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THE IDEAL STRUCTURE OF THE SPACE OF 
A>UNIFORM ULTRAFILTERS ON A DISCRETE SEMIGROUP 

NEIL HINDMAN 

1. Introduction. Throughout this paper (S, + ) will denote an infinite 
discrete semigroup. It is well known that the operation 4- on S extends 
uniquely to ßS, the Stone-Cech compactification of S, so that (ßS, + ) is 
a left-topological semigroup with S contained in its topological center. 
(By left-topological we mean that, for each p e ßS, the function Xp, defined 
by Xp{q) = p + q, is continuous. The topological center is the set of points 
at which also pp is continuous, where pp(q) = q + p. See [2] for an ele
mentary derivation of this extension.) 

Since ßS is the maximal left-topological compactification of S [2, 
Theorem 2.4], its algebraic structure is of inherent interest. Each compact 
left-topological semigroup has a smallest two-sided ideal (called, for 
obscure historical reasons, the minimal ideal) which is the union of all 
of the minimal right ideals and is also the union of all of the minimal left 
ideals, [3, Theorem II. 2.2]. It is this ideal structure with which we are 
primarily concerned in this paper. 

In an earlier paper [9] we characterized the minimal right ideals and 
minimal ideals of(ßN, + ) and (ßN, •). It was observed later that the same 
results held for any discrete semigroup. We were led by this observation 
to consider the extent to which these and other earlier results extended to 
certain natural subsemigroups of ßS. 

The points of ßS are the ultrafilters on S, each point x e S being identi
fied with the principal ultrafilter x = {A ^ S: x e A}. For A ^ S, we let 
A = {p e ßS: A ep}. The set {Â: A ^ S} forms a basis for the open sets 
of ßS (as well as a basis for the closed sets). See [5] or [7] for a detailed 
construction of ßS as a space of ultrafilters. 

Associated with each ultrafilter p is a cardinal, \\p\\, called the norm 
of p. It is the minimum of {\A\: A ep}. An ultrafilter/? with \\p\\ ^ K is 
called /e-uniform. The space UK(S) of /^-uniform ultrafilters on S is closed 
in ßS and, as we shall see in §2, is very often a subsemigroup of ßS. (For 
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those more familiar with other constructions of ßS, UK(S) is the set of all 
points of ßS which are not in the closure of any subset of S whose cardinal 
is smaller than ft.) See §7 and §14 of [5] for extensive information about 
spaces of uniform ultrafilters. 

In §3 we characterize the minimal right ideals and the minimal ideal 
of UK(S), provided UK(S) is a semigroup. (The failure to characterize the 
minimal left ideals arises from a lack of ability rather than a lack of in
terest.) 

In §4 we succeed in characterizing the closure of the minimal ideal of 
UK(S) under certain conditions on K and S. Fortunately these conditions 
are always satisfied when K = 1, that is when UK(S) = ßS. Consequently 
we obtain the fortuitous corollary: The closure of the minimal ideal of 
ßS is an ideal of ßS. 

In §5 we turn our attention from minimal ideals to idempotents. Prob
ably the major result of this section is: If S is cancellative and p is an 
idempotent in ßS\S, then each neighborhood of/? contains Ie idempotents 
and contains copies of the free group on Ie generators. 

We close this introduction with some remarks about notation. Given 
a subset A of S and given x e S, A — x = {ye S: y + xe A}. (Then, 
given /?, q e ßS and A ^ S, A ep + q if and only if {x e S: A — x ep} e 
q.) Observe that for A, B ç S and je, y e S, S\(A - x) = (S\A) - x, 
(A - x) fi (B - x) = {A H B) - x, (A - x) \J (B - x) = (A \J B) -
x, and (A — x) — y = A — (y + x). 

A cardinal A; is an ordinal (the first ordinal of the given size) and each 
ordinal is the set of its predecessors. Exponentiation always denotes cardi
nal exponentiation. We write co for the first infinite ordinal and c for the 
cardinality of the continuum (2"). The letters a, 7% 5, and K will always 
denote cardinals. (Thus we write "let œ ^ K ^ \S\" in lieu of "let /c be a 
cardinal such that œ ^ /c ^ |5|".) 

Given a set A and a cardinal K, [A]K = {B e A: \B\ = A;} and [A]<K = 
{B s A: \B\ < K}. 

2. UK(S). In this section we determine when UK(S) is a right ideal, a 
left ideal, or a subsemigroup of ßS. We begin by displaying some defini
tions and elementary facts. 

DEFINITION 2.1. (a) For/? G ßS9 \\p\\ = min {|^|: A ep}. 
(b)UK(S) = {peßS:\\p\\ ^K}. 
(c) A set $0 has the /^-uniform finite intersection property if and only 

if I H & \ ^ & whenever !F is a finite non-empty subset of jtf. 
Observe that UX(S) = ßS and U„(S) = ßS\S. 

LEMMA 2.2. If stf £ &{S) and stf has the n-uniform finite intersection 
property then there exists p e UK(S) such that $4 £ p. 
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PROOF. This is a routine Zorn's Lemma argument. See for example 
[5, Lemma 7.2]. 

The following induced filter is useful throughout our study of UK(S). 

DEFINITION 2.3. Let p e ßS. Let K = 1 o r ^ œ. CK(p) = {A s S: 

\{xeS: A - x$p}\ < tc}. 
Thus CK(p) is the set of subsets of S which /r-almost always translate to 

a member of /?. (And Ci(p) is the set of subsets which always translate to 
a member of/?.) 

LEMMA 2.4. Let pe ßS and let K S \S\ (with K = 1 or K ^ <a). 
(a) CÄ(/0 w a filter on S. 
(b)/> + UK(S) = {qeßS:CK(p)c:q}. 

PROOF (a). For all x e S, S - x = S so CK(p) ^ 0 - Trivially CK(p) is 
closed under supersets and 0 £ CÄ(p). If A, Be CK(p), then {x e 5:04 fi 
£) - x£p} = { J C G S : ^ - x$p) U { j c e ^ i ^ - *£/>} so ^ fl Be CK 

(/>). 
(b). First let qep + £/Ä(S) and pick r e {/,(£') such that q = p 4- r. 

Let ,4 e CÄ(/>)- Then \{x eS: A - x $p} \ < K SO {X e S: A - x$p) $ r. 
Thus S\{x eS: A - x$p) e r. That is {x e S: A - x ep] ersoAep + 
r = q-

Now let qeßS such that CK(p) £ q- For each 4 G q9 let Z)(̂ () = { x e 5 : 
A - xep}. Observe that, if A,Beq, then D(A fl J9) = D(^) fl #C#). 
Further, ifAeq, then S\^ £ C^/?) (since CK(p) s #) so |Z)(4)| ^ A:. Thus 
{Z>04) : A e q} has the /c-uniform finite intersection property. Pick r e UK(S) 
such that {D(A) : A e q} ^ r. Then q <=, p + r and therefore, since # and 
/? + r are ultrafilters, q = p + r. 

