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CHORDAL QUADRATIC SYSTEMS* 

ARMENGOL GASULL, SHENG LI-REN AND JAUME LLIBRE 

ABSTRACT. A quadratic system is called chordal if all its singu­
larities are on the equator of the Poincaré sphere. First, we establish 
necessary and sufficient conditions for a quadratic system to be 
chordal. Later, we determine all the phase portraits for such sys­
tems. 

1. Introduction. This paper contains a study of those two-dimensional 
autonomous systems with quadratic polynomial right-hand sides without 
finite singularities. Such systems will be referred to as chordal quadratic 
systems (CQS, for abbreviation). The chordal systems were studied by 
Kaplan, see [6] and [7]. The name of chordal system is due to the fact 
that a such system has all its solutions starting and ending at the equator 
of the Poincaré sphere. For a survey on quadratic systems (QS, for 
abbreviation), see Coppel [4] and Ye Yanqian [13]. At the end of the paper 
[4], Coppel states that what remains to be done for quadratic systems is to 
determine all possible phase portraits and, ideally, to characterize them 
by means of algebraic inequalities on the coefficients. 

This paper first establishes necessary and sufficient conditions for a 
QS to have all its singularities at infinity (on the equator of the Poincaré 
sphere), i.e., to be a CQS, and then determines all possible phase portraits 
for such CQS. 

Our main result is the following theorem. 

THEOREM. The phase portrait of a chordal quadratic system is homeomor-
phic {except for perhaps the orientation) to one of the separatrix configura­
tions shown in Figure 1. Furthermore, all the separatrix configurations of 
Figure 1 are realizable for the chordal quadratic systems. 

REMARK 1. The Figures 1.1 to 1.21 are realizable for properly chordal 
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quadratic systems, Figures 1.22 and 1.23 for properly chordal linear 
systems, and Figure 1.8 for chordal constant systems, too. 

Sheng Li-Ren studied in [9] the chordal quadratic systems with Reeb's 
components. In that work all the CQS of Figure 1 except the systems 
4, 9, 13, 14, 15, 19, 21 and 23 were studied. 

The unique CQS which are structurally stable are systems 1 and 8 of 
Figure 1, see [12]. 

REMARK 2. Note that it is not necessary to solve Hubert's 16th problem 

FIGURE 1. The chordal quadratic systems (except, perhaps for orientation). 
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in order to determine all the possible phase portraits for CQS because 
they do not have finite singularities. 

2. Classification of CQS. First, we need a general classification of QS 
in which it is easy to study the finite singularities. The following lemma 
completes the classification of Cherkas [3] and Sheng Li-Ren [9]. 

LEMMA 1. A quadratic system 

(i) 

is affine-equivalent, scaling the variable t if necessary, to one of the following : 

{ X = 1 + XV, { X — 1 + X2, 
(I) " (VI) 

\y = Q(x9y), \y = Q(x,yl 
{x = xy, [ x = x2, 

(II) " (VII) 
\y = Q(x9y), \y = Q(x,y)9 

{x = y 4- x2, [ x — x, 
(III) ' (VIII) 

\y = Q(x,yl \y = Q(x,y), 

f x = y , f x = 1, 
(IV) " (IX) 

\y=Q{x,y). \y=Q(x,y\ 

{x = - 1 + x2, ( x = 0, 
(V) (X) 

\y = Q(x,y), \y = Q(x,y), 

where Q(x, y) = d 4- ax 4- by 4- lx2 4- mxy 4- «y2. 

PROOF. We write (1) as 

x = d\ 4- tfi* 4- &i>> 4- Zi*2 -h Wixy 4- «i.F2, 
(2) 

[y = d2 4- a2x 4- ^ + ^ 2 + " W + «2^2' 

We can assume that «x = 0. Otherwise, system (2) becomes a QS without 
term y2 in P(x, y) if we make the change of variables Xi = y — rx, yi = 
j where r ^ O satisfies 

(3) k + (m2 - k)r 4- (/i2 - mx)r
2 - / i ^ = 0. 

If /2 = 0, that is, if the x2 term does not appear in Q(x, y), then it is 
sufficient to interchange x and y. In short, we have 
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(6) 

(x = d\ + a\X + biy + hx2 + mixy, 
( 4 ) \y = Q(x, y). 

If mi 7* 0, then we introduce the translation xx ^ x + bim];1, y\ = y 
and system (4) becomes 

(x = d' + a'x + /'x2 4- mixv, 
(5) 

Now, the change xx = x, yi = a' + Vx 4- m ^ converts system (5) to 

x = d' 4- x>>, 

J = ô(*, y\ 

We may put *i = (rf')"1*. >>x = >> in (6) if rf' # 0 to obtain (I). If df = 0, 
then we have (II). 

If mi = 0 and bi # 0, then the change Xi = x, yi = di 4- #x* 4- è ^ 
converts (4) to 

(7) f * = y + /lX2' 

Now, if/x 7* 0, then we may put JCX = *, >>x = l~\y> h = h * in (7) to 
obtain (HI). If lx = 0, then we have (IV). 

When mi = bi = 0 and lx ± 0, we put k = a\ - 4lxdi. If k =£ 0 the 
change *x = 2/x |Â;|-1/2(JC 4- ÛX(2/I)-1), yt = y, tx = 2"1 \k\V2t converts 
system (4) to (V) or (VI) according to whether k is positive or negative. 
If k = 0, then the change xx = x 4- a^Hi)'1, yi = y, h = ht converts 
system (4) to (VII). 

If mi = bi = /x = 0 and ai ^ 0, then the change JCX = x 4- ^i(fli)"1, 
^i = y, h = fli* c o n v e r t s system (4) to (VIII). 

Lastly, suppose that mi = b\ = li = ai = 0. If di ^ 0, then the change 
*i = x,yi = y\ h = dit gives (IX) ; and if dx = 0, then we have (X). 

In order to study the singularities at infinity of the ten systems of 
Lemma 1, we need the Poincaré compactification [5], [11]. Consider the 
sphere S2 = {y e R*: y\ 4- y\ 4- y2

3 = 1}, let q = (0, 0, 1) be the north 
pole of S2, and TqS

2 be the plane {ye R3. y3 = 1}. Let p+: TqS
2 -> S2 

and p-\ TqS
2 -> S2 be the central projections, i.e., p+(y) (resp. /?"(;>)) 

is the intersection of the line joinings to the origin with the northern (resp. 
southern) hemisphere of S2. Let A' be a polynomial vector field of degree 
d on the plane and let / : S2 -+ R be defined by f(y) = yi~l. Then the 
vector fields / • (/>+)** = / . Dp+(Xo (p+)-i) and / • (p~)*X, extend X 
to an analytic vector field p(X), on S2. The equator is invariant under the 
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flow ofp(X) and a neighborhood of the equator corresponds to a neigh­
borhood of infinity in R2. 

