LOCAL FACTORS OF FINITELY GENERATED WITT RINGS

ROBERT FITZGERALD AND JOSEPH YUCAS

Abstract

The Witt rings considered here are the abstract Witt rings in the sense of Marshall [3]. A local Witt ring is one with a unique non-trivial 2-fold Pfister form. Our main result gives necessary and sufficient conditions for a finitely generated Witt ring to be a product (in the category of Witt rings) of two Witt rings, one of which is local. The basic motivation is to develop a tool for the study of whether every finitely generated Witt ring is of elementary type (that is, can be built from local Witt rings $\mathbf{Z} / 4 \mathbf{Z}$ and $\mathbf{Z} / 2 \mathbf{Z}$ by a succession of products and group ring extensions), cf. [3; problem 4, p. 123].

1. Introduction. R will always denote a non-degenerate finitely generated Witt ring and G will be the multiplicative subgroup of one-dimensional forms in R. The category of Witt rings is equivalent to the category of quaternionic structures and also to that of the quaternionic schemes defined in [1]. We let q denote the quaternionic mapping associated with R. For $a \in G, D\langle 1, a\rangle=\{b \in G \mid q(b,-a)=0\}$ is the value set of the form $\langle 1, a\rangle$; $i(a)$ will denote the index of $D\langle 1, a\rangle$ in G. For a subset K of G, we let $Q(K)=\{q(k, x) \mid k \in K, x \in G\}$. If $K=\{k\}$, we write $Q(k)$ for $Q(K)$. We will be mainly concerned with the existence of elements $a \in G$ such that $i(a)=2$, equivalently, such that $|Q(-a)|=2$.

For Witt rings R_{1} and R_{2} we let $R_{1} \times{ }_{w} R_{2}$ denote the product of R_{1} and R_{2} in the category of Witt rings. We say R_{1} is a local factor of R if $R \cong R_{1} \times{ }_{w} R_{2}$ with R_{1} a local Witt ring. C_{2} denotes the group of order 2 and $R\left[C_{2}\right]$ denotes the group ring of C_{2} with coefficients in R. Details on products and group rings of Witt rings may be found in [3].

For $a \in G$, we let $M(a)=\{m \in G \mid i(m)=2, i(-a m)=2$ and $D\langle 1, m\rangle$ $\neq D\langle 1, a\rangle\} \cup\{a\}$, and we let $H(a)=\bigcap_{m \in M(a)} D\langle 1, m\rangle$. We say a is a local element if $i(a)=2$ and $\rho \notin Q(H(a))$, where ρ is the unique nontrivial element in $Q(-a)$. The main goal of this paper is to prove the following

Theorem 1.1. Let R be a finitely generated non-degenerate Witt ring. R has a local factor if and only if R has a local element.

We take a moment here to motivate our definition of local element.

The Witt rings of elementary type which contain an element a with $i(a)=$ 2 are of two types.

1. $\mathrm{R} \times{ }_{w} L$, where R is of elementary type and L is local. Here we can choose a to be any element of the form $(-1, x), x \neq-1$.
2. $R \times S\left[C_{2}\right]$, where R is of elementary type and S is degenerate with $\left|G_{S}\right|>2$. Here we can choose a to be any element of the form $(-1,-x)$ with $x \neq 1$ and in the radical of S.

Thus to classify Witt rings with local factors a further condition on a is needed to distinguish between these two types. The element $\rho \notin Q(H(a))$ does just that. In the first case $H(a)=G_{R}$ and $-a \in G_{L}$ so clearly $\rho \notin$ $Q(H(a))$. In the second case, $H(a)=G_{R} \times G_{S}$ thus $-a \in H(a)$ and $\rho \in$ $Q(H(a))$.
$\S 2$ is devoted to the proof of (1.1). We close this section with a preliminary result which characterizes the subgroups of G which yield Witt ring factors of R. For a subgroup H of G, we let $C(H)=\bigcap_{h \in H} D\langle 1,-h\rangle$ $=\{k \in G \mid H \subseteq D\langle 1,-k\rangle\}$.

Lemma 1.2. Let H be a subgroup of G.
i) $H \subseteq C(C(H)$).
ii) If $G=H \cdot C(H)$, then $H \cap C(H)=\{1\}$ and $H=C(C(H))$.
iii) If $h \in H, k \in C(H)$, then $D\langle 1, h k\rangle \cap H=D\langle 1, h\rangle \cap H$ and $D\langle 1, h k\rangle \cap C(H)=D\langle 1, k\rangle \cap C(H)$.