We are of course not interested in studying the semigroup UK(S) unless 
it is a semigroup (And, since U^S) = ßS is always a semigroup we ex
clude K = 1 from the following result, even though it is technically valid 
then.) 

THEOREM 2.5. Let œ^ te S \S\> The following statements are equivalent. 
(a) UK(S) is a subsemigroup of ßS. 
(b) For allpe UK(S) and all A e [S]<K, S\A e CK(p). 
(c) For all A e [S]<K and all B e [S]K there F G [B]<û) such that | fl XŒF 

A — X\ < K. 

PROOF. TO see that (a) implies (b), let p e UK(S) and let A e [5]</c. Sup
pose that S\A 4 C£p). Then CK(p) U {/0 has the finite intersection prop
erty. (If B e CK(p) and B fl A = 0 , then B ^S\A so S\A e C£p\) Pick 
qeßS such that CK(p) U {A} £ q. Pick, by Lemma 2.4(b), r e UK(S) such 
that p + r = q. Since Aeq, q£ UK(S) so /? + r £ £/*(£), a contradiction. 

To see that (b) implies (c), let A e [£]<* and let £ e [5]Ä. Suppose that 
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for each F e [B]<0>, \ f)xŒF A - x| ^ *. Then {A - x: x e B} has the 
A>uniform finite intersection property so pick/? e UK(S) such that {A — x: 
xeB} c p. Then B ç {x e S: .4 - x e/?} so 5\/l <£ CÄ(/?), a contradic
tion. 

To see that (c) implies (a), let p, r e UK(S). Let q = p + r. Then by 
Lemma 2.4(b), Q(/?) Ç g. Suppose that q $ UK(S) and pick Aeq such that 
\A\ < K. Let D = {xeS: A - x e p ) . Then D G r so |D| ^ A:. Pick 5 e 
[D]K. PickFe[B]<w such that | f| , E F ^ - x| < *. Then R ^ F ^ - xep 
so p $ UK(S), a contradiction. 

We observe that the statement of Theorem 2.4(c) is an algebraic state
ment about S. It is this sort of characterization in which we are primarily 
interested. 

THEOREM 2.6. Let co ^ K ^ |5|. Statements (a) and (b) are equivalent 
and imply statement (c). If K is regular all three statements are equivalent. 

(a) UK(S) is a right ideal of ßS. 
(b) For all A e [S]<K and all x e S, \A - x| < K. 

(c) For all x, v e 5, L071 [{>'}] I < *• 

PROOF. TO see that (a) implies (b), let A e [S]<K and let x e S. Suppose 
that \A — x| è K and pick p e UK(S) such that A -xep. Then A ep + 
x so p + x £ UK(S), a contradiction. (Recall that we are identifying x with 
x. Since x e {y e S: A — y e p}, {y e S: A — y ep} e x and thus A e p + 
x.) 

To see that (b) implies (a), let p e UK(S), let q e ßS, and suppose that 
p + q $ UK(S). Pick Aep + q such that |^| < K. Since ^ e/? + q, {x e S: 
A —xep} T̂  0 . Pick x e S such that y4 —xep. Then |^ — x| ^ A:. 

To see that (b) implies (c), observe that p* H{ j}] = {y} — x-
Finally assume that K is regular. To see that (c) implies (b), let A e [S]<fC 

and let x e S. Then A - x = p~l[A] = \j yŒAp~^{j}]. Since K is regular, 
\A\ < K, and for each y e A, |p~1[{j^}]| < tc, we have \A — x\ < K. 

COROLLARY 2.7. Let co ^ tt ^ |S|. If right cancellation holds in S, then 
UK(S) is a right ideal of ßS. 

PROOF. Since px is one-to-one, for each A ç S, \A — x\ S \A\. 

THEOREM 2.8. If K is any non-regular (infinite) cardinal there is a semi
group S satisfying statement (c) of Theorem 2.6 but not statement (b). 

PROOF. Let d = cf(/c) and let (7}aya<0 be cofinal and increasing in K. 

Define / : K -> 5 by f(z) = min {a < ö: z < rja}. Let S = K and define 
an operation * on S by 

Otë)ifSSJ. 
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Then * is clearly associative. Now given T9 a e S, if a è d, then ^[{V}] = 
0 , and if o < d, then ^ [ f a} ] £ {cr} U Va- Thus statement (c) holds. Let 
A = ô and let z e S. Then p~l[A] = S. Thus statement (b) fails. 

Notice the similarity between the conditions of Theorems 2.5 and 2.9. 
The proofs are nearly the same also so we omit the proof of Theorem 2.9. 

THEOREM 2.9. Let co ^ K S \S\- The following statements are equivalent. 
(a) UK(S) is a left ideal of ßS. 
(b) For all p e ßS and all A e [S]<\ S\A e CK(p). 
(c) For all A e [S]<K and all B e [S]K there exists Fe[B]<C0 such that 

f]xElFA - x = 0 . 

COROLLARY 2.10. Let co S ft ^ |5| . If left and right cancellation hold 
in S, then UK(S) is a left ideal (in fact an ideal) ofßS. 

PROOF. By Corollary 2.7, UK(S) is a right ideal of ßS. Suppose UK(S) 
is not a left ideal and pick A e [S]<K and B e [S]K such that f] xŒF A — x ^ 
0 whenever F G [B]<(0. Pick x e B and for all y e B\{x}, pick zy e (A - x) 
H (A - y). For each ueA, let Du = {yeB\{x}: zy + x = w}. Then 
# \ M = U«G^ Ar Pick ue A such that |Z)J > \A\. Given % v G D„, zy + 
x = zy + x so, by right cancellation zy = zy. Let z be that member of S 
such that Zy = z for all >> G Z)M. For each v G A, let Ev = {>> G DU: Z + y = 
v}. Then Du = [j vŒA Ev (since for y G Z)„, z + y = zy + y e A). Since 
|Z)J > M|, pick ve A such that |£J ^ 2. Pick distinct /, j G EV. Then 
z -f / = z + j ; , contradicting left cancellation. 

Corollaries 2.7 and 2.10 raise the natural question of whether left can
cellation in S is sufficient to guarantee that UK(S) is a left ideal of ßS. It 
turns out that the answer is "yes" (Theorem 2.11) and "no" (Theorem 
2.12). Recall that U<£S) = ßS\S. 