To study p(X) we use the following coordinate systems on S2. Let 
jj. = {ye S2: y{ > 0} and K, = {y e S2: y{ < 0}. Let F{: Ut- -+ R2 be 
given by F,(y) = (yjyi\ J^JT1), for j < k and j , k ï i. We define G{: 
Vt- -» R2 by the same expression. Consider the vector field p(X), where 
X(x, y) = (P(x, y), Q(x, y)) is such that P and Q are polynomials of 
degree at most d and at least one of them has degree d. Then (Fi)* (p{X)) 
is given by 

(è, = A(Z)1- ' Zd
2( - Z ^ ^ 1 , Z1Z2~

1) + Q(z2\ Z ^ 1 ) ) , 

where A(z) = (1 + z\ + zl)1/2, zi = J2JT1 = J*"1, 2̂ = J3JT1 = *~1-
Here the points of the equator are represented by z2 = 0, the points of the 
northern hemisphere by z2 > 0 and the point (0, 0) corresponds to the 
point (1, 0, 0) e S2. (F2)* (p(X)) is given by 

(Zl = A(z)i^z^(P(z1z2-
1, Z2"1) - z1Q(z1z2\ Z2-1)), 

\z2 = - A(zy-äztiQ(zlZ2-\ z2-i). 

As before the northern hemisphere corresponds to z2 > 0 and (0, 0) = 
F2(0, 1, 0). The vector fields (Gt)*(p(X)) have the same expressions as 
(Ft)*(p(X)\ multiplied by ( - l ) ^ - 1 , but in this case the northern hemi­
sphere corresponds to z2 < 0. 

In short, systems (8) and (9) will be sufficient in order to study the 
singularities at infinity of system (1). 

From now on we shall denote by (y, z) the coordinates (zls z2) = 
Fi(yi, J2, yz\ where (yl9 y2i j>3)

 e # i , and by (x, z) the coordinates (zl9 

zi) = F2(yl9 y2, y3) where (yl9 y2, y3) e U2. 
We shall say that X(x, y) = (P(x, y), Q(x, y)) is degenerate at infinity or 

that the CQS is degenerate, if all the points of the equator of S2 are 
singularities of p(X) and X is properly a quadratic system. If X is nonde­
generate at infinity, then from (8) and (9), and the fact that each singularity 
of p(X) dit infinity completely determines its antipodal singularity, it 
follows that there are only one, two or three singularities at infinity to be 
considered. 

Let X(x9 y) = (ax + by + F(x, y)9 ex + dy + G(x, y)) be a vector field 
such that F and G are analytic in a neighborhood of the origin and have 
expansions that begin with second degree terms in x and y, and the 
origin (0, 0) is an isolated singularity. Then, we say that (0, 0) is a singu­
larity of type : 

E if (0, 0) is a nondegenerate singularity; 
S if the linear part DX(0, 0) has an unique eigenvalue equal to zero; 
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H if the linear part DX(0, 0) has the two eigenvalues equal to zero and 
DX(0, 0) is not zero; and 

T if the linear part is zero. 
Now, we shall study the singularities at infinity for the system (I). For 

this system, from (8) and (9), we have 

(10) 

(11) 

y = / + my + az + (n — \)y2 4- byz + dz2 — yz2, 

z = — yz — z3, 

(x = (1 — n)x — mx2 — bxz + z2 — lx3 — ax2z — dxz2, 

[z = — nz — mxz — bz2 — lx2z — axz2 — dz3, 

where we omit the positive function A = (1 + y2 4- z2)1/2 in (10), and 
A = (1 + x2 + z2)1/2 in (11). So, the singularities at infinity of the system 
(I) will be the singularities (y, 0) of (10) and (x, 0) of (11). 

The point (y, 0) e Fi(t/i) will be a singularity of (10) if and only if y 
satisfies (n - \)y2 + my + / = 0. The matrix of the linear part DX(y, 0) 
of the vector field (10) at the singularity (y, 0) is given by 

(12) 
m + 2(n — l)y a + by 

0 -y . 

The unique singularity (x, 0) e F2(U2) of (11) which does not belong to 
F^Ux) is the singularity (0, 0). The matrix of the linear part DX(0, 0) 
of the vector field (11) at the singularity (0, 0) is equal to 

(13) 
I - « 0" 

0 - n 

Since system (I) does not have finite singularities, the polynomial 
Ix4 + ax3 + (d — m) x2 — bx + n has no real roots different from zero. 

From ( 10)—( 13) and this last condition it is easy to classify the singulari­
ties at infinity for system (I), the result is given in Table 1. 

Similarly, we can classify the singularities at infinity for systems (II)-(X) 
when they have no finite singularities, the results are given in Tables 
2-10. Note that to study system (X) it is necessary to consider the im­
aginary conies. 

Table 11 summarizes the classification of the singularities at infinity. 

3. Phase portraits for degenerate, linear and constant CQS. 

LEMMA 2. For a degenerate, linear or constant CQS (1), there exists an 
affine transformation and a scaling of the variable t which reduces it to one 
of the systems: 



TABLE 1. The singularities at infinity for system (I). 

singularities 
of type 

(,E,E,E) 
(E) 
(E,S) 

(E,E,S) 
(E,T) 

{E,E,S) 
(S) 

(E,S,S) 

(S,H) 
(S,T) 

(E,S) 
(S) 

(S,S) 
degen. 

if 

n # 0 , 1 

n = 0 

n = 1 

/ / 0 

/ = 0 

/ * 0 

/ = 0 

/ ^ 0 

/ = 0 

m2 - 4{n - 1)/ > 0 
m2 - 4(n - 1)/ < 0 
m2 - 4{n - 1)/ = 0 

m # 0 
m = 0 

m2 + 4/ > 0 
m2 + 4/ < 0 
m2 + 4/ = o 

m # 0 

m = 0 a = 0 

m # 0 
m = 0 

m # 0 
m = 0 

(1.1) 
(1.2) 
(1.3) 

(1.4) 
(1.5) 

(1.6) 
(1.7) 
(1.8) with 
(1.9) 

(1.10) 
(1.11) 

(1.12) 
(1.13) 

(1.14) 
(1.15) 

(A) 

(B) 

(C) 

(B) 

(A) 

(B) 

In Table 1, we have: 
(A) The polynomial /x44-tfx3 4- (d - m)x2 — bx + n has no real roots different from zero. 
(B) Either a = 0, d - m # 0 and b2 - 4n(d - m) < 0, 

o r a = ò = H = 0 and d - m ^ 0, ora = d-m = b = 0 and rc # 0, 
o r a = d - m = fl = 0 and è ^ O , or a 7e 0, /?. = 0 and (d - m)2 4- 4ab < 0, 
or a ^ 0 and n = b — d - m = 0, 

(C) Either ò = 0 and a2 - 41 (d - m) < 0, or b = a = d - m = 0. 