Proof. i). If $k \in C(H)$, then $H \subseteq D\langle 1,-k\rangle$; hence $H \subseteq \bigcap_{k \in C(H)}$ $D\langle 1,-k\rangle=C(C(H))$.
ii). Let $x \in H \cap C(H)$. Then $x \in C(H)$ and $x \in C(C(H))$ and so H, $C(H) \subseteq D\langle 1,-x\rangle$. But then $G=H \cdot C(H) \subseteq D\langle 1,-x\rangle$ and R nondegenerate implies $x=1$. To show $H=C(C(H))$, let $x \in C(C(H))$ and write $x=h k, h \in H, k \in C(H)$. Then $C(H) \subseteq D\langle 1,-h k\rangle$ and $C(H) \subseteq$ $D\langle 1,-h\rangle$, hence, $C(H) \subseteq D\langle 1,-k\rangle$. But $H \subseteq D\langle 1,-k\rangle$, thus, $G=$ $H \cdot C(H) \subseteq D\langle 1,-k\rangle$. Since R is non-degenerate, $k=1$ and $x \in H$.
iii). Let $h^{\prime} \in H$. Since $k \in C(H), h^{\prime} \in D\langle 1,-k\rangle$. Consequently $h^{\prime} \in$ $D\langle 1, h k\rangle$ if and only if $h^{\prime} \in D\langle 1, h\rangle$. Similarly if $k^{\prime} \in C(H)$, then $k^{\prime} \in$ $D\langle 1,-h\rangle$; thus, $k^{\prime} \in D\langle 1, h k\rangle$ if and only if $k^{\prime} \in D\langle 1, k\rangle$.

We introduce more notation. If $D\langle 1,-x\rangle \subseteq D\langle 1,-y\rangle$ we write $x \leqq y$, and for a subgroup H of G we set $H_{x}=\{h \in H \mid x \leqq h\}$. As in [4], the radical of an $x \in G$ is defined by $\operatorname{rad}(x)=\{y \in G \mid x \leqq y\}=\bigcap_{z \in D\langle 1,-x\rangle}$ $D\langle 1,-z\rangle$. Notice that $H_{x}=\operatorname{rad}(x) \cap H$, and if $H=D\langle 1,-x\rangle$, then $C(H)=\operatorname{rad}(x)$.

Theorem 1.3. For a subgroup H of G the following statements are equivalent:
(1) For all $x \in G, x H_{x} \cap C(H) \neq \varnothing$;
(2) For all $x \in G, x H \cap \operatorname{rad}(x) \cap C(H) \neq \varnothing$;
(3) For all $y \in G, x \in D\langle 1, y\rangle$ implies $x H \cap D\langle 1, y\rangle \cap C(H) \neq \varnothing$; and
(4) The collections $\{D\langle 1, h\rangle \cap H \mid h \in H\}$ and $\{D\langle 1, k\rangle \cap C(H) \mid$ $k \in C(H)\}$ are quaternionic schemes on H and $C(H)$, respectively, yielding Witt rings R_{1} and R_{2} such that $R \cong R_{1} \times{ }_{w} R_{2}$.

Proof. (1) \Rightarrow (2). Since $H_{x}=\operatorname{rad}(x) \cap H$ we have $x H_{x}=x(\operatorname{rad}(x) \cap$ $H)=\operatorname{rad}(x) \cap x H$. (2) now follows from (1).
(2) \Rightarrow (3). Let $y \in G$ and $x \in D\langle 1, y\rangle$. Notice that $\operatorname{rad}(x)=\bigcap_{-z \in D\langle 1,-x\rangle}$ $D\langle 1, z\rangle=\bigcap_{x \in D\langle 1, z\rangle} D\langle 1, z\rangle$. By (2), there is an $h \in H$ such that $x h \in$ $\operatorname{rad}(x) \cap C(H)$. Since $x \in D\langle 1, y\rangle$ and $x h \in \bigcap_{x \in D\langle 1, z\rangle} D\langle 1, z\rangle$, we see that $x h \in D\langle 1, y\rangle$. This proves (3).
(3) \Rightarrow (4). First note that $G=H \cdot C(H)$. Namely, for any $y \in G, y \in$ $D\langle 1, y\rangle$ and (3) imply that $y H \cap D\langle 1, y\rangle \cap C(H) \neq \varnothing$. Thus there exists an $h \in H$ such that $y h \in C(H)$, that is, $y \in H \cdot C(H)$. By (1.2) we thus also have $H \cap C(H)=\{1\}$.