THEOREM 2.11. U^S) is a left ideal of ßS if and only if whenever A G [S]<W 

and (xn}n<w and (zn}n<0) are sequences in S with xn # xm for n ^ m, 
there exist n < m < œ such that zm + xn$ A. In particular, if left can
cellation holds in S, then U^S) is a left ideal of ßS. 

PROOF. Necessity. Let A, (xn}n<0) and (zn}n<ù) be given and let B = 
{xn:n < co}. Pick, by Theorem 2.9(c), Fe [B]<(0 such that f]xŒFA - x = 
0 . Pick m < co such that F e {xn: n < m}. Then zm$ f) n<m A — xn so 
there exists n < m such that zm$ A — xn. 

Sufficiency. We show that condition (c) of Theorem 2.9 holds. Let 
A e [S]<œ and let Be[S]°>. Enumerate B faithfully as {xn: n < co}. Sup
pose that for all Fe [B]<(ü, Ç]xŒF A — x ^ 0. For each m < co (with m > 
0) pick zm e H n<m A — xn. Then for n < m < co, zm + xn e A, a con
tradiction. 



690 NEIL HINDMAN 

Finally assume left cancellation holds in 5, and let A e [S]<0), (xn}n<ü) 

and (znyn<0J be given with xn # xm when n ^ m. Let m = \A\ 4- 1. 
Then |{zm 4- xn\ n < m}\ = m > \A\ so for some n < m, zm 4- xn£ A. 

THEOREM 2.12. Let K > œ. There exists a semigroup S such that \S\ = K 

and left cancellation holds in S but UK(S) is not a subsemigroup of ßS (and 
in particular, not a left ideal). 

PROOF. Let L = {xa: a < K} {J {yn: n < co} [] {zF: F e [K]<W} be an 

alphabet of distinct letters. Let S = {a\a2. . . at : each a{ G L and, if 1 ^ 
/ ' ^ t — 1, a,- = zF, and Û J + 1 = xff, then a $ F}. (The empty word is not 
inS.) 

Given words wx and w2 on L, let H>IW2 denote the usual concatenation of 
words. Let vvx = a\a2. . . fl* and w2 = bib2. . . 6S be members of 5. Define 

C w ^ unless a, = zF, bi = x„ and <7 e F 

wx + w2 = I axa2. . . at_i ynb2bz . . . bs if at = zF, bx = xff, 

{ G e F, and« = \{zeF: z < a}\. 

Then clearly wi 4- w2 e S. A routine consideration of cases establishes 
that + is associative on S. 

To see that left cancellation holds, let w>i, w2,w 3 e S and assume u^ 4-
w2 = Wi + w3. Assume that wi = a\a2. . .at, w2 = b^b2. . . bs, and w3 = 
c\c2. . .cv. If u^ 4- w2 = vt̂ vt̂  a n ( i vvx + w3 = Wiw3 then H^H^ = H>IH>3 so, 
by cancellation in the free semigroup on L, we have w2 = w3. We may 
thus assume that at = zF for some F e [K]<(0 and, without loss of generality, 
that bi = x„ for some o G F. Let n = |{V e F: T < a}\. Then v^ 4- w2 = 
ÖXÖ2- • • dt-\yJ>2^Z' • - bs- If c i ^ •*? f° r a n y 7 G Ftnen M^ + w3 = aiûf2 • • • 
tff-i flfcic2 • • • ct; a n ^ hence at = >>„, a contradiction. We thus assume 
c\ = xv for some rj G F and let m = \{z e F: T < rj}\. Then vvx 4- w3 = 
axa2. . .ûf,_i ^mc2<:3. . .cv. Then j / m = j M so m = n and hence a = rj. Since 
then ûxflg. • .a*_i ynhh- • -*s = öiö2- • - ^ - i JV2C3. • -^ , w e have j = v, 
b2 = c2,. . . , bs = cs. That is u>2 = w>3 as required. 

Finally, to see that UK(S) is not a subsemigroup of ßS, we show that 
condition (c) of Theorem 2.5 fails. Let A = {yn: n < co} and let 5 = {xff: 
a < K}. Then A G [S]</C and B G [S]*. Suppose we have Fe[B]<0} such that 
I n XŒF

 A - x\ < *• Let G = {Ö- < /c: x^ G F}. Given any H e [K]<Ü) such 
that G £ //, we have z# G fi xep 4 — je. (For if x G F then x = x^ for 
some a e H and z# 4- x0 = yn for some n < co.) Thus {zH: H e [K]<OJ and 
G ç //} ^ fi ÏGF A — x, 3. contradiction. 

In the next two sections we shall describe the minimal right ideals and 
the minimal ideal of UK(S) (provided UK(S) is a semigroup). As is well 
known, if UK(S) is an ideal of ßS then the minimal ideal of UK(S) is the 
minimal ideal of ßS. (See, for example, [9, Lemma 7.2].) We shall see in 
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the next theorem that there are many examples where the minimal ideals 
are different. 

DEFINITION 2.13. If UK(S) is a subsemigroup of ßS9 then MK(S) is the 
minimal ideal of UK(S). 

THEOREM 2.14. Let Lbea set of cardinals {each infinite or 1) with \L\ g; 2. 
For each K^L, let (SK, +Ä) be any semigroup such that \SK\ = K and for 
all y S te, UT(SK) is a subsemigroup of ßSK. Assume that SK f) Sr = 0 for 
distinct tz,y e L. Let S = U K(=L SK For x e SK and y e Sr, define 

(x +Ky if* = r 

x + y = < x if K < y 

{ y ifr< K-

Then (a) For each K9 if co S K è \S\9 then UK(S) is a subsemigroup of ßS. 
(b) For each K è co, if there exists ö e L such that ö ^ tc, then UK(S) 

is neither a right nor a left ideal of ßS. 
(c) IfrûWi {Sd: 8 e L and ô S y} I < it é \S\ and either y = 1 

or y ^ w, then MK(S) # Mr(S). 

