If & € M(%), then #* is a Gz-
adherence point of & in ¢X. So (¥X, ) is a ¥-completion of (X, ).

(b) is easily verified, and (c) follows from (b) since #* = & for every
F € M(%). Moreover, (d) follows from (c) since each free r-ultrafilter will
be #-Cauchy when % is a pre-H-closed member of #.

We are now able to describe all isomorphism classes of strict H-closed
extensions of a given, non-H-closed, topological space (X, 7) as canonical
@-completions (¥X, ¥r) for certain compatible superstructures ¥ on
(X, 7). But first we need a lemma. Recall that the Katétov extension
(X, k) of a topological space (X, 7) is projectively larger than any other
H-closed extension of (X, 7). We can take X = X U {&: & is a free
7-open ultrafilter on X} so that (X, £) is the simple filter extension based
on the set of free open ultrafilters on (X, 7). If (¥, ¢) is any H-closed
extension of (X, 7) and f: kX — Y is the unique continuous surjection
fixing the points of X, then, for any free r-open ultrafilter % on X, we
have f(#) = ye Y — X if and only if 0O%¥ <« &.

LEMMA 5.6. Let (Y, o) be an H-closed extension of a non-H-closed space
(X, 7), and let ye Y — X be fixed. Then there is a compatible para-uni-
formity 9(y) on (X, t) such that:

(a) %(y) is totally bounded and has a transitive basis, and

(b) the filter on X generated by 0% X is a free minimal %(y)-Cauchy filter,
and the other free minimal %(y)-Cauchy filters are the members of kX —
X which do not contain O¥X.

ProoOF. Let f: £X — Y be the unique continuous surjection which fixes
the points of X. Since 7 — |J f~1(p) is a base forz, 8 = 0¥* U (z — U
f71(»)) is a base for . Let #(y) denote the para-uniformity on X gene-
rated by {S(G): G € 8} as in Theorem 1.6. It is clear that #(y) is compa-
tible, totally bounded, and has a transitive basis. So (a) follows.

(b). Let # € kX — X such that f(#) = y. Then 0% ¢ & and & is
% (y)-Cauchy since #(y) is totally bounded. Let ¢ be the minimal #(y)-
Cauchy filter contained in &%. Recall that ¢ = {U[F]: Ue %, Fe &}.
Now if G € 0¥X, then S(G)[G] = G. Thus, Oy*¥ c . Let Bet — |J /!
(»). Then y ¢ clyB and so X — clyB = X () (Y — clyB) € O¥%. So S(B)
[x] € Oy X, for any x € X — clyB. Therefore, the filter generated on X by
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0% is 9 (y)-Cauchy (and hence equals ¢) and is a free, minimal %(y)-
Cauchy filter.

Now suppose that & € £X — X and 0¥X ¢ &. Then & is %(y)-Cauchy
since #(y) is totally bounded. There are open sets Be & and G € 03X
such that BN G = @. If Fe%, then B\ Fe % and B() Fet —
USfYy). So SBNF)[BNFl=BNFcF. Thus, & is a free,
minimal %(y)-Cauchy filter. On the other hand, it is straightforward to
verify that if # e #(»)X — X and O¥»X ¢ &%, then & € kX — X.

THEOREM 5.7. Let (Y, o) be a topological extension of a non-H-closed
space (X, 7). The following are equivalent.

(a) (Y, o) is a strict H-closed extension of (X, 7).

(b) (Y, o) is isomorphic to (6X, €t) for some compatible superstructure
% on (X, 1) whose members are pre-H-closed.

ProOF. (b) = (a) follows from previous results.

(a) = (b). For each ye Y — X, let %(y) be the para-uniformity on X
guaranteed by Lemma 5.6. and let ¥ = {#(y): ye Y — X}. Then%is a
nonempty collection of compatible, pre-H-closed para-uniformities on
(X, 7). We claim that {&#*: & € M(%)} is precisely the collection of filters
generated on X by 0% X for some y € Y — X. To see this, note that (as in
the proof of Lemma 5.6) O X generates a free ¥-Cauchy filter for each
yeY — X, and also, for each &% € M(%), there is some y € Y — X such
that 0¥X < &. Since (Y, o) is Hausdorff, it follows that, for each & €
M(%) there is some y € Y — X such that &% equals the filter generated by
0Oy X and, hence, % e M(%) for each & € M(%). The claim follows im-
mediately. Therefore, {##: & € M(¥)} is a free and separated set of
filters, whence & is a superstructure. Moreover, ¥X — X = {F*: F €
M(%)} consists precisely of the filters generated on X by 0% for some
y€Y — X. The mapping h: (¥X, ¢7) — (Y, o) defined by A(x) = x
(ifxeX)and (F) = y (If F€e¥X — X and 0%X <= %) is an isomorph-
ism since (¢ X, ¢7) and (Y, o) are strict extensions of (X, 7) with identical
filter traces.
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