Let $D_{H}\langle 1, a\rangle=D\langle 1, a\rangle \cap H$. To show that $\left\{D_{H}\langle 1, a\rangle \mid a \in H\right\}$ is a quaternionic scheme on H we must show, for all $a, b, c, d \in H$:
i) $a \in D_{H}\langle 1, a\rangle$;
ii) There is an $\alpha \in H$ such that $x \in D_{H}\langle 1, a\rangle \Rightarrow \alpha a \in D_{H}\langle 1, \alpha x\rangle$; and
iii) $b D_{H}\langle 1, \alpha a\rangle \cap D_{H}\langle 1, \alpha a c\rangle \cap d D_{H}\langle 1, \alpha c\rangle \neq \varnothing \Rightarrow a D_{H}\langle 1, \alpha b\rangle$ $\cap D_{H}\langle 1, \alpha b d\rangle \cap c D_{H}\langle 1, \alpha d\rangle \neq \varnothing$.
(i) is obvious. For (ii), since $-1 \in G=H \cdot C(H)$ we may write $-1=$ $\alpha \beta$, with $\alpha \in H$ and $\beta=-\alpha \in C(H)$. Suppose $x \in D_{H}\langle 1, a\rangle$; then x, $a \in H$ and $-a \in D\langle 1,-x\rangle$. Since $-\alpha \in C(H)$, we have $-\alpha \in D\langle 1,-x\rangle$ and thus $\alpha a \in D\langle 1,-x\rangle, x \in D\langle 1,-\alpha a\rangle$. But $\alpha a \in H$, so $-\alpha \in D\langle 1$, $-\alpha a\rangle$ and $-\alpha x \in D\langle 1,-\alpha a\rangle$. Consequently, $\alpha a \in D_{H}\langle 1, \alpha x\rangle$.
To prove (iii) we first make the following
Claim. For $x, y \in H, x \in D_{H}\langle 1, \alpha y\rangle$ if and only if $x \in D\langle 1,-y\rangle$.
Namely, $D\langle 1,-y\rangle \cap H=D\langle 1, \alpha \beta y\rangle \cap H=D\langle 1, \alpha y\rangle \cap H$ by (1.2) (iii).

Thus $b D\langle 1,-a\rangle \cap D\langle 1,-a c\rangle \cap d D\langle 1,-c\rangle \neq \varnothing$. Since (iii) holds for G, there exists $y \in a D\langle 1,-b\rangle \cap D\langle 1,-b d\rangle \cap c D\langle 1,-d\rangle$. Since $y \in D\langle 1,-b d\rangle$ we have, by (3), that there exists an $h \in H$ with $y h \in D\langle 1,-b d\rangle \cap C(H)$. Consequently, $h \in D\langle 1,-b d\rangle$ and $y h \in D\langle 1$, $-z\rangle$, for all $z \in H$. Now, $y a, y h \in D\langle 1,-b\rangle$, hence $a h \in D\langle 1,-b\rangle$. Also, $y c, y h \in D\langle 1,-d\rangle$, hence $c h \in D\langle 1,-d\rangle$. This shows $a D\langle 1,-b\rangle$ $\cap D\langle 1,-b d\rangle \cap c D\langle 1,-d\rangle \cap H \neq \varnothing$. The Claim then implies (iii).

To show $\{D\langle 1, k\rangle \cap C(H) \mid k \in C(H)\}$ is a quaternionic scheme on $C(H)$, it suffices to show $C(H)$ satisfies (3). Multiplying, (3) applied to H, by x yields $H \cap D\langle 1, y\rangle \cap x C(H) \neq \varnothing$. Since $H \subseteq C(C(H)$) by (1.2), (3) holds for $C(H)$.