PROOF, (a). Let co g K ^ \S\. To see that UK(S) is a subsemigroup of 
ßS we apply Theorem 2.5. Let A e [S]<K and let B e [S]*. Since \A\ < \B\, 
pick öeL such that \A fl Sô\ < \B fl Sd\. Let y = \B fl S*|. so that 
y ^ K and f ^ <î. By assumption Ur(Sj) is a subsemigroup of |3S$ so pick 
Fe [B fi Sy<<u such that |flxeF(i4 fi Sô) - x\ < y- (Here the minus is 
taken in S§.) Pick ye(B f] SÔ)\A and let G = F U {>}• We show that 
fi XŒG A - x <=: A U ( H XGEF(^ H £*) - *)• (The minus on the left is taken 
in S.) To this end let z e f| xÇ=G A - x. If z e SÔ9 then z e f) X^F(A f] S§) -
x. If z e S a for some a > <5, then z + ,y = ^ ^ so z ^ f i , E G ^ — x. 
Finally, if z e Sa for some a < <?, then z + >' = z so z e / l . Thus we 
h a v e | n * e G ^ - *l £ Ml + I f W O * fl S8) - x\ < tt + y = A:. 

(b). Pick a, ö eL such that a < 3 and tc ̂  5. Pick j> 6 S a and pick 
B e [Sôy. Let A = {y}. Then ,4 e [5]</c. Then Sd ^ A - y so by Theorem 
2.6, C/Ä(5) is not a right ideal. Also y e Ç]xŒB A — x so by Theorem 2.9, 
C/^S) is not a right ideal. 

(c) Assume y ^ \[j {Sô: ô e L and ö ^ y}\ < K ^ |5 | and either r = 1 
or y ;> co. Let 5 = U {S*: 5 e L and 5 ^ 7-} and pick /? G Ur(S) such that 
£ e p. It suffices to show that (p + (7r(S)) fl MK(S) = 0 . (For/? + Ur(S) 
is a right ideal of Ur(S) and hence (/? + <7r(S)) fi Mr(S) ^ 0- )To this 
end, let q e Ur(S). For any x e 5 and any y e B9 y + x e B. Thus for each 
xeS9 B Ç: B - x and hence 5"= { x e 5 : 5 - X G / ? } . Thus Bep + q 
sop + qtUK(S). 
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Theorem 2.14 provides plentiful examples of distinct minimal ideals but 
it does not guarantee that these ideals are non-isomorphic. 

THEOREM 2.15. If œ S S and 22S < te, then there is a semigroup S such 
that Md(S) and MK(S) are not isomorphic. 

PROOF. Let L = {d, K] and let S§ and SK be the free semigroups on 5 
and a generators respectively. Let S = S§ [j SK be as in Theorem 2.14. 
As in the proof of Theorem 2.14 we have a right ideal, and hence a minimal 
right ideal R of U§(S), disjoint from MK(S). Suppose we have an isomor
phism (f>: MK(S) -* MÔ(S). Then <f>~l[R] is a minimal right ideal of MK(S) 
and hence of UK(S). Clearly UK(S) is isomorphic to UK(SK). (Given p e ßS, 
if p e UK(S), then Sd $p so SK e p. Identify p with {Aep: A ^ S j , an 
ultrafilter on SK.) By [3, Theorem II. 2.2] ^[R] contains a maximal group. 
By [12, Lemma 1.4], this maximal group contains a copy of GK, the free 
group on ti generators. Thus |^ _ 1 [^] | ^ n. But for each q e R, S§ e q so 
\R\ <: 2^, a contradiction. 

3. The minimal right ideals and the minimal ideal of UK{S). Given a 
minimal right ideal R of UK(S) and p e R, R = p + UK(S). We are con
cerned here with determining those ultrafilters p such that p + UK(S) is 
a minimal right ideal. 

LEMMA 3.1 Let n ^ \S\ such that K ^ œ or n = {.If UK(S) is a subsemi
group of ßS, A ç 5, pe UK(S), and S\A 4 CK(p\ then CK(p) U {A} has 
the K-uniform finite intersection property. 

PROOF. Since, by Lemma 2.4, CK(p) is a filter, it suffices to let DeCK(p) 
and show that \D H A\ ^ K. Suppose instead that \D f| A\ < K. 

Now \{xeS:A - xep}\ ^ tc since S\A $ CK{p). Also \{xeS:D - x$ 
p}\ < K since D e CK(p). Therefore, \{x e S: (A f] D) - x ep}\ ^ K. Pick 
B ^ {x e S: (A f] D) - x e p} such that \B\ = K. Since A f| D e [S]<K 

and B e [S]*, pick by Theorem 2.5, Fe [B]<œ such that | f~l xŒF (A f] D)-
x\ < K. But C\xŒF(A H D) — xep and/? e UK(S), a contradiction. 

THEOREM 3.2. Let K ^ \S\ with tt = 1 or tt ^ co, assume that UK(S) is a 
subsemigroup of ßS, and let p e UK(S)- Then p + 6^(5) w a minimal right 
ideal of UK(S) if and only if whenever B e [S]<K and A^ S with S\A $ CK(p), 
there exists Fe [S\B]<œ such that [jxŒFA - xe CK(p). 

PROOF. Necessity. Let B e [S]<K and let A ç S with S\A $ CK(p). Then 
by Lemma 3.1, CK(p) U {A} has the /e-uniform finite intersection property 
so pick r e UK(S) such that CK(p) U {A} £ r. 

Suppose that for each Fe [S\B]<Ü), \JXŒFA — x $ CK(p)- We show now 
that CK(p) U {S\(UxŒFA -x):Fe [S\B]<Ù>} has the /t-uniform finite inter
section property. Since {S\([jxŒFA - x): Fe[S\B]<ù)} is closed under 
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finite intersections, it suffices to let F e [S\B]<Ù) and show that CK(p) U 
{S\(\JXŒFA - x)} has the /^-uniform finite intersection property. But this 
follows from Lemma 3.1 since, by assumption UxŒFA — x£ CK(p). Pick 
q e UK(S) such that CK(p) U {S\( {Jx^FA-x):Fe [S\B]<»} s q. 

By Lemma 2.4(b), q, rep + UK(S). Sincep + UK(S) is a minimal right 
ideal, q + UK(S) is a right ideal, and q + £/,(£) £ p + ^ ( 5 ) we have 
q + £4(5) = /? + [/Ä(S). Thus r e g + E/,(S). Pick s e £/,(S) such that 
q + s = r. Now 4̂ G r so {x G S: A — x e q} e s so \{x e S: A — x e q}\ 
^ A;. Since \B\ < tt pick x G SV# such that A — x e q. But also, since {*) G 
[S\£]< Û ; , S\(A - x) e q, a contradiction. 

Sufficiency. It suffices to let q, r e p + UK(S) and show that there is some 
s G UK(S) with q + s = r. (For suppose we have a right ideal /? of UK(S) 
with R<mp + UK(S). If qe R, re(p + UK(S))\R, and s G £/„(£) then 
g 4- s G /? so # + s 7̂  r.) 