TABLE 2. The singularities at infinity for system (II). 
0 0 

System 
(II) 

has at 
infinity 

3 
1 
2 

3 
2 

~Y 
1 
2 

T~ 
2 

T 
i 

~Y 
00 

singularities 
of type 

(E9E,E) 
(E) 
(E,S) 

(E,E,S) 
(E9T) 

(E9E,S) 
(S) 
(S,S) 

(E,S9S) 

(E9S) 
(S) 

(S,S) 
degen. 

if 

« 9 ^ 0 , 1 

n = 0 

n = 1 

/ * 0 

/ = 0 

/ # o 

/ = 0 

/ * o 

/ = 0 

m2 - 4(n - 1)/ > 0 
/M2 - 4(n - 1)/ < 0 
m2 - 4(n - 1)/ = 0 

m *0 
m = 0 

w2 + 41 > 0 
w2 + 41 < 0 
W2 + 4i = o 

m # 0 
m = 0 

m # 0 
w = 0 

m # 0 
m = 0 

(II. 1) 
(II.2) 
(113) 

(II.4) 
(II. 5) 

(116) 
(117) 
(II.8) 

(119) 
(11.10) 

(11.11) 
(11.12) 

(11.13) 
(11.14) 

with 

(A) 

(B) 

(C) 

(D) 

(A) 

(B) 

In Table 2, we have : 
(A) b2 - And < 0 and a2 - 4 Id < 0, 
(B) a = 0 and Z>2 - 4nd < 0, 
(C) 6 = 0 and a2 - 4 Id < 0, 

(D) a = b = 0 and d ¥= 0. 

o > 

m 

> 
Ö 

r 
r 



TABLE 3. The singularities at infinity for system (III). 

System 
(III) 

has at 

infinity 

3 
1 
2 

2 

singularities 
of type 

(E,E,E) 

(E) 
(E,S) 

(E9H) 

if 
n # 0 

(m - I)2 - 4«/ > 0 
(m - I)2 - Ani < 0 
(m - I)2 - Ani = 0 

n = 0 (III.4) 

with 
(A) 

(B) 

In Table 3, we have: 

(A) the polynomial nx4 — mxs + (/ — b)x2 + ax + d has no real roots, 

(B) either m = 0, / - b ± 0 and a2 - Ad(l — b) < 0, or m = I - b = « = 0 and d # 0. 

TABLE 4. The singularities at infinity for system (IV). 

System 
(IV) 

has at 

infinity 

3 
1 
2 

2 

2 
1 

singularities 
of type 

System (IV) is linear when 

(E,S,S) 

(E) 
(E,H) 
(EJ) 

(S,H) 
(H) 

if 

n # 0 

n - 0 

m2 - 4«/ > 0 
A/22 - 4W/ < 0 

m2 — 4«/ = 0, Aan2 -

m2 - Ani = 0, Aan2 -

m # 0 

m = 0, / ^ 0 

n = m = / = 0 

- 2Z>m/2 -

- 2bmn -

- m2 ^ 0 

- m2 = 0 

(IV. 1) 

(IV.2) 
(IV.3) 

(IV.4) 

(IV.5) 
(IV.6) 

(IV.7) 

o 

1 
> 
r 
O 
G 
> 
> 
H 

1 

In Table 4, we have always either / # 0 and a2 - 4W < 0, or / = a = 0 and d # 0. L U 



TABLE 5. The singularities at infinity for system (V). 

System 
(V) 

has at 

infinity 

3 
1 
2 

2 

singularities 
of type 

(E,E,E) 

(E) 
(E,S) 

(E,T) 

if 
n # 0 

(m - I)2 - 4/z/ > 0 
(m - l)2 - 4nl < 0 
(m - I)2 - 4nl = 0 

n = 0 

(V.l) 
(V.2) 
(V.3) 

(V.4) 

with (A) 

(B) 

In Table 5 we have: 
(A) (m + b)2 - 4n{d + a 4- /) < 0 and (m 
(B) m = ò = 0 and d + / # ± a. 

b)2 - 4n(d - a + /) < 0, 

ON 
O 

> 
d r r 

System 
(VI) 

has at 
infinity 

3 
1 
2 

2 
1 

00 

TABLE t 

singularities 
of type 

). The singularities at infinity for system (VI). 

(E,E,E) 

(E) 
(E,S) 

(E,T) 

(T) 

degen. 

if 

n * 0 

n = 0 

(w - l)2 - Ani > 0 
(m - l)2 - Ani < 0 
(m - l)2 - 4«/ = 0 

m # 1 

m = 1, / ^ 0 

m = 1, / = 0 

(VI. 1) 
(VI.2) 
(VI.3) 

(VI.4) 
(VI.5) 
(VI.6) 

> 

r r 



TABLE 7. The singularities at infinity for system (VII). 

System 
(VII) 

has at 
infinity 

3 
1 
2 

2 
1 

00 

singularities 
of type 

(E,E,E) 

(E) 
(E,S) 

(E,T) 

(T) 

degen. 

if 

n ï 0 

n = 0 

(m - I)2 - 4nl > 0 
(m - I)2 - 4nl < 0 
(m - I)2 - 4nl = 0 

m # 1 

m = 1, / # 0 
m = 1, / = 0 

(VILI) 
(VII.2) 
(VIL3) 

(VIL4) 
(VII.5) 
(VII.6) 

with 

b2 -4nd<0 

b = 09d=tt0 

System 
(VIII) 

has at 

infinity 

3 
1 

2 

2 

2 

1 

singularities 
of type 

TABLE 8. The singularities at infinity for system (VIII). 

(E,S,S) 

(E) 

(E,H) 

(EJ) 

(S,T) 

(T) 

if 

^ 0 

n = 0 

m2 — 4nl > 0 

m2 — 4nl<0 

m2-4nl = 0,2an-(b-l)m^0 

m2 — 4nl = 0, 2an — (b— \)m = 0 

m =£ 0 

m = 0, / T* 0 

System (VIII) is linear when n = m = / = 0 

(VIII.l) 
(VIII.2) 
(VIII.3) 
(VIII.4) 

(VIII. 5) 
(VIII.6) 

(VIII.7) 

with 

b2 - 4nd < 0 

b = 0, J ^ 0 

> 
r 
O 
G > 
> 
H 

H 

Os 



System 
(IX) 

has at 

infinity 

3 

1 
2 
2 

2 
1 

singularities 
of type 

TABLE 9. The singularities at infinity for system (IX). 

