BEZIER-CURVES WITH CURVATURE AND TORSION CONTINUITY

HANS HAGEN

Abstract

One of the main problems in computer-aided design is how to input shape information to the computer. In the analytic description and approximation of arbitrary shaped curves the Be-zier-curves are of great importance (see [5]). A Bezier-curve is a segmented curve. The segments $x_{l}(u):=\sum_{m}^{i=0} b_{m \iota+i} \cdot B_{i}^{m}\left(u-u_{l}\right)$ $u_{\ell+1}-u_{\ell}$) of a Bezier-curve of degree m over the parameter interval $u_{\iota} \leqq u \leqq u_{\iota+1}$ use the Bernstein-polynomials as blending functions. The coefficients $b_{m \iota+i}$ are called Bezier points. They form the so called Bezier polygon, which implies the Bezier-curve. A.R. Forrest analyzed the Bezier techniques in [4] and extended these techniques to generalized blending functions. W. J. Gordon and R. F. Riesenfeld provided in [5] an alternative development in which the Bezier methods emerge as an application of the Bernstein polynomial approximation operator to vectorvalued functions.

As connecting conditions between the curve-segments are always chosen the so called $C^{2}-$ or C^{3} - continuity. (A segmented curve is said to have $C^{(k)}$-continuity if an only if $X^{(k)}\left(t_{i}^{+}\right)=X^{(k)}\left(t_{i}^{-}\right)$at the connecting points $t_{i} ; i=1, \ldots, n$, where $\left.X^{(k)}:=\left(\partial / \partial t^{k}\right) X ; k \in N.\right)$

In this paper we create, after a brief survey of the fundamentals of differential geometry, a tangent, a curvature, and a torsion continuity, using the geometric invariants of a curve.

Considering $C^{2}-\left(C^{3}-\right)$ continuity, we have only one choice for $b_{m(\iota+1)+2}\left(b_{m(\iota+1)+3}\right), 0=/ \leqq k$. In the third part of this paper we show that curvature continuity offers a "straight line of alternatives" and torsion continuity offers a "plane of alternatives."

We give also constructions for the Bezier polygons of Bezier curves with curvature - and torsion - continuity, which are convenient for a graphic terminal.

1. Fundamentals of differential geometry.

Definition 1.1. (a) A parametrized C^{r}-curve is a C^{r}-differentiable map $X: I \rightarrow E^{n}$ of an open interval I of the real line R into the euclidean space E^{n}.
(b) A parametrized C^{r}-curve $X: I \rightarrow E^{n}$ is said to be regular if $\dot{X}(t) \neq 0$, for all $t \in I$, where $\dot{X}=\partial / \partial t X$.

Received by the editors on November 13, 1983 and in revised form on January 11, 1985.

Remark. Let $X: I \rightarrow E^{n}$ and $\tilde{X}: \tilde{I} \rightarrow E^{n}$ be two curves. A diffeomorphism $\phi: \tilde{I} \rightarrow I$ such that $\tilde{x}=x \circ \phi$ is called a parameter transformation. The map ϕ is called orientation preserving if $\phi^{\prime}>0$. Relationship by a parameter transformation is an equivalence relation on the set of all parametrized curves in E^{n}. A C^{r}-curve is an equivalence class of parametrized C^{r}-curves.

Definition 1.2. (a) Let $X: I \rightarrow E^{n}$ be a C^{r}-curve. A moving frame along $X(I)$ is a collection of vector fields,

$$
e_{i}: I \rightarrow E^{n}, 1 \leqq i \leqq n,
$$

such that, for all $t \in I,\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j}$.
(b) A moving frame is called a Frenet-frame, if, for all $k, 1 \leqq k \leqq n$, the k-th derivative $X^{(k)}(t)$ of $X(t)$ lies in the span of the vectors $e_{1}(t), \ldots$, $e_{k}(t)$.

Proposition 1.3. Let $X: I \rightarrow E$ be a curve such that, for all $t \in I$, the vectors $X^{(1)}(t), X^{(2)}(t), \ldots, X^{(n-1)}(t)$ are linearly independent. Then there exists a unique Frenet-frame with the following properties:
(i) For $1 \leqq k \leqq n-1, X^{(1)}(t), \ldots, X^{(k)}(t)$ and $e_{1}(t), \ldots, e_{k}(t)$ have the same orientation,
(ii) $e_{1}(t), \ldots, e_{n}(t)$ has the positive orientation.