Let q, rep + £/*(£). Then CÄ(/?) £ # and CÄ(/?) Ç r. For each ^ e r , 
let D(A) = {xe S: A — xe q}. As in the proof of Lemma 2.4(b), it suffices 
to show that, for each A e r, \D(A)\ ^ tt. 

Let A er. Since CK(p) ^ r we have S\A $ CK(p). Pick F0 e [S]<ù)such 
that [JXŒFQ A — x e CK(p)- Let T < tc(z an ordinal) and assume that for all 
cr < r we have chosen Fa e [S\(J v<ffFv]

<0) such that [jxŒFoA - x e CK(p)-
Then | U ff<TFa\ < K SO by assumption we may pick FT e [S\ U a<x FA<Ü) s u c r i 

that \JXŒFTA — xe CK(p). (Observe that if tc = 1 the basis step was the 
only step in the preceding induction.) Now for each z < te, U X^FT A — xeq 
since CK{p) £ q, so pick xT e Ft such that A — xT e q. Then {xT: z < te] £ 
D(A). Since {FT: z < /c} is a pairwise disjoint collection we have |Z>(y4)| ^ 
A: as required. 

COROLLARY 3.3. Let p e ßS. Then p + ßS is a minimal right ideal of ßS 
if and only if whenever A £ S with S\A $ C\{p), there exist F e [S]<ü) such 
that (JxŒF A — xe Ci(p). 

It would of course be interesting to know when UK(S) + p is a minimal 
left ideal. This task is made more difficult by the fact that UK(S) + p is not 
generally closed [9, Corollary 9.16], and therefore does not consist of all 
ultrafilters containing some fixed filter. The best characterization we have 
been able to come up with amounts to little more than a translation of the 
definition of minimal left ideals. 

THEOREM 3.4. Let K ^ \S\ with tc = 1 or n ^ a), assume that UK(S) is 
a subsemigroup of ßS, and let p e UK(S). Statements (b) (i) and (c) (i) are 
equivalent. Statements (b) (ii) and (c) (ii) are equivalent. Statements (a), 
(b), and (c) are equivalent and imply statement (d). Finally statement (d) 
implies statement (c) (i). 

(a)/>eM,(S). 
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(b) (i) CK{p) £ p, and 
(ii) p + UK(S) is a minimal right ideal of UK(S). 

(c) (i) For all Aep,\{xeS: A - xep}\ ^ /t, 
(ii) For all A <= S, if\{x eS:A-x ep}\ ^ K, then for all B G [S]<K 

there exists F e [S\B]<(° such that \J xŒFA - x G CK(p). 
(d) For all Aep and all B G [S]<K, there exists F e [S\B]<Ü) such that 

[jxŒF A - xeCK(p). 

PROOF. The equivalence of (b) (i) and (c) (i) is trivial. The equivalence 
of (b) (ii) and (c) (ii) is Theorem 3.2. That (c) implies (d) is trivial. 

To see that (a) implies (b), pick a minimal right ideal R of U£S) such 
that p G R (since MK(S) is the union of all of the minimal right ideals of 
UK(S)). Then/? + UK(S) ç R sop + UK(S) = R. Thus (b) (ii) holds. Since 
pe R,pep + UK(S) so by Lemma 2.4, CK(p) ^ P-

To see that (b) implies (a), observe that by (b) (ii), p + UK(S) s MK(S) 
a n d b y ( b ) ( i ) , / > G / 7 + UK(S). 

Finally we show that (d) implies (c) (i). Let A ep, let B = {xeS: 
A - xep], and suppose that \B\ < tc. Pick FQ G [SVö]^ such that [jxŒFo 

(A — x) G CK(p). (Again we observe that if tc = 1, the induction stops 
here.) Let z < tc and assume we have chosen for a < z, Fffe [S\(B \J 
U v<a Fv)]<*> such that U , E F , A-xe CK(p). Then \B U U ,<7 F9\ < tc SO 
we may choose FT G [S\(B \J [} a<T Fa)]

<w such that U *=Fr A-xe CK(p). 
We claim that for each z < tc, \S\\JXŒFT(B - x)\ < tc. Indeed, let y G 

S\ U xŒFv(B — x). Then for each x e FT, y + x $ B so A — (y + x) $ p. 
Thus ([]xŒFzA-x)-yip. Therefore S\{J xŒFz(B - x) s { J G S : ( U ^ F T 

^ - x) - y $ p}. Since U XŒFA ~xe CK(P) we have \{y G S: ({}X(=FA-
x) — y tp}\ < tc as required. 

Now let q be any element of UK(S). Since, for each r, |5\ U XŒFT(B — X)\ 

< tc we have U XŒFT(B — X) G #. Pick for each T < tc some xr G Ft such that 
B — xT e q. E = {xT: z < tc}. Since {FT: z < tc} is a pairwise disjoint 
family, |£ | = A:. 

Now £ G [S]<K, E G [S]*, and UK(S) is a subsemigroup of ßS so by 
Theorem 2.5 we may pick G G [E]<Û) such that | H * Œ G ^ — JC| <: A:. But 
for each x G G, B — x e q so | f| Ï GG B — X\ ^ , a contradiction. 

The statement of Theorem 3.4(d) is clearly nicer than that of Theorem 
3.4(c). That is the former only requires that members of/? satisfy a certain 
condition. Unfortunately, we have been unable to determine if statement 
(d) is equivalent to the other statements. We do however have the follow
ing theorem. Observe that the hypothesis implies that UK(S) is a subsemi
group of ßS. Observe also that the hypothesis holds if UK(S) is a right 
ideal of ßS. 

COROLLARY 3.5. Let tc ^ \S\ with tc = 1 or te è co, assume that for each 
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Be[S]<* one has \{xeS: \B - x\ à K}\ < tc, and let peUK(S). Then 
p 6 MK(S) if and only if for all Aep and all B e [S]<K, there exists Fe 
[S\B]<Ü) such that \J xE=F A - x e CK(p). 

PROOF. Let A e S such that \{x e S: A - x ep}\ ;> tc and let B e [S]<K. 
By Theorem 3.4, we need only show that there exists F e [S\B]<K with 
UxŒFA - xeCK(p)- Now | { x e S : A-xep}\ ^ tc and | {xeS : \B-
x\ ^ tc}\ < tc so pick x e S such that A — xep and \B — x\ < tc. Pick 
G e [S\(B - x)]<ù> such that [jyŒG(A - x) - y e C£p). Let F = G + x. 
Then Fe [S\B]<Ù). (If z e F f] B9 then z = y + x for some yeG so y eG 
fi 08 - x).) Also U ^ F ^ - z = U y ^ - 0, + x) = UyeEGC4 - x) -

^ e C.(p). 