(E,S,S) 

(£) 
(E,H) 
(E,T) 

(S,T) 
(T) 

if 

n Ï 0 

n = 0 

rrfi - Ani > 0 

m2 - Ani < 0 
m2 — 4«/ = 0, 2an — bm / 0 
m2 — 4n/ = 0, 2a« — bm = 0 

m * 0 
m = 0, / * 0 

System (IX) is linear or of degree zero when n = m = / = 0 

(IX. 1) 
(IX.2) 
(IX.3) 
(IX.4) 

(IX.5) 
(IX.6) 

(IX.7) 

ON 

> 
G r r 

TABLE 10. The singularities at infinity for system (X). 

System 
(X) 

has at 
infinity 

1 
2 

1 

singularities 
of type 

(E) 
(E,T) 

(T) 

if 
n Ï 0 

n = 0 

m2 - 4n/ < 0 and either ID > 0 or D = 0 
m2 - 4n/ = 2an - bm = D = 0, b2 - And < 0 

m = b = 0, / # 0 and a2 - Aid < 0 

System (X) is of degree zero when « = / = m = a = è = 0, d ¥ 0 

(X.1) 
(X.2) 

(X.3) 

(X.4) 

In Table 10 the equation d + ax + fry + /x2 + mxy + fry2 = 0 has no real solutions and 

/ m/2 a/2 

D = m/2 

a/2 

n 

b/2 

b/2 

d 

m 

> 
z 

r r 

g 
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TABLE 11. The classification of the singularities at infinity for 
properly chordal quadratic systems. 

{E,E,E) 
(E,E,S) 
(E,S,S) 
(E,S) 
(S,S) 
(E) 

(S) 
(E,H) 
(E,T) 

(S,H) 
(S,T) 
(H) 
(T) 
Degenerate 

(1.1), (H. 1), (III.1), (V.l), (VI. 1), (VILI). 
(1.4), (1.6), (II.4), (II.fi). 
(1.9), (II.9), (IV. 1), (VIII. 1), (IX. 1). 
(1.3), (1.12), (H.3), (11.11), (III.3), (V.3), (VI.3), (VII.3). 
(1.8), (1.14), (II.8), (11.13). 
(1.2), (II.2), (III.2), (IV.2), (V.2), (VI.2), (VII.2), (VIII.2), 
(IX.2), (X.1). 
(1.7), (1.13), (II.7), (11.12). 
(III.4), (IV.3), (VIII.3), (IX.3). 
(1.5), (II.5), (IV.4), (V.4), (VI.4), (VII.4), (VIII.4), (IX.4), 
(X.2). 
(1.10), (IV.5). 
(1.11), (11.10), (VIII.5), (IX.5). 
(IV.6). 
(VI.5), (VII.5), (VIII.6), (IX.6), (X.3). 

(1.15), (11.14), (VIS), (VII.6) 

(x = 1 + xy, (x = 1, 
(D-D . . (D-4) . 

(y = y2, (y = y, 
(x = xy, (x = 1, 

(D.2) (D.5) J\y=l+by+y2, \y = 0, 

(* — y, 
(D-3) . , 

where \b\ < 2. 

PROOF. System (1.15) with d = 0 is (D.l). If d ^ 0, then d > 0(because 
b2 - Ad < 0). Therefore, the change xx = dV2x, yx = d~1/2y, tx = d1/2 t 
converts the system to the form 

[x = 1 4- xy, 
(14) 

\y = 1 + b'y + y\ 

and after the change X\ = x — V — y, yt = y the system becomes (D.2). 
System (11.14) becomes (D.2) in a similar way to system (1.15) with 

d*0. 
System (IV.7) becomes (D.3) if b = 0. If b ^ 0 the change xx = 

bd"1 (y — bx), yi = d + by,ti = bt transforms the system to (D.4). 
The translation xx = x 4- b, yx = y + a converts system (VI.6) to 

http://II.fi
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(x = x2 - 2bx + b2 + 1, 

[y = d + xy. 

If d' # 0, then using the change xx = (b2 + 1)1/2(J')_1^ J i = (*>2 + l)"1/2x, 
tx = (£2 + 1)1/2/ system (15) becomes (14). If d' = 0, then the change 
Xl = y, yx = (b2 + 1)"1/2JC, ^ = (b2 + 1)1/2J converts (15) to (D.2). 

System (VII.6) is equivalent to system (D.l) using the change x1 = 
d~l(y + a), yx = x. 

System (VIII.7) becomes(D.4) if a = 0. If a ^ 0 the change xx = d~l 

(y — ax), yi = ax converts the system to (D.4), too. 
System (IX.7) becomes (D.4), (D.3) or (D.5) according to b ^ 0, b = 0 

and Û / 0, or a = b = 0, respectively. Lastly, system (X.4) is equivalent 
to (D.5). 

THEOREM 3. The phase portrait of a degenerate, linear or constant CQS 
is homeomorphic (except, perhaps for the orientation) to one of the separatrix 
configurations shown in 20, 21, 22, 23 and 8 of Figure 1. Furthermore, sys­
tems (D.1)-(D.5) realize all of these configurations. 

PROOF. It will be sufficient to describe the flow of the systems given in 
Lemma 2. System (D.l) has the following orbits x = — (2j)_1 — ky and 
y = 0; so, its phase portrait is given by 20 of Figure 1. 

In Ui system (D.2) becomes 

[y = (by + z)z, 
(16) 

[z = - yz. 

If we omit the factor z we can draw the orbits of (16), so the phase portrait 
of (D.2) is given in Figure 1.21. Lastly, the orbits of systems (D.3), (D.4) 
and (D.5) are x = y2 2_1 + k, y = k exp(x) and x = t, y = k; respec­
tively. Hence, 22, 23 and 8 of Figure 1 follow. 

4. Phase portraits for CQS with all the singularities of type E and S. Let 
X be a polynomial vector field. Since the equator of S2 is invariant by the 
flow of p(X) (see §2), a singularity at infinity of type E will be a saddle or 
a node. Similarly, a singularity at infinity of type S will be a saddle, a node 
or a saddle-node (see Theorems E and S of the appendix). 

From Theorems E and S, the stable and unstable séparatrices of a saddle 
p of type E or S form an angle into the point p. So, the equator separates 
the hyperbolic sectors as in Figure 2. From Theorem S, the equator sep­
arates a saddle-node p as in Figure 3. We note that the matrix of the 
linear part, Dp(X) (p), will be either 

"# 0 *" 

o o_ 
, or 

"0 

_0 

* 
7*0_ 
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according to whether/? is of type Si or S2, respectively. 

I 

765 

FIGURE 2. A saddle of type E or S on the equator of S* 
(We can reverse the orientation of the orbits). 

FIGURE 3. The saddle-nodes of type St or S2 of p(X) on the equator of S2 

(We can reverse the orientation of the orbits). 