Proof. See [1, p. 11].
Proposition 1.4. (a) Let $X(t), t \in I$, be a curve in E^{n} together with a moving frame $\left\{e_{i}(t)\right\}, 1 \leqq i \leqq n, t \in I$. Then the following equations for the derivatives hold:

$$
\begin{aligned}
& \dot{X}(t)=\sum_{i=1}^{n} \alpha_{i}(t) e_{i}(t) \\
& \dot{e}_{i}(t)=\sum_{j=1}^{n} w_{i j}(t) e_{j}(t)
\end{aligned}
$$

where $w_{i j}(t):=\left\langle\dot{e}_{i}(t), e_{j}(t)\right\rangle=-w_{j i}(t)$.
(b) If $\left\{e_{i}(t)\right\}$ is the Frenet-frame

$$
\alpha_{1}(t)=\left\|X^{(1)}(t)\right\|
$$

then $\alpha_{i}(t)=0$, for $i>1$, and $w_{i j}(t)=0$, for $j>i+1$.
Proof. See [1, p. 12].
Definition 1.5. Let $X: I \rightarrow E^{n}$ be a curve satisfying the conditions of (1.3) and consider its Frenet-frame. The i-th curvature of $X, i=1, \ldots$, $n-1$, is the function

$$
\kappa_{i}(t):=\frac{w_{i, i+1}(t)}{\left\|X^{(1)}(t)\right\|}
$$

For the Frenet-frame we may now write the Frenet-equations in the following form:

$$
\dot{e}_{i}(t)=\|\dot{X}\|\left[\begin{array}{ccccccccc}
0 & \kappa_{1} & 0 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \tag{1.6}\\
-\kappa_{1} & 0 & \kappa_{2} & \cdot & \cdot & \cdot & \cdot & \cdot & 0 \\
& \cdot & & & & & & \\
\cdot & -\kappa_{2} & \cdot & & & & & & \\
\cdot & & & \cdot & & & & & \cdot \\
\cdot & & & & & & & \cdot \\
\cdot & & & & & & & \cdot \\
\cdot & & & & & & \kappa_{n-1} \\
0 & \cdot & \cdot & \cdot & \cdot & -\kappa_{n-1} & 0
\end{array}\right] e_{i}(t)
$$

Remark. The i-th curvature of a curve $X(t), i=1, \ldots, n-1$, is a geometric invariant.

It is a fundamental result of (local) differential geometry that these curvature functions determine curves satisfying the nondegeneracy conditions of (1.3)!

Theorem 1.7. (a) Let $X: I \rightarrow E^{n}$ and $\tilde{X}: I \rightarrow E^{n}$ be two curves satifying the hypotheses of (1.3), insuring the existence of a unique distinguished Frenet-frame. Denote these Frenet-frames by $\left\{e_{i}(t)\right\}$ and $\left\{\tilde{e}_{i}(t)\right\}$ respectively, $1 \leqq i \leqq n$. Suppose, relative to these frames, that $\kappa_{i}(t)=\tilde{\kappa}_{i}(t), 1 \leqq i \leqq$ $n-1$, and assume $\left\|X^{(1)}(t)\right\|=\left\|\tilde{X}^{(1)}(t)\right\|$. Then there exists a unique isome$\operatorname{try} B=E^{n} \rightarrow E^{n}$ such that $\tilde{X}=B \circ X$.
(b) Let $\kappa_{1}(s), \ldots, \kappa_{n-1}(s)$ be differentiable functions defined on a neighborhood of $0 \in R$ with $\kappa_{i}(s)>0,1 \leqq i \leqq n-2$. Then there exists an interval I containing 0 and a curve $X: I \rightarrow E^{n}$ parametrized by arc length which satisfies the conditions (1.3) and whose i-th curvature function is $\kappa_{i}(s), 1 \leqq i \leqq n-1$.