COROLLARY 3.6. Let p e ßS. Then p e M^S) if and only for all Aep 
there exists Fe [S]<0) such that \JX(=F A — x e Ci(p). 

4. The closure of the minimal ideal of UK(S). We have in this section 
an example of the phenomenon that generalization sometimes leads to 
simplification. The reader may wish to compare this section with Section 
3 of [8], which consisted essentially of a proof of a special case of Theorem 
4.5. 

DEFINITION 4.1. (a) Let A £ S. We say that A is /c-large if and only if 
there exists B e [S]<K such that whenever Fe[S\B]<0), \{x e A : x + F e 
A}\ è K. 

(b) AK(S) = {pe UK(S): For all Aep and all Be[S]<K, there exists 
G e [S\B]<W such that \Jtç=G A - tis /c-large.} 

LEMMA 4.2. Let K ^ \S\ with tc = 1 or te è co and let p e UK(S)such that 
CK(p) ^ P- Then each A e CK(p) is K-large. 

PROOF. Let A e CK(p) and let B = {x e S: A - x <£/?}. Then |£| < tc. 
Let F e [SVö]<u\ Since CK(p) ^ p, Aep. Thus ^ fi Ç]y^FA-yep. Since 
^ H nyeF A-y ^ {xeA:x + F^A} and/? G {^(S) we are done. 

Lemma 4.3. Let tc ̂  \S\ with tc = 1 or te ̂  œ and assume UK(S) is a 
subsemigroup of ßS. Then MK(S) e JK(S). 

PROOF. Let p e MK(S). Let Aep and let £ e [S]<K. Pick, by Theorem 
3.4(d), G e [S\B]<a) such that \}mGA - teCK(p). By Lemma 4.2, U*ŒG 

^ - / is Ä-large. 

LEMMA 4.4. Let te è \S\ with tc = 1 or te ^ œ, assume UK(S) is a sub-
semigroup of ßS, and let A £ S. If A is K-large then there exists p e UK(S) 
fi Ä such that p + UK(S) S Ä 

PROOF. Assume ,4 is /sr-large. By Lemma 2.4(b) it suffices to show that 
there exists p e UK(S) fl Â such that A e CK(p). Suppose instead that for 
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each p G UK(S) Ç) Ä, A $ CK(p). Pick B e [S]<* such that, whenever Fe 
[S\B]«°, \{xeA:x + FçzA}\^K. Now, given/? e UK(S) fi Â9 A £ CÄ(/>) 
so |{jc G 5: ^ - x <£p}\ ^ /c so we may pick x G S\B such that (S\A) — 
xep. Thus UK(S) R ^ ç U*es\ß CSV) - je. Since UK(S) C\ Ä is compact 
and each (S\A) - x is open we may pick F G [5,\Jß]<ÜJ such that £/,(£) H 
i ç y xŒF(S\A) - x. Now I {A: G A : x + F ç 4} | ^ A: SO pick /? G C/Ä(5) 

such that {xeA: x + F ^ A}ep. Then /? G UK(S) f| ^ so pick z G F 
such that (SV) - zep. Pick j G (S\A - z) Ç] {x e A: x + F ^ A}. 
They _y+ z e 5\/4 but zeFsoy + zeA, a contradiction. 

We could, of course, not like to have any assumptions in the following 
theorem beyond the necessary one that UK(S) is a semigroup. We do not 
know if any version of the assumption which we add is necessary. We 
observe at any rate that our assumption does hold, by Theorem 2.6, if 
K ^ o) and UK(S) is a right ideal of ßS. It also clearly holds if K = 1. Ob
serve that since UK(S) is closed in ßS, it does not matter whether we con
sider c\MK(S) to be taken in ßS or in UK(S). 

THEOREM 4.5. Let K S \S\ with K = Ì or K ^ œ, assume UK(S) is a sub-
semigroup of ßS, and assume that \{x G S: \B + x\ < ft for some B G [S]K}\ 

< re. Then c\MK(S) = AK(S). 

PROOF. TO see that JK(S)iS closed, let p e UK(S)\dK(S) anc* pick A ep 
and B e [S]<K such that for all G G [S\A]<Û,

9 UtŒGA-t is not yc-large. 
Then Ä is a neighborhood of/? missing âK(S). By Lemma 4.3, MK{S) ^ 
4,(5). Consequently we have c\MK(S) £ dK(S). 

To see that 4,(5) ç c\MK(S), let p e âK{S) and let D e p. We show that 
D fi MK(S) # 0 . Let E = {xeS:\B + x\ < K for some ,0 G [S]*}. By 
assumption |£"| < #. 

Since £ G [5]°, Z) G/?, and p e AK(S\ pick G G [ S ^ ] ^ such that \JtŒG 

D - /is /c-large. Let ,4 = U ^ G ^ - t and pick, by Lemma 4.4, q G É / ^ S ) 
fi Ä such that # + UK(S) Ç Â Now # + £/,(£) is a right ideal of UK(S) 
so pick a minimal right ideal R of ^ ( 5 ) such that R ^ q + UK(S) and 
pick r e i ? . 

Since R e <? + ^ ( S ) ç i , we have ^ G r. Since 7? e MÄ(5) (which 
is, you will recall, the union of all minimal right ideals of UK(S)) we have 
r G MK(S). By Theorem 3.4 we have CK(r) e r. Since 4 G r, S\A $ CK(r) 
so | {xeS : A - xer}\ ^ K. 

Now for any x e 5, A - x = UtŒG(D - t) - x = [}tŒGD - (x + 0-
Thus, if x G S and A — xe r, then for some t e G, D — (x + t) G r. Thus 
{JC G S: ^ — x G /*} e U*ŒG{-X G S: D — (x + /) G r) and hence we may 
pick / e G such that |{x G S: D - (x + 0 G r}\ ^ *. Pick £ ç {xeS: 
D - (x + t)er} such that |£| = K. 

Since G ç S\E, we have |2? + t\ ^ A: (and hence \B + t\ =* K). Since 
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B e {x e S: D - (x + t) e r} we have B + t ^ {y e S\ D - y er} and 
hence \{yeS: D-ye r}\ â A:. Pick s e UK(S) such that {y e S: D - y e 
r} e s. Then Der + s. Since r G MK(S), r + se MK{S) and hence D f] 
MK(S) ^ 0 , as required. 

With the appropriate right-left switch and with D chosen to be non-
dense, Example V. 1.1. of [3] (due originally to Ruppert in [13]) shows 
that the closure of the minimal ideal of a compact left-topological semi
group need not be a right ideal. The following corollary shows in particular 
that the closure of the minimal ideal of ßS is always an ideal. 