The following lemma generalizes Lemma 6 of [9]. 

LEMMA 4. Let X(x, y) = (P(x, y), Q(x, y)) be a QS. Suppose that X has 
at the equator a singularity of type S2, H or T. Then 

(1) there exist at most two singularities at the equator 
(2) if there is another singularity at the equator it can not be of type *S2, 

H or T. 

PROOF. Since there is a singularity at infinity of type £2, H or T, the 
infinity of X is nondegenerate. Without loss of generality we can choose 
a coordinate system (x, y) for X such that all the singularities at the equa­
tor are contained in Uh 

We write X in the form of equation (2). From (8), X becomes 
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(y = k + (m2 - k)y + a2z 4- (n2 - mi)y2 + (b2 - ax)yz + d2z
2 

(17) | - nxy* - bxy
2z - dxz

2y, 

U = — hz *~ aiz2 — miyz — nizy2 — b^yz2 — diz3. 

l((y, 0) is a singularity of (17), then it satisfies the equation 

(18) nxy
3 - (n2 - mx)y

2 - (m2 - lx)y - /2 = 0 

The matrix of the linear part, Dp(X) (y, 0), is given by 

Y{m2 - /i) + 2(«2 - mi)y - 3nxy
2 a2 + (b2 - ax)y - bxy

2l 

L 0 — li — m^y — n\y2 J 

Since (y, 0) is of type 52, H or T we have that (m2 — l{) 4- 2(n2 — m^y 
— 3n1y

2 = 0. Therefore y is a multiple root of (18). Hence (1) follows. 
Let (yl9 0) and (y2, 0) be two singularities at infinity of type S2, H or T 

with y1 # y2. Then, we have nx = n2 — mi = m2 — ^ = l2 = 0, and 
this is a contradiction because the equator would be degenerate. 

THEOREM 5 {Poincaré's index theorem, see [8]). The index of a surface 
relative to any vector field X with at most a finite number of singularities, 

FIGURE 4. (a) Singularities of type (Ey E, E\ (£", Ey S) or (E, S, S) with indices 
( + 1, - 1 , +1) 

(b) and (c) Singularities of type (E, 5, S) with indices ( + 1 , 0, 0) 
(d) Singularities of type (E, S) or (£, S) with indices ( + 1 , 0) 
(e) Singularities of type (E) or (S) with index (+1) . 
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is independent of the vector field and equal to the Euler-Poincaré charac­
teristic of the surface. 

LEMMA 6. Let X be a CQS with all the singularities of type E or S. Then 
the behaviour of X near the equator of the Poincaré sphere is shown in 
Figure 4. 

PROOF. From Theorem E, the index of a singularity of type E is +1 or 
— 1. While, by Theorem S, the index will be + 1 , — 1 or 0 for a singularity 
of type S. 

We note that, by Theorems E and S, and Figure 2 we have that a singu­
larity of type E or S with the same index has the same behavior with 
respect to the equator. 

Suppose that X has three singularities at the equator. From Theorem 
5, their indices are ( + 1 , — 1, 4-1) or ( + 1 , 0, 0). If the indices are ( + 1 , 
— 1, +1), Figure 4.a follows. Now, assume that the indices are ( + 1 , 0, 
0). By Lemma 4, the two saddle-nodes are of type S\. Hence, Figures 
4.b and 4.c follow. 

If X has two singularities at the equator, then the indices are ( + 1 , 0) 
and Figure 4.d follows. Lastly, Figure 4.e shows the equator with a unique 
singularity. 

Markus [10] has shown that in the plane two C1 systems with isolated 
singularities and no limit séparatrices are equivalent if and only if their 
separatrix configuration are equivalent. Thus, if a QDS X is such that 
p{X) has only a finite number of singularities, it suffices to determine all 
possible separatrix configurations in order to determine all possible phase 
portraits. 

THEOREM 7. The phase portrait of CQS with all the singularities of type E 
and S is homeomorphic {except, perhaps for orientation) to one of the sepa­
ratrix configurations shown in 1, 2, 3, 4, 5, 6, 7 and S of Figure 1. 

The proof follows easily from Lemma 6. We note that 1 and 2 of Figure 
1 have indices ( + 1 , — 1, +1), and 3 and 4 have indices ( + 1 , 0, 0). 

TABLE 12. 

The 
configuration 

1 
2 
3 
4 
5 
6 
8 

of 
Figure 1 

is 
realizable 
by the 

systems 

(11.1) with TI > 1 
(ILI) with« e (0, 1) 
x = y, y = 1 - y + xy + y2 

* = y9 y = - 1 - y + xy + y2 

(II.3), (II.8), (V.3), (VII.3) 
(11.11), (11.13) 
all the systems of type (E) or (S) of Table 
11 
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It is not difficult to verify Table 12. So, the eight possible configurations 
given by Theorem 7 except, perhaps, configuration 7 are realizable for 
CQS with all the singularities of type E and S. The configuration 7 will 
be realized later on. 

5. Phase portrait for CQS with some singularity of type H. From Table 
11 a singularity of type H at infinity for a CQS appears in the cases (E, H), 
(S, H) and (H). 

We shall need the following lemmas. 

LEMMA 8. For n # 0 the system 

(x = P(x, y), 

\y = d + ax + by + lx2 + mxy 4- ny2, 

with the change of variables xx = x, yi = y 4- m(2n)~1x becomes 

(x = P(x, y - m(2n)~1x), 
J y = d + (2an - mb) (In)-1 x + by + (Ani - m2) (An)'^2 

[ + ny2 + m(2n)~1P(x, y - m(2n)-1x). 

The proof follows easily. 

LEMMA 9. For n ^ 0 the system 

(x = P(x, y), 

\y = d 4- ax 4- by 4- ny2, 

with a = 0 can be written as 

x = x2 4- 1, (x = x2, jx = x2 — 1, 
y = Ö(*, yl \y = ß(*, *), \y = Q(x, y), 

according to whether k = b2 — And is negative, zero or positive. And if 
a T̂  0 it can be written as 

(x = y + x2, 

\y = Q(x9y). 

PROOF. This follows easily with the changes of variables : 

JCI = 2n\k\-1/2(y 4- b(2nY1), yx = Anak^x - k \k\~\ 

h = 2~l \k\1/2 t if k ^0,a^0; 

xx = 2n \k\'l/2(y 4- b(2n)^), yx = x, tx = 2"i \k\1/2 tiïk^0,a = 0; 

Xl = y + b(2n)~l, yx = an^x, tx = nt\î k = 0, a # 0; 

and 

Xl = y + b(2n)-1, yx = x, tx = nt if k = a = 0. 

file:///k/~/
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LEMMA 10. Let X(x, y) = (P(x, y), Q(x, y)) be a CQS with singularities 
at the equator of type {E, H). Then the local phase portrait of the singularity 
°f type H is given by Figure 5.a. 