Now we have $G=H \times C(H)$ as groups and the distinguished element of $C(H)$ is $\beta=-\alpha$, where α is the distinguished element of H. So it remains to show only that $D\langle 1, y\rangle=D_{H}\langle 1, y\rangle \cdot D_{C(H)}\langle 1, y\rangle$, for all $y \in G$. Let $z \in D\langle 1, y\rangle$. By (3), $z H \cap D\langle 1, y\rangle \cap C(H) \neq \varnothing$ so there exists an $h \in H$ with $h \in D\langle 1, y\rangle, z h \in D\langle 1, y\rangle$ and $z h \in C(H)$. Consequently $z=h(z h), h \in D_{H}\langle 1, y\rangle$, and $z h \in D_{C(H)}\langle 1, y\rangle$. And, finally, if $h \in D_{H}\langle 1$, $y\rangle$ and $k \in D_{C(H)}\langle 1, y\rangle$, then clearly $h k \in D\langle 1, y\rangle$.
(4) \Rightarrow (1). For an $x \in G$, (4) implies $x=h k$, for some $h \in H, k \in C(H)$. Notice that $k=x h \in x H \cap C(H)$, so it suffices to show that $D\langle 1,-x\rangle$ $\subseteq D\langle 1,-h\rangle$. Now $D\langle 1,-x\rangle=D\langle 1,-h k\rangle=D_{H}\langle 1,-h k\rangle D_{C(H)}$ $\langle 1,-h k\rangle$, by (4). Let $z \in D\langle 1,-x\rangle$. Write $z=z_{1} z_{2}$ where $z_{1} \in$ $D\langle 1,-h k\rangle \cap H$ and $z_{2} \in D\langle 1,-h k\rangle \cap C(H)$. Now $z_{2} \in D(H)$ implies $z_{2} \in D\langle 1,-h\rangle$, and $z_{1} \in H \subseteq C(C(H))$, by (1.2), implies $z_{1} \in D\langle 1,-k\rangle$. Thus $z_{1} \in D\langle 1,-k\rangle \cap D\langle 1,-h k\rangle \subseteq D\langle 1,-h\rangle$, and so $z=z_{1} z_{2} \in$ $D\langle 1,-h\rangle$.
2. Local elements and local factors. Throughout, we fix a local element $a \in G$. We will write M for $M(a)$ and H for $H(a)$. We begin with the case $|M|=1$.

Proposition 2.1. If $M=\{a\}$, then $-1 \notin D\langle 1, a\rangle$ and $D\langle 1, a\rangle=$ $\bigcup_{x \in D\langle 1, a\rangle} D\langle 1, x\rangle$.

Proof. If $-1 \in D\langle 1, a\rangle$, then a cannot be a local element, since $-a \in$ $D\langle 1, a\rangle=H \Rightarrow \rho \in Q(H)$. Hence $-1 \notin D\langle 1, a\rangle$. Assume there exist $x \in D\langle 1, a\rangle$ and $y \in D\langle 1, x\rangle$ with $y \notin D\langle 1, a\rangle$. We have $\langle 1, a\rangle \simeq$ $\langle x, x a\rangle,\langle 1, x\rangle \simeq\langle y, x y\rangle$. Since $i(a)=2$ and $-1 \notin D\langle 1, a\rangle,\langle 1,1$, $a, a\rangle \simeq\langle 1, a,-y,-a y\rangle$. On the other hand $\langle 1,1, a, a\rangle \simeq\langle 1, a, x, x a\rangle$ $\simeq\langle a, x a, y, x y\rangle$. Thus $\langle 1, a,-y,-a y\rangle \simeq\langle a, x a, y, x y\rangle$; hence, $\langle 1$, $a,-x y,-x a\rangle \simeq\langle y, y, a y, a\rangle$. Upon multiplying by $y a$, we obtain $\langle y a, y,-x a,-x y\rangle \simeq\langle a, a, 1, y\rangle$. After cancelling $\langle y\rangle$ we see that $y a$ is represented by the pure part of $<1, a \gg$. Consequently, $\rho=q(-1$, $-a)=q(-y a, z)$, for some $z \in G$. Now $-y a \in D\langle 1, a\rangle=H$; thus $\rho \in$ $Q(H)$, contradicting the fact that a is a local element.

Corollary 2.2. If $M=\{a\}$, then $R \cong \mathbf{Z} \times{ }_{w} S$ for some nondegenerate Witt ring S.

Proof. Let $K=\{1,-a\}$. We show first that (1.3) (3) is satisfied. Notice that $C(K)=D\langle 1, a\rangle$. Let $y \in G, x \in D\langle 1, y\rangle$. If $x \in D\langle 1, a\rangle$, then clearly $x \in x K \cap D\langle 1, y\rangle \cap D\langle 1, a\rangle$. Suppose $x \notin D\langle 1, a\rangle$. By (2.1), $-1 \notin D\langle 1, a\rangle$, and, since $i(a)=2$, we have $-x \in D\langle 1, a\rangle$. Now $-y \in D\langle 1,-x\rangle$, so $-y \in D\langle 1, a\rangle$ by (2.1). Consequently, $-x a \in x K \cap$ $D\langle 1, y\rangle \cap D\langle 1, a\rangle$. Now since $q(-a,-a) \neq 0$, it follows from [3, p. 42, Case 4] that the Witt ring associated with K is \mathbf{Z}.