Proof. See [1, p. 14-15].
If we investigate regular plane curves and regular space curves, we will always choose the Frenet-frame as the moving frame on our curve. The Frenet equations for a plane curve are

$$
\begin{align*}
e_{1}(t): & =\frac{X^{(1)}(t)}{\left\|X^{(1)}(t)\right\|} \\
\dot{e}_{1}(t) & =w_{12} e_{2}(t) \tag{1.8}\\
\dot{e}_{2}(t) & =-w_{12} e_{1}(t)
\end{align*}
$$

There is only one curvature: $\kappa(t):=\left(w_{12}(t)\right) /\|\dot{X}(t)\|$. The curvature of a planar curve is given by the formula

$$
\begin{equation*}
\kappa(t)=\frac{\operatorname{det}(\dot{X}(t), \ddot{X}(t))}{\|\dot{X}(t)\|^{3}} . \tag{1.9}
\end{equation*}
$$

The Frenet equations for a space curve are

$$
\begin{align*}
\dot{e}_{i}(t) & =\|\dot{X}(t)\|\left[\begin{array}{ccc}
0 & \kappa_{1}(t) & 0 \\
-\kappa_{1}(t) & 0 & \kappa_{2}(t) \\
0 & -\kappa_{2}(t) & 0
\end{array}\right] e_{i}(t), \quad i=1,2,3, \tag{1.10}\\
e_{1}(t): & =\frac{\dot{X}(t)}{\|\dot{X}(t)\|}
\end{align*}
$$

and the curvatures $\kappa_{1}(t)$ and $\kappa_{2}(t)$ will be denoted $\kappa(t)$ and $\tau(t)$ and called the "curvature" and "torsion" of the curve. The curvature of a space curve is given by the formula

$$
\begin{equation*}
\kappa(t)=\frac{\|[\dot{X}(t), \ddot{X}(t)]\|}{\|\dot{X}(t)\|^{3}} \tag{1.11}
\end{equation*}
$$

where $[]:, E^{3} \times E^{3} \rightarrow E^{3}$ is the cross product, and the torsion of a space curve

$$
\begin{equation*}
\tau(t)=\frac{\operatorname{det}(\dot{X}(t), \ddot{X}(t), \ddot{X}(t))}{\|[\dot{X}, \ddot{X}]\|^{2}} \tag{1.12}
\end{equation*}
$$

Here e_{1} is called tangent vector, e_{2} principal normal vector, and e_{3} binormal vector.

Proposition 1.13. A space curve is planar if and only if its torsion vanishes identically.

Proof. See [2, p. 40].
2. Tangent, curvature, and torsion continuity for curves. We now create "geometric continuities" using the geometric invariants described in Chapter 1.

Definition 2.1, Let $X: I \rightarrow E^{3}$ be a curve such that, for all $t \in I$, the vectors $X^{(1)}(t), X^{(2)}(t)$ are linearly independent.
(i) This curve is said to have tangent continuity if and only if $(\dot{X} /\|\dot{X}\|)(t)$ is continuous.
(ii) This curve is said to have curvature continuity if and only if $(\dot{X} /\|\dot{X}\|(t)$ and $\kappa(t)$ are continuous.
(iii) This curve is said to have torsion continuity if and only if $(\dot{X} /\|\dot{X}\|)(t)$ and $\kappa(t)$ and $\tau(t)$ are continuous.

Remarks. 1) Since a space curve is planar if and only if its torsion vanishes identically, it is sufficient to consider tangent and curvature continuity for a planar curve.
2) A segmented curve is said to have $C^{(k)}$-continuity if and only if $X^{(k)}\left(t_{i}^{+}\right)=X^{(k)}\left(t_{i}^{-}\right)$at the connecting points $t_{i}, i=1, \ldots, n$.
3) Curvature continuity includes the "natural spline condition" for cubic splines given by W. Boehm in [3] as a special case.
4) C^{2}-continuity implies curvature continuity and C^{3}-continuity implies torsion continuity, but converses generally are not true. But if we choose the parametrization per arc length, curvature continuity implies C^{2}-continuity and torsion continuity implies C^{3}-continuity.
5) Curvature continuity implies the "second-degree geometric continuity" of Barsky and Beatty. They consider in [1] a "curvature vector" $K(t)$, which has the property

$$
K(t)=\kappa \cdot e_{2}
$$

If we have continuous curvature κ the Frenet-equations imply a continuous principal normal vector e_{2} and therefore we have a continuous curvature vector.