PROOF. From Theorems E, H and 5, the indices are 4-1 for the singula­
rity of type E and 0 for the one of type H. Again, from Theorem H we 
have that the singularity of type H is a saddle-node. 

Since the parabolic sector of a saddle-node of type H reaches the 
singularity in a unique direction given by the one of the three séparatrices 
(see Theorem H) and the infinity of a QS is invariant, we have that a 
saddle-node of type H at the equator for a QS must be as in Figure 5. 

Since the singularity of type E is a node, the orbits on the equator are 
as in Figure 6. So, the configurations for the saddle-node shown in 
Figures 5.c and 5.d are not possible. 

By Lemma 8 and 9 systems (IV.3), (VIII.3) and (IX.3) can be trans­
formed into system (III.4). This system has the singularity of type H 
at the point (0,0) of the local chart (U2, F2). In this local chart the equation 
becomes 

(x = z + x2 — bxz — lx3 — ax2z — dxz2, 
\z = — bz2 — lx2z — axz2 — dz3. 

We apply to this system two successive changes of variables x = x, 
z = wxx and x = x, wx = wx. Therefore, system (19) is equivalent (after 
omitting a common factor x) to 

x = x + wx — lx2 — bx2w — ax3w — dxAw2, 

w = — 2w — 2w2 4- Ixw + bxw2 + ax2w2 4- dxsw3. 

This system has exactly two singularities on the w-axis, from Theorems 
E and S; they are a saddle at (0, 0) and a saddle-node at (0, — 1), and the 
saddle-node has the two hyperbolic sectors either to the right or to the 
left of the invariant w-axis. So, from Figure 7, the lemma follows. (For 
more details, see pp. 335-336 of [2]). 

The next theorem follows immediately from Lemma 10. 

THEOREM 11. The phase portrait of a CQS with singularities at the 
equator of type (E, H) is homeomorphic {except, perhaps for orientation) 
to the configuration shown in Figure 1.9. 

Now we shall study the case (5, H). This case appears in systems (1.10) 
and (IV.5). System (1.10) with the change of variables xx = y, yx = 
d + ax + by becomes a system contained in (IV.5). By Theorem H we 
have that the singularity of type H of system (IV.5) is the union of a 
hyperbolic and an elliptic sector (because a = 3, ß = 1, a = — m2, b = 
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FIGURE 5. The possible saddle-nodes of type H on the equator of 52 . 
In fact, only configuration a is possible (We can reverse 

the orientation of the orbits). 

node 

saddle-node 

FIGURE 6. 

FIGURE 7. 
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FIGURE 8. The possible configurations for a singularity of type H at infinity which 
is the union of a hyperbolic and elliptic sector (We can reverse the orientation of the 
orbits). 

— 3m). Then, by Lemma 4, the singularity of type S is a saddle-node of 
type S±. 

From Theorem H, the orbits which reach or leave the singularity of 
type H do so in a unique direction. So, we have that the local behaviour 
at the singularity H must be as shown in Figure 8. The following lemma 
tells us that, for (IV. 5), the unique possibility for a singularity of type H 
is given by Figure 8.a. 

LEMMA 12. If m ^ 0 the semiaxes x > 0 and x < 0 are séparatrices of 
the origin for the system 

(x = z — mx2 — bxz — lx3 — ax2z — dxz2, 
\z = —mxz — bz2 — lx2z — axz2 — dzs. 

PROOF. We apply to system (20) two successive changes of variables 
x = x, z = wix and x = x, wt = wx. Therefore (20) is equivalent (after 
omitting a common factor x) to 

x != x(— m — Ix + w — bxw — ax2w — dx3w2), 

w = w(m + Ix — 2w + bxw + ax2w + dx3w). 

FIGURE 9. 
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This system has exactly two singularities on the w-axis, a saddle at 
(0, 0) and a node at (0, 2_1m). So, from Figure 9, the lemma follows. 

In short, since the singularity of type H of system (IV.5) in the local 
chart U2 is the origin of system (20), we have the following theorem. 

THEOREM 13. The phase portrait of a CQS with singularities at infinity of 
type (5, H) is homeomorphic (except, perhaps for orientation) to the con­
figuration shown in Figure 1.10. 

Lastly, the case (H) only appears in system (IV.6). By Poincaré's index 
theorem and Theorem H we have that the singularity of type H is either 
a topological node or the union of a hyperbolic and an elliptic sector (see 
Figure 8). The second case implies that the behaviour of the flow on the 
equator of the Poincaré sphere must be like that in Figure 10 and this 
fact is impossible for the quadratic systems. So the phase portrait of 
system (IV.6) is like 8 of Figure 1. 

6. Phase portraits for CQS with some singularity of type T. From Table 
11 we must consider the systems whose singularities at equator are of 
type (T), (S, T) and (£, T). 

FIGURE 10. 

FIGURE 11. 
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Case (T). In this case we have the following systems (VI.5), (VII.5), 
(VIII.6), (IX.6) and (X.3). 

The system (VI.5) has the equations 

(20) {* = ' + X2' 
(y = d' 4- by + x2 4- xy, 

after the change of variables x\ = x, y\ = (y 4- UT)/-1. It has, at the 
equator, a singularity of type (T) at the point (0, 0) of the local chart 
(U2, FQ). In this local chart the system becomes 

(x = — bxz -\- z2 — x3 — d'xz2, 

\z = — xz — òz2 — x2z — d'z3. 

So, the zeros of the equation z(x2 + z2) = 0 give the directions to 
reach the singularity of type (T). Then, the unique possible direction to 
reach this singularity is given by the equator, z = 0. 

If we make the change of variables x = x, z = wx, (21) becomes 
(after omitting a common factor x) 

x — —bxw 4- xw2 — x2 — drx2w2, 
w = — w — w3. 

The unique singularity of this system is (0, 0) and, by Theorem S, 
it is a saddle-node. Since the unique direction to reach the origin of (21) 
is given by the equator, Figure 11 follows. So Figure 1.8 gives us the 
phase portrait of (20). 

System (VI1.5) is given by 

[y = d + ax + lx2 + xy, 

with d # 0 and / ^ 0. We introduce the change Xi = l\ld\~l/2 x, 
yi = \ld\~l/2(a + lx + y), ti = l~l\dl\l/2t. The equations (22) becomes 

x = x2, 

y = ± 1 + x2 + xy. 

This system has the line x = 0 invariant and the other solutions are 
given by y = +(2x)_ 1 4- x log|jc| + A:JC. Drawing these solutions for the 
minus sign we obtain again a phase portrait like that in Figure 1.8. But 
for the plus sign the phase portrait is shown in 11 of the same Figure. 