The statement and proof of (2.2) are implicit in [5, 3.3].
From this point on we assume $M \neq\{a\}$, that is we assume $|M|>1$. We begin a study of the structure of M.

Lemma 2.3. Let G be an arbitrary group with subgroups H_{1}, H_{2}, H_{3} of index 2. If $H_{1} \cap H_{2}=H_{1} \cap H_{3}$ and $H_{2} \neq H_{3}$, then $G=H_{1} \cup H_{2} \cup H_{3}$.

Proof. Suppose $g \in G$ with $g \notin H_{1} \cup H_{2} \cup H_{3}$. We show $H_{2}=H_{3}$, contradicting our hypothesis. Let $h \in H_{2}$. If $h \in H_{1}, h \in H_{1} \cap H_{2} \subseteq H_{3}$. If $h \notin H_{1}$, then $g h \in H_{1}$. Notice that $g h \notin H_{3}$, for, otherwise, $g h \in H_{1} \cap$ $H_{3} \subseteq H_{2}$, implying that $g \in H_{2}$. Consequently, $h=g(g h) \in H_{3}$ and $H_{2} \subseteq$ H_{3}. Since H_{2} and H_{3} are subgroups of the same index, $H_{2}=H_{3}$.

Lemma 2.4. Let $m, m^{\prime} \in M, m \neq m^{\prime}$. Then:
(1) $Q(-m)=Q(-a)=Q\left(-m^{\prime}\right)$;
(2) $D\langle 1, m\rangle \neq D\left\langle 1, m^{\prime}\right\rangle$;
(3) $i\left(-m m^{\prime}\right)=2$; and
(4) $G=D\langle 1, m\rangle \cup D\left\langle 1, m^{\prime}\right\rangle \cup D\left\langle 1,-m m^{\prime}\right\rangle$.

Proof. To prove (1), it suffices to show that $Q(-m)=Q(-a)$. Clearly we may assume $m \neq a$. Since $m \in M, i(a)=i(m)=i(-a m)=2, D\langle 1$, $-a m\rangle \cap D\langle 1, a\rangle=D\langle 1,-a m\rangle \cap D\langle 1, m\rangle$ and $D\langle 1, a\rangle \neq D\langle 1$, $m\rangle$. By (2.3), $G=D\langle 1, a\rangle \cup D\langle 1, m\rangle \cup D\langle 1,-a m\rangle$. Since G is not the union of two proper subgroups, there exists $x \notin D\langle 1, a\rangle \cup D\langle 1, m\rangle$, $x \in D\langle 1,-a m\rangle$. This implies that $q(x,-a) \neq 0, q(x,-m) \neq 0$ and $q(x$, $a m)=0$. But $q(x, a m)=0$ forces $q(x,-a)=q(x,-m)$. Since $i(a)=$ $i(m)=2,|Q(-a)|=|Q(-m)|=2$; hence, $Q(-a)=Q(-m)$. To prove (2) and (3), notice that $\left|Q(-m) \cap Q\left(-m^{\prime}\right)\right|=2$, so by [3, 5.2], $D\langle 1$, $m\rangle \cap D\left\langle 1, m^{\prime}\right\rangle$ has index 2 in $D\left\langle 1,-m m^{\prime}\right\rangle$. Since $D\langle 1, m\rangle \cap D\langle 1$, $\left.m^{\prime}\right\rangle$ has index 2 or 4 in G, this forces $D\langle 1, m\rangle \cap D\left\langle 1, m^{\prime}\right\rangle$ to have index 4 in G and thus $D\left\langle 1,-m m^{\prime}\right\rangle$ must have index 2 in G. Statement (4) now follows from (2), (3) and (2.3).

Lemma 2.5. Let $x_{1}, x_{2}, x_{3} \in G$ and suppose:
(a) $i\left(x_{1}\right)=i\left(x_{2}\right)=i\left(x_{3}\right)=2$;
(b) $i\left(-x_{1} x_{2}\right)=i\left(-x_{1} x_{3}\right)=i\left(-x_{2} x_{3}\right)=2$; and
(c) $D\left\langle 1, x_{i}\right\rangle \neq D\left\langle 1, x_{j}\right\rangle$, for $i \neq j$.