Considering segmented curves we can use the tangent, the curvature and the torsion continuity to establish connection conditions. Let X_{l} : $\left[u_{l-1}, u_{l}\right] \rightarrow E^{3} ; l=1, \ldots, k$ be the curve segments, with $X_{l-1}\left(u_{l}\right)=X_{l}$ $\left(u_{l}\right)$.

For the tangent continuity it is sufficient that

$$
\begin{equation*}
\dot{X}_{l-1}\left(u_{l}\right)=\dot{X}_{l}\left(u_{l}\right), \quad l=2, \ldots, k \tag{2.2.i}
\end{equation*}
$$

at every node u_{l}.
For the curvature continuity it is sufficient that

$$
\begin{equation*}
\ddot{X}_{l-1}\left(u_{l}\right)+\lambda_{l-1} \dot{X}_{l-1}\left(u_{l}\right)=\ddot{X}_{l}\left(u_{l}\right) \tag{2.2.ii}
\end{equation*}
$$

and

$$
\dot{X}_{l-1}\left(u_{l}\right)=\dot{X}_{l}\left(u_{l}\right), \quad l=2, \ldots, k
$$

at every node u_{l}.
For the torsion continuity it is sufficient that

$$
\begin{gather*}
\ddot{X}_{l-1}\left(u_{l}\right)+\mu_{l-1} \ddot{X}_{l-1}+\delta_{l-1} \dot{X}_{l-1}=\ddot{X}_{l}\left(u_{l}\right) \tag{2.2.iii}\\
\ddot{X}_{l-1}\left(u_{l}\right)+\lambda_{l-1} \dot{X}_{l-1}=\ddot{X}\left(u_{l}\right), \quad l=2, \ldots, k
\end{gather*}
$$

and

$$
\dot{X}_{l-1}\left(u_{l}\right)=\dot{X}_{l}\left(u_{l}\right)
$$

at every node u_{l}.
3. Bezier-Curves with geometric continuity. In the analytic description and approximation of arbitrary shaped curves the Bezier-curves (see [4]) are of great importance.

Definition 3.1. A Bezier-curve is a segmented curve. The segments
$x_{\ell}(u), \ell=0, \ldots, k$ of a Bezier-curve of degree m over the parameter interval $u_{\iota} \leqq u \leqq u_{\iota+1}$ are

$$
x_{l}(u):=\sum_{i=0}^{m} b_{l m+i} \cdot B_{i}^{m}\left(\frac{u-u_{\iota}}{u_{r+1}-u_{l}}\right) .
$$

The Bernstein polynomials

$$
B_{i}^{m}(t):=\binom{m}{i}(1-t)^{m-i} t^{i}, \quad 0 \leqq t \leqq 1
$$

are used as blending functions.

Figure 1.
Remarks. 1) Let $\lambda_{l}:=u_{\iota+1}-u_{\ell}, \ell=0, \ldots, k$, be the length of the parameter interval belonging to the segment $x_{i}(u)$.
2) The coefficients b_{m++i} are called Beizer points. They form the so called Bezier polygon.
3) The edges $\overline{b_{m<} b_{m /+1}}$ and $\overline{b_{m(\gamma+1)-1} b_{m(\gamma+1)}}$ are tangents at the boundary points $b_{m<}$ and $b_{m(\gamma+1)}$ of the segment $x_{l}(u)$. These boundary points are (in general) the only Bezier points the Bezier curve passes through.
4) Bezier-curves have the convex-hull and the variation diminishing property (see [3]).
5) As connection conditions, are usually chosen the C^{1-} and $C^{2_{-}}$ continuity.

Using curvature- and torsion-continuity offers more possibilities. Considering the two Bezier-segments

$$
x_{l}(u)=\sum_{i=0}^{m} b_{m<+i} \cdot B_{i}^{m}\left(\frac{u-u_{\iota}}{u_{\imath+1}-u_{l}}\right), \quad u_{\iota} \leqq u \leqq u_{\imath+1}
$$

and

$$
x_{<+1}(u)=\sum_{j=0}^{m} b_{m(\iota+1)+j} B_{j}^{m}\left(\frac{u-u_{\iota+1}}{u_{\iota+2}-u_{\iota+1}}\right), \quad u_{\iota+1} \leqq u \leqq u_{\iota+2},
$$