System (VIII.6) is given by 

[y = d + ax + lx2. 
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with d # 0 and / # 0. The transformation xl = \ld~l\1/2x, yx = /- ] \ld~l\ 
(y — ax) converts (23) to one of the two forms 

x = x, 
y = + l + x2. 

This system has the solutions x(t) = k exp(f), y(t) = ± / + k22~l 

exp(2f). When we choose the plus sign we obtain 8 in Figure 1. But, for 
the minus sign, the phase portrait is shown in Figure 1.12. 

System (IX.6) has the equations 

[y = a + ax + by + lx1, 

with / 9e 0. If b = 0 the transformation x1 = x + a(2l)~1, \\ = 
I'1 (y - (d - a2(4iyl) (x + a(2iy1)) converts (24) to the form 

(25) 
y = x2. 

Since the solutions of (25) are y = 3~1x3 4- k, its phase portrait is 
like 8 in Figure 1. 

When b # 0 in (24) the change of variables x\ = b(x 4- Ö(2/) _ 1) , 

yi = bH~l(y 4- b~l(d - a2(4l)~1)), tx = bt converts system (24) to the 
form 

(y = y 4- x2. 

Since the solutions of (26) are y = k exp(x) — x2 — 2x — 2 its phase 
portrait is given in 13 of Figure 1. 

Lastly, system (X.3) looks like 8 in Figure 1. 

Case (S, T). From Table 11 we must study the systems (1.11), (ILIO), 
(VIII.5) and (IX.5). 

System (1.11) can be transformed into systems (VIII.5) or (IX.5) ac­
cordingly as b ^ 0 or d # 0 with the changes of variables jq = b~xy, 
y\ = bx, tx = bt or xx = y, y1 = x, t\ = dt, respectively. In a similar 
way, system (ILIO) is transformed into system (IX.5) with the change of 
variables Xi = y, >i = x, tx = dt. 

Now we consider the system (VIII.5) which has the equations 

x = x, 

y = d 4- ax 4- lx2 4- mxy, 

with d ^ 0 and m ^ 0. We introduce the variables jq = mx, yx = (md)~l 

{a 4- lx 4- my 4- lm~l). In the new variables system (VIII.5) becomes 
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(y = 1 + xy. 

Since the solutions of (27) are given by x(t) = c exp(f), y(t) = 
exp(c exp (/)) (J^exp( — c exp(O) dt H- k) its phase portrait is shown in 
Figure 1.14. 

System (IX.5) is given by 

x = 
= d + ax + by + /A'2 + wxy, 

with m^O. We consider the variables jq = |m|1/2(x + bm~l), yi=a — Iblmr1 

+ /(A + 6m-1) + ray, t\ = |m|1/2/. In the new variables system (IX.5) 
has the following equations 

(28) { * - ' ; _ 
\y = d + xy. 

Note that we can assume that d' = 0 or d' = 1. The solutions of (28) are 
x{t) = r, X 0 = exp(+2-1/2) (df JJ exp(± 2 -^2 )^ + &). So the phase 
portraits of(28)for df = 0, minus sign; d' = 0, plus sign; d' = 1, minus 
sign; d' = 1, plus sign are given by 15, 16, 15 and 17 of Figure 1, respec­
tively. 

Case (£, T). We must study the cases (1.5), (II.5), (IV.4), (V.4), (VI.4), 
(V1I.4), (VIII.4), (IX.4) and (X.2). 

By Lemmas 8 and 9, the cases (1.5), (II.5), (IV.4), (VIII.4) and (IX.4) 
are contained in the cases (V.4), (VI.4) and (VII.4). It is clear that system 
(X.2) has a phase portrait like Figure 1.15. So we must study these last 
three cases. 

System (V.4) is given by 

x = x2 — 1, 
y = d + ax 4- Ix2, 

with d -f / # ± a. If a = 0, then the change of variables xi = x, 
yx = (d -f / ) _ 1 (ĵ  — Ix) converts system (V.4) to the form 

X = X2 — 1, 

y = 1. 

The solutions of this system are x(t) = (1 4- k exp(2?)) (I — k 
exp (It))'1, y(t) = /. So, its phase portrait is shown in Figure 1.7. Note that 
this phase portrait was the one not realized in §4. 

When a # 0 we introduce the coordinates Xi = x, y\ = crl(y — Ix) 
and system (V.4) has the equations 
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(X = X2 - 1, 
(29) 

\y = x + k9 

where k = (d + l)a~l. Note that we can assume that k è 0, k ^ 1. This 
system is solvable. If A: > 1, then the configuration of (29) is shown in 
Figure 1.7. If 0 ^ k < 1, then its phase portrait is like 18 in Figure 1. 

System (VI.4) is given by the equations 

(X = X2 + 1, 

\y = d + ax + by + lx2 + mxy\ 

where m ^ 1. The singularity of type (T) for (30) is the point (0, 0) of the 
local chart (U2, F2) and the system in this chart has the equation 

jx = (1 — m)x2 — bxz + z2 - lx3 — ax2z — dxz2, 
\z = —mxz — bz2 — lx2z — axz2 — dz3. 

So the unique direction to reach this singularity is the direction given by 
z = 0. 

Assume m < 1. Then the singularity of type (£) is a node. By making 
the change of variables x = x, z = wx in (31), we obtain (after omitting a 
common factor x) 

(x = (1 — m)x — bxw + xw2 — lx2 — ax2w — dx2w2, 
\w = — w — w3. 

Since the unique singularity of (32) on the w-axis is a saddle and the 
unique direction to the the origin of (31) is z = 0, we obtain Figure 12. 
So the phase portrait of (30) with m < 1 is given by Figure 1.15. 

Assume m > 1. In this case the origin of (32) is a topological node, 
and since z = 0 is the unique direction to reach the origin of (31), we have 
that the behaviour of (31) near z = 0 is given by Figure 13 but without 
knowing if there is some elliptic sector. The singularity of type (iE") for 
(30) is the point (/(l - m)'1, 0) of the local chart (6/b FJ and it is a 
saddle. By making the inner product of the vector field (30) with the 
vector(/(l — m)~l, —1) on the line r = {(x, 1(1 — m)_1x — am'1 — 
blrrrl(l - ni)'1) : x e R } we obtain c = /(l - m)'1 - d + bam'1 + 
lb2(\ — mYxrrcx. So if c = 0, the line r is an invariant straight line con­
necting the two opposite saddle points, and, by the Poincaré-Bendixson 
theory on the sphere, the phase portrait of (30) is given in Figure 1.16. If 
c # 0, r is a line without contact and so the séparatrices of the saddles 
cannot connect. Hence, from Figure 13, and, again, by the Poincaré-
Bendixson theory, the phase portrait of (30) must be like in Figure 1.17. 
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-> — 

FIGURE 12. 