COROLLARY 4.6. Let it fj* \S\ with K = 1 or it ^ co. If UK(S) is a right 
ideal ofßS, then c\MK(S) is a right ideal of ßS {and hence an ideal of UK(S)). 

PROOF. Since the closure of any left ideal is again a left ideal and since, 
by Theorem 4.5, c\MK(S) = AK(S), w e n e e d only show that AK(S) is a right 
ideal of ßS. To this end, let p e JK(S) and let q e ßS. To see that p + qe 
JK(S), \etAep + q and let B e [S]<K. Then {x e S: A - x ep] e q so pick 
xeS such that A —xep. By Theorem 2.6, \B — x\ < K SO pick G G 
[S\(B - x)]<K such that U *<=G(̂  - x) - f is tf-large. Then G + x e [S\B]<K 

and U yŒG+x A - y = U K=GM - x) - t. 

5. Idempotents in ßS, for cancellative S. We restrict our attention in this 
section to semigroups S in which both left and right cancellation hold. 
In this event, by Corollaries 2.7 and 2.10, each UK{S) is an ideal of ßS. 
Consequently [9, Lemma 7.2] if œ ^ K Û |S|, then MK(S) = M^S). That 
is, we are only concerned with one minimal ideal, the minimal ideal of ßS. 

As is well known, the minimal ideal of ßS contains idempotents. (See, 
for example [3, Theorem II.2.2].) We shall see here that, given any idem-
potent/? of ßS\S(whether or not it is in the minimal ideal), each neighbor
hood contains an algebraic and topological copy of a certain subsemigroup 
of ßN (where N = {1, 2, 3, . . . } = o)\{0} under addition). Since this 
subsemigroup is known to contain Ie idempotents and Ie copies of the 
free group on Ie generators [12], a similar result holds for each neighbor
hood of p. 

We shall have need of the following generalization of Theorem 2.2 of 
[12]. The proof may be taken nearly verbatim from [12]. 

THEOREM 5.1 Let T be a compact Hausdorff left-topological semigroup, 
let<f>: S -» T, and let jtf £ &(S). if 

(1) for each x e S, p^^x) is continuous and 
(2) there exists Be $tf such that for each x G B, there exists A e $0 such 

that <$>(y + x) = <j)(y) 4- <f>(x) whenever y e A, 
then <f>ß(p -h q) — <f>Kp) + ^ ( # ) whenever p, qe f)AŒj, Ä. 

The function (j> with which we shall apply this result is based on the 
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finite sums of a sequence, written in decreasing order of indices. (See [11] 
for a discussion of the history of the relationship between ultrafilters and 
finite sums.) 

DEFINITION 5.2 Let H ^ œ and let (xn}nŒH be a (possibly finite) 
sequence in S. 

(a) If F is a finite non-empty subset of //define 2^„ç=F xn inductively on 
\F\ by 

0) ZJ»€E{m} Xn = Xm anC* 
(ii) if \F\ > 1 and m = max F then ZnŒFx„ = xm 4- En<=F\{m} xn-

(b) FS((xn}nŒH) = {Z;wGF^n- F is a finite non-empty subset of H}. 

Thus, for example, S„ G {1,3,4,5} xn = x5 4- x4 4- x3 4- *i- Our initial 
efforts are directed at obtaining sequences in which the expressions in 
FS«xn>n<J are unique. 

LEMMA 5.3. Assume S is cancellarne, let peßS\S, and let Ge[S]<ù). 
Then\{xeS: {yeS: y + x ï y} f] .{\mG{y*S:y + x + t±y}ip}\ 
< ù). 

PROOF. For notational convenience let us temporarily adjoin 0 to S. 
Then we are concerned with D = {x e S: f] tŒGU{0) {yeS:y + x + t^y} 
$ p}. Suppose \D\ > \G\ 4- 1. Then for each xeD there exists / G G (J 
{0} such that {y e S: y 4- x 4- / # y} $p, that is {y e S: y 4- x 4- / = y} e 
p. Pick / G G U {0} and distinct jti, ;c2 G Z) such that {j>GtS:j> + x1 + / = 
j } G/? and {y e S: y 4- x2 + * = y} eP- Pick J m t n e intersection of these 
two sets. Then y + xi + t = y + x2 + t. Then by right and left cancel
lation (or just left cancellation if / = 0), xx = x2. 

The derivation of the finite sums in the following lemma uses an old 
argument of F. Galvin. (See [10].) 

LEMMA 5.4. Assume S is cancellative, let p be an idempotent in ßS\S, 
and let A e p. There is a sequence (xn}n<(ü in S such that 

(1) FS({xnyn<w) £ A and 
(2) if F and G are finite non-empty subsets ofo) and J^n^p xn = HHŒG xm 

then F = G. 

PROOF. Let A0 = A. Let 2?0 = {x e S: A0 — x ep} and let C0 = {x e 

S: {y G S: y + x ^ y} ep). Since p 4- p = /?, B0ep. By Lemma 5.3, 
C0 is cofinite so C0 e p. Pick x0 G A0 f] BQ f] C0 and let Ax = A0 Ç] B0 fl 
Q (I (/*o - *o) fi {yeS: y + xQ ^ y}. Inductively let m ^ 1 and as
sume we have <xn}n<m and Am G p. Let G = F5«^> w < w ) . Let £m 

= {xeS: Am - xep}9 let Cm = { X G 5 : { J ; G S : J> + x * >>} fl f W 
{ j G S: >> + JC 4- f 7* >>} e />}, and let Dm = {x G S: for all t, s G G, 
x # s and je 4- / 7* 5-}. Again 2?m ep since p + p = p and Cme p by 
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Lemma 5.3. Trivially Dm is cofinite and hence Dm e p. Pick xm e Am f| 
Bm n Cm n £>m and let ^ 

m+1 ~~ ^ w 

{j e 5: >> + xw * y) fi n ^ { ^ ^ 7 + ^ + ^ J}. 
We first repeat Galvin's argument showing by induction on \F\ that if 

F is a finite non-empty subset of co and m = min F, then S » G F *» 6 

^m (and hence FS((xn}n<0)) £ ^f). If |F| = 1, this result is trivial so as
sume \F\ > 1 and let r = min(F\{m}). Then J^nŒF\{m} xneAr ç Am+1 Ç 
Am - xm. Thus EnŒFMm) *n + *m ^ ^ that is £wGEF xn e Am as required. 