we get, as derivatives at the common nodes:
$x_{l}^{(1)}\left(u_{\kappa+1}\right)=\frac{m}{\lambda_{l}}\left(b_{m(/+1)}-b_{m(/+1)-1}\right)$,
$x_{l}^{(2)}\left(u_{\iota+1}\right)=\frac{m(m-1)}{\lambda_{l}^{2}}\left(b_{m(\kappa+1)}-2 b_{m(\iota+1)-1}+b_{m(\iota+1)-2}\right)$,
$x_{l}^{(3)}\left(u_{\kappa+1}\right)=\frac{m(m-1)(m-2)}{\lambda_{\jmath}^{3}}\left(b_{m(\kappa+1)}-3 b_{m(\kappa+1)-1}+3 b_{m(\kappa+1)-2}-b_{m(\kappa+1)-3}\right) ;$
and
$x_{i+1}^{(1)}\left(u_{\kappa+1}\right)=\frac{m}{\lambda_{/+1}}\left(b_{m(/+1)+1}-b_{m(/+1)}\right)$,
$x_{l+1}^{(2)}\left(u_{\ell+1}\right)=\frac{m(m-1)}{\lambda_{\ell+1}^{2}}\left(b_{m(\kappa+1)+2}-2 b_{m(\kappa+1)+1}+b_{m(\kappa+1)}\right)$,
$x_{\gamma+1}^{(3)}\left(u_{\kappa+1}\right)=\frac{m(m-1)(m-2)}{\lambda_{/+1}^{3}}\left(b_{m(\kappa+1)+3}-3 b_{m(\kappa+1)+2}+3 b_{m(\kappa+1)+1}-b_{m(\kappa+1)}\right)$.
Therefore, a Bezier curve has tangent-continuity if

$$
\begin{equation*}
b_{m(\zeta+1)}-b_{m(\gamma+1)-1}=b_{m(\kappa+1)+1}-b_{m(\zeta+1)}, \tag{3.1.1}
\end{equation*}
$$

curvature-continuity if

$$
\begin{align*}
& \left\|\left[\left(b_{m(/+1)}-b_{m(\gamma+1)-1}\right),\left(b_{m(/+1)-2}-b_{m(/+1)-1}\right)\right]\right\| \tag{3.1.2}\\
& \quad=\left\|\left[\left(b_{m(\gamma+1)}-b_{m(\gamma+1)-1}\right),\left(b_{m(/+1)+2}-b_{m(/+1)}\right)\right]\right\|
\end{align*}
$$

and

$$
b_{m(\kappa+1)}-b_{m(\alpha+1)-1}=b_{m(\alpha+1)+1}-b_{m(\kappa+1)},
$$

and torsion-continuity if

$$
\begin{align*}
& \left\langle\left[\left(b_{m(\alpha+1)}-b_{m(\alpha+1)-1}\right),\left(b_{m(\alpha+1)-2}-b_{m(\alpha+1)-1}\right],\left(b_{m(/+1)-2}-b_{m(/+1)-3}\right)\right\rangle\right. \tag{3.1.3}\\
& \quad=\left\langle\left[\left(b_{m(/+1)}-b_{m(/+1)-1}\right),\left(b_{m(/+1)-2}-b_{m(/+1)-1}\right)\right],\left(b_{m(\alpha+1)+3}-b_{m(/+1)}\right)\right\rangle
\end{align*}
$$

and

$$
\begin{aligned}
& \left\|\left[\left(b_{m(/+1)}-b_{m(/+1)-1}\right),\left(b_{m(/+1)-2}-b_{m(/+1)-1}\right)\right]\right\| \\
& \quad=\left\|\left[\left(b_{m(/+1)}-b_{m(/ 1)-1}\right),\left(b_{m(\alpha+1)+2}-b_{m(/+1)}\right)\right]\right\|
\end{aligned}
$$

and

$$
b_{m(\alpha+1)}-b_{m(/+1)-1}=b_{m(\alpha+1)+1}-b_{m(/+1)} .
$$

Theorem 3.2. Let $X: I \rightarrow E^{3}$ be a Bezier curve,

$$
\begin{aligned}
I & =\left[u_{0}, \ldots, u_{k}\right], \\
X_{\curlywedge}(u) & =\sum_{i=0}^{m} b_{m \iota+i} \cdot B_{i}^{m}\left(\frac{u-u_{\iota}}{u_{\iota+1}-u_{\iota}}\right) \\
\ell & =0, \ldots, k \text { and } u_{\iota} \leqq u \leqq u_{\iota+1} .
\end{aligned}
$$