FIGURE 13. 

System (VII.4) is given by 

(x = x2, 

\y •= d + ax + lx2 + mxy, 

with d T̂  -0 and ra # 1. We introduce the variables xi = x9 y\ 
y + /(ra — \)~lx. In the new variables system (VI 1.4) becomes 

(33) x = x6, 
y = d + ax + rajcy. 

If m # 0 the transformation jq = (mdyl{a + ray), .Pi = wx converts 
(33) to 

(34) 
JC = 1 + XJ>, 

y = ra-1^2. 

Since ra # 1 the point (0, 0) in the local chart (£/2, Z^) is a node if 
m < 1 and a saddle if ra > 1. By the symmetries of system (34) it suffices 
to study the half-plane — ym~l > 0. The solutions are x = k(—ym~l)m 

— m((m + l)y)~l for ra # — 1 and x = — y1 (log |j>| + k) for ra = — 1. 
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Drawing these curves we obtain 6, 17 and 19 in Figure 1 for m e [— 1,0) U 
(0, 1), m > 1 and m < — 1, respectively. 

If m = 0 and a # 0, then system (33) becomes 

(x = x2, 

(y = I + x, 

using the transformation xx = ad~xx, yi = ÖT 1 ^, ti = da - 1?. 
Lastly, if m = a = 0, then system (33) is equivalent to the system 

(36) j * 7 2 ' 
[y= 1. 

Systems (35) and (36) have the solutions x(t) = — f_1, j>(0 = ' ~ 
log |/ | + k and x(t) = — r_1 , y(t) = t + k, respectively. Hence, they 
have a phase portrait like 6 in Figure 1. 

APPENDIX 

This appendix contains the theorems which we use in this paper con­
cerning the local behaviour near a singularity of type E, S or H. 

THEOREM E. (see [2]). Let (0, 0) be an isolated singularity of the vector 
field X(x, y) = (ax + by + F(x, y), ex + dy + G(x, y)), where F and G 
are analytic in a neighborhood of the origin and have expansions that begin 
with second degree terms in x and y. We say that (0, 0) is a nondegenerate 
singularity if ad — be ^ 0. Let X\ and X2 be the eigenvalues of DX(0, 0). 
Then the following hold. 

(1) If X\, X% are real and X± X2 < 0, then (0, 0) is a saddle (Figure 14.a) 
whose séparatrices tend to (0, 0) in the directions given by the eigenvectors 
associated with X\ and X2-

(2) If X\, X2 are real and X\ X2 > 0, then (0,0) is a node (Figure 14.b). 
If X\ > 0 (resp. < 0) then it is a source (resp. sink). 

(3)IfXi = a + ßi and X2 = a - ßi with a, ß ^ 0, then (0,0) is a focus 
(Figure 14.c). If a > 0 (resp. a < 0) then it is repellor (resp. attractor). 

(4) If X\ = ßi and X2 = — ßi, then (0, 0) is a linear center, topologically a 
focus or a center (Figure 14.d) 

The corresponding indices are — 1, + 1, + 1 , + 1 . 

THEOREM S. (see Theorem 65 of [2]). Let (0, 0) be an isolated singularity 
of the system 

x = X(x, y), 

y = y + Y(x, >'). 

where X and Y are analytic in a neighborhood of the origin and have ex-
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FIGURE 14. The local behaviour near a singularity of type E 
(We can reverse the orientation of the orbits). 

FIGURE 15. The saddle-nodes of type S 
(We can reverse the orientation of the orbits). 

pansions that begin with second degree terms in x and y. Let y = f(x) 
be the solution of the equation y + Y(x, y) = 0 in the neighborhood of 
(0, 0), and assume that the series expansion of the function g(x) = X(x, 
f(x)) has the form g(x) = amxm + . . ., where m ^ 2, am ^ 0. Then the 
following are true. 
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(1) If m is odd and am > 0, then (0, 0) is a topological node. 
(2) If m is odd and am < 0, then (0, 0) is a topological saddle, two of whose 

séparatrices tend to (0, 0) in the directions 0 and %, the other two in the 
directions TT/2 and 7>%j2. 

(3) If m is even, then (0, 0) is a saddle-node, i.e., a singularity whose neigh­
borhood is the union of one parabolic and two hyperbolic sectors, two of 
whose séparatrices tend to (0,0) in the directions 7c/2 and 3#/2 and the other 
in the direction 0 or % according to am < 0 (Figure 15. a) or am > 0 (Figure 
15.b). 

The corresponding indices are + 1, — 1, 0 so they may serve to distinguish 
the three types. 

THEOREM H. (see [1]). Let (0, 0) be an isolated singularity of the system 

x = y 4- X(x, y) 

y = Y(x, y) 

where X and Y are analytic in a neighborhood of the origin and have expan­
sions that begin with second degree terms in x andy. Let y = F(x) = a2x

2 + 
a3x

3 4- • • • be a solution of theequa tion y -h X(x, y) = 0 in the neighbor­
hood of (0, 0), and assume that we have the following series expansions for 
the functions f(x) = Y(x, F(x)) = ax«(l + • • •) and 0(x) = (dX/dx + BY/dy) 
(x, F(x)) = bxß(l + • • •) where a ¥= 0, a ^ 2 andß ^ 1. Then 

(1) If a is even, and 

FIGURE 16. The local behaviour near a singularity of type H 
(We can reverse the orientation of the orbits). 
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(l.a) a > Iß 4- 1, then the origin is a saddle-node (index 0), see 
Figure 16. a. 

(Lb) either a < 2/3 4- 1 or @(x) = 0, fAe« /Ae or/gw is a singularity 
whose neighborhood is the union of two hyperbolic sectors (index 0), see 
Figure 16.b. 

(2) If a is odd and a > 0, then the origin is a saddle (index — 1), see 
Figure 16.C. 

(3) If a is odd, a < 0, and 
(3.a) either a > 2/3 4- 1 and ß even, or a = 2 ß + 1, ßeven and 

b2 4- 4tf(/3 4- 1) è 0, fAe« *Ae ongm w « «tftffe (index +1); see Figure 
16.d. The node is stable if b < 0, or unstable if b > 0. 

(3.b) e/YAer a > 2/3 4- 1 tffld /3 odd, or a = 2/3 4- 1, /3 odd awd A2 4-
4<z(/3 + 1) ^ 0, then the origin is the union of a hyperbolic and an elliptic 
sector (index 4-1), see Figure 16.e. 

(3.c) either a = 2/3 4- 1 and b2 + 4a(/3 4- 1) < 0, or a < 2ß + 1 
(or 0(x) == 0), fAe« Âe origin is either a focus, or a center, respectively 
(index +1). 
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