Now we show by induction on m that if F and G are distinct non-empty 
subsets of {0, 1, 2, . . . , m) then ]£n<=Fxn # ZÎWŒG*»- This is vacuously 
true for m = 0 so assume m §: 1. We may assume max F ^ max G and, 
using the induction hypothesis, that m = max F. 

We first consider the possibility that also m = max G. We assume 
without loss of generality that |G| ^ \F\. If |G| ^ 2 and %nŒF xn = £MŒG 

xn, then we have xw + ÊMGEjP\{w} xM = xw + LwŒG\{w> xw so by left cancel
la t ion , TmŒFMm) xn = HnŒG\{m} *n> a contradiction to our induction 
hypothesis. Thus we must have G = {m} (so that, since F ^ G, \F\ ^ 2). 
Let r — max(F\{m}). Assume now \F\ è 3 and let t = HnŒF\{m,r} •*«• Then 
t e FS((xn}n<r) and ^ {y e S: y + x r + t ï y). 
Thus xw + xr + * ^ xm but xm = 2]w e G xn and xw + xr + t = £ „ Œ F **• 
Consequently we must have |F| = 2, that is F = {m, r}. But xme Am ^ 
Ar+1 ^ {yeS:y + xr ^ y} so xm + * r ^ xw. 

We must have then that max G < m. Let s = 2WEEG*»- Then s e F S 
«*w>w<w)so, since xw e Dw, xm ^ s. Thus we may assume that \F\ > 1. 
Let t = EwGF\{m} xn. Then f e FS«A:n>w<J so, since xme Dm, xm + t ^ 
s as required. 

DEFINITION 5.5. Define / c ßN by / = fi *<o> #2*. 
It is easy to see that / is a subsemigroup of (ßN, + ). Further all idem-

potents of ßN are in /. (Given p e ßN such that p + p = /? and given 
n < co, there is some y e {0, 1, . . . , 2n - 1} such that N2n + jep. But 
then N2n +j+jep+p=p. Thus y = 0.) 

THEOREM 5.6. Let (x„)n<(t) be a sequence in S such that Sw Œ F
 xn ^ 

2»eG *n whenever F and G are distinct finite non-empty subsets of co. Define 
<f>: FS«xn}n<J - JV c ßN by ^ ( L ^ F *») = ZUŒF 2» and extend $ 
to the rest of S arbitrarily. For each m < co let Bm = FS({xn}m^n<J. 
Then the restriction of ^ to fl m<m Bm w an isomorphism and a homeo-
morphism onto L 

PROOF. Since E„ eF*» ^ Hn^cxn f° r F 7e G, <f> is well defined. It suf
fices to show that cf>& restricted to (] m<(l) Wn is a one-to-one homomor-
phism onto I. (Since <j>& is continuous, f| m<<o ^m ^ compact, and ßN is 
Hausdorff, the homeomorphism assertion follows.) To see that the re-
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striction is a homomorphism, we invoke Theorem 5.1. Observe that pn 

is continuous in ßN for each n e N. Let x e B0 and pick F ç co such that 
x — TtnŒF xn- Let m = max F. We claim that whenever y e Bm+Ì one has 
<j)(y + x) = <f){y) + <̂ (X). Indeed pick G such that y = I]M€EG xw and note 
that min G > m so y + x = HwŒGxw 4- Ene=F*n = EnecuF*»- T h u s 

^(>- + x) = £weGUF 2" = 2„ŒG 2» + 2 n € E F 2W = <ß(y) + #*) , as required. 
We now show that cf>ßß-Q is one-to-one. Let p and q be distinct members 

of BQ. Observe that if Ce/?, then <f>[C] e cpß(p). (For otherwise, N\<f>[C] e 
<j>ß(p) and hence there is some D ep with cf>ß[D] ç 7V\^[C]. Picking x G 
C H ^ o n e would have cf>(x) e N\cf>[C], a contradiction.) Pick C G /?\#, so 
that S\C G q. Then # C f! Bo] 6 <t>ß(p) a n d $A)\C] e ^ % ) . Since 0 is one-to 
one on B0, <j>[C f] B0] f] <f>[B0\C] = 0 and hence cßß(p)^ cpß(q). 

Finally we show <ffl[f\n<û)Bn] = L Given p G f) w<w i ^ and rc < co we 
have (j)[Bn] G <^(/?) as above. Since <j>[Bn] = N2n we have N2n e cf>ß(p). Thus 
W „ < „ * J £ /. To see that / e ^ [ R , ^ * J , let r G /. Then {^[C]: 
C e r} U {i?w: « < to} has the finite intersection property. (Given Cer 
and m< co, pick * G C fi N2W. Pick F G [O>]<Û; such that x = HwGF 2M and 
observe that min F ^ m. Thus £w Œ F xw G cp~l[C] fi i?w.)Pick/? G ßS such 
that {(j>-l[C}: Cer} [j {Bn: n < co] Ç /?. Then p G n » < o , ^ Also> g i v e n 

Cer, since ^ is onto N, (j)[(j)~l[C}] = C Since c3_1[C] ep, Ce <f>ß(p). Then 
r £ c^(p) and, since both are ultrafilters r = ^ (p ) . 

The assertion about the number of idempotents in the following corol
lary generalizes an old unpublished result of van Douwen [6]. (He proved 
the same assertion in the event S is commutative.) 

COROLLARY 5.7. Assume S is cancellative and let p e ßS\S such that 
P + P = P- Then each neighborhood of p contains a topological and alge
braic copy of I. In particular, each neighborhood of p contains 2C pairwise 
disjoint copies of the free group on 2C generators {and hence contains 2C 

idempotents). 

PROOF. Let A e p. By Lemma 5.4 we may pick a sequence (xn}n<(ü in 
S such that FS((xn}n<J ç A and J^nŒF xn # T,nŒG *n whenever Fand 
G are distinct finite non-empty subsets of co. By Theorem 5.6 there is 
a topological and algebraic copy of I contained in FS((xn}n<J (and 
hence contained in Ä). 

To see the "in particular" assertions let J = f] i^n<û} Nn (so that / 
£ /) . It is a result of Chou [4] that ßNhas 2C minimal right ideals. Since 
each of these has an idempotent (in fact each has 2C idempotents) and 
idempotents are in / , one has that J (and hence /) contains 2C idempotents 
in the minimal ideal of ßN. By [12, Theorem 3.9], if/? is an idempotent 
in the minimal ideal of ßN (so that p + ßN + p is a group [3, Theorem 
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II.2.2]), then (p + ßN 4- p) fi J contains a copy of the free group on 2C 

generators (which necessarily has/? as its identity). 
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