(a) A Bezier curve has tangent-continuity if

$$
\begin{equation*}
b_{m(\checkmark+1)+1}=2 b_{m(\checkmark+1)}-b_{m(/+1)-1} \tag{3.2.1}
\end{equation*}
$$

(b) A Bezier curve has curvature-continuity if

$$
\begin{align*}
& b_{m(\gamma+1)+2}=C_{10} \cdot\left(b_{m(\gamma+1)}-b_{m(/+1)-1)}+b_{m(/+1)-2},\right. \tag{3.2.2}\\
& b_{m(\gamma+1)+1}=2 b_{m(\gamma+1)}-b_{m(/+1)-1} .
\end{align*}
$$

(c) A Bezier curve has torsion-continuity if

$$
\begin{align*}
& b_{m(/+1)+3}=C_{/ 1}\left(b_{m(/+1)}-b_{m(/+1)-1}\right)+C_{/ 2}\left(b_{m(/+1)-2}-b_{m(\kappa+1,-1)}\right), \tag{3.2.3}
\end{align*}
$$

$$
\begin{aligned}
& b_{m(\kappa+1)+1}=2 b_{m(\kappa+1)}-b_{m(\kappa+1)-1} .
\end{aligned}
$$

Remarks. 1) Since $X: I \rightarrow E^{3}$ is planar if and only if its torsion vanishes identically, we consider only tangent- and curvature-continuity for planar curves.
2) Considering Bezier curves with C^{2} - or C^{3}-continuity we have only one choice for $b_{m(\iota+1)+2}$ and $b_{m(\iota+1)+3}$. In the case of curvaturecontinuity we have a one parameter family of alternatives and in the case of torsion-continuity we have a two parameter family of alternatives!

Theorem (3.2) implies easy constructions for the Bezier-polygons of Bezier curves with tangent-, curvature-, and torsion-continuity.
(3.3.1) Bezier-polygon-construction for tangent-continuity:
$\stackrel{\cdot}{b_{-1}} \quad b_{0}$

$$
\overline{b_{-1} b_{0}}=\overline{b_{0} b_{1}}
$$

(3.3.2) Bezier-polygon-construction for curvature-continuity:

1) $\overline{b_{-1} b_{0}}=\overline{b_{0} b_{1}}$
2) $\overline{b_{-2} b_{-1}}=\overline{b_{-1} d_{0}}$

$$
\overline{d_{0} b_{1}}=\overline{b_{1} \tilde{b}_{2}}
$$

3) $\overline{d_{0} b_{0}}=\overline{b_{0} \tilde{b}_{2}}$

Figure 2.
Span $\left(\tilde{b}_{2}, \bar{b}_{2}\right)$ implies the one parameter family of alternatives to choose $b_{m(<+1)+2}$.

Remarks. (1) The construction (3.3.2) is of course not the only one. But it is most convenient for graphic terminals, since it uses only "midpointconstructions."
(2) Since a space curve is determined by two planar projections, the above techniques can be used to construct space curves.

References

1. B. Barsky J. Beatty, Local Control of Bias and Tension in Beta-splines, Computer Graphics 17 (1983), 193-278.
2. P. Bezier, Numerical Control, Mathematics and Applications, Wiley, London, 1972.
3. W. Boehm, On cubics: a survey, Computer Graphics and Image Processing 19 (1982), 201-226.
4. R. Forrest, Interactive interpolation and approximation by Bezier polynomials, The Computer Journal 15 (1972), 71-79.
5. W. Gordon, R. Riesenfeld, Bernstein-Bezier-Methods for the Computer Aided Design of Free-Form Curves and Surfaces, Journal ACM 21 (1974), 293-310.
6. W. Klingenberg, A Course in Differential Geometry, New York, Springer, 1978.
7. E. Kreyszig, Differential Geometry, University of Toronto Press, 1959.

Abt. Mathematik der Universität, Postfach 500500, D-46 Dortmund 50, West Germany