Then $i\left(x_{1} x_{2} x_{3}\right) \leqq 2$.
Proof. Since $D\left\langle 1, x_{1}\right\rangle \cap D\left\langle 1,-x_{2} x_{3}\right\rangle \subseteq D\left\langle 1, x_{1} x_{2} x_{3}\right\rangle$ we have $i\left(x_{1} x_{2} x_{3}\right) \leqq 4$. Assume $i\left(x_{1} x_{2} x_{3}\right)=4$. In this case $D\left\langle 1, x_{1} x_{2} x_{3}\right\rangle=$ $D\left\langle 1, x_{1}\right\rangle \cap D\left\langle 1,-x_{2} x_{3}\right\rangle$, so, in particular, $D\left\langle 1, x_{1} x_{2} x_{3}\right\rangle \subseteq D\left\langle 1, x_{1}\right\rangle$. Similarly, $D\left\langle 1, x_{1} x_{2} x_{3}\right\rangle \subseteq D\left\langle 1, x_{2}\right\rangle$ and $D\left\langle 1, x_{1} x_{2} x_{3}\right\rangle \subseteq D\left\langle 1, x_{3}\right\rangle$. By (c), we get $D\left\langle 1, x_{1} x_{2} x_{3}\right\rangle=D\left\langle 1, x_{i}\right\rangle \cap D\left\langle 1, x_{j}\right\rangle$, for $i \neq j$. But then $D\left\langle 1, x_{1}\right\rangle \cap D\left\langle 1, x_{2}\right\rangle=D\left\langle 1, x_{1}\right\rangle \cap D\left\langle 1, x_{3}\right\rangle$, so, by (2.3), $G=D\langle 1$, $\left.x_{1}\right\rangle \cup D\left\langle 1, x_{2}\right\rangle \cup D\left\langle 1, x_{3}\right\rangle$. Since G is not the union of two proper
subgroups, there exists $g \in D\left\langle 1, x_{3}\right\rangle, g \notin D\left\langle 1, x_{1}\right\rangle \cup D\left\langle 1, x_{2}\right\rangle$. Recall that $D\left\langle 1, x_{1}\right\rangle \cap D\left\langle 1,-x_{2} x_{3}\right\rangle=D\left\langle 1, x_{1} x_{2} x_{3}\right\rangle=D\left\langle 1, x_{1}\right\rangle \cap D\langle 1$, $\left.x_{2}\right\rangle$. Also, $D\left\langle 1,-x_{2} x_{3}\right\rangle \neq D\left\langle 1, x_{2}\right\rangle$, else $D\left\langle 1, x_{3}\right\rangle=D\left\langle 1, x_{2}\right\rangle$; by (2.3), $G=D\left\langle 1, x_{1}\right\rangle \cup D\left\langle 1, x_{2}\right\rangle \cup D\left\langle 1,-x_{2} x_{3}\right\rangle$. Consequently, $g \in$ $D\left\langle 1,-x_{2} x_{3}\right\rangle$. Then $g \in D\left\langle 1, x_{3}\right\rangle \cap D\left\langle 1,-x_{2} x_{3}\right\rangle \subseteq D\left\langle 1, x_{2}\right\rangle$, a contradiction.

Lemma 2.6. Let $x, y, z \in G, z \neq-x y$, with $i(x)=i(y)=i(z)=i(-y z)$ $=2$. If $D\langle 1,-x y\rangle=D\langle 1, z\rangle$, then $D\langle 1, x\rangle=D\langle 1, y\rangle=D\langle 1, z\rangle$.

Proof. If $D\langle 1, y\rangle=D\langle 1, z\rangle$, then $D\langle 1, y\rangle=D\langle 1,-x y\rangle=$ $D\langle 1, x\rangle$; so assume $D\langle 1, y\rangle \neq D\langle 1, z\rangle$. Also, $D\langle 1, z\rangle=D\langle 1,-x y\rangle \cap$ $D\langle 1, z\rangle \subseteq D\langle 1, x y z\rangle$; thus $D\langle 1, z\rangle=D\langle 1, x y z\rangle$, since $i(z)=2$ and $z \neq-x y$. Now, $D\langle 1,-y z\rangle \cap D\langle 1, y\rangle=D\langle 1,-y z\rangle \cap D\langle 1, z\rangle ;$ thus, by (2.3), $G=D\langle 1, y\rangle \cup D\langle 1, z\rangle \cup D\langle 1,-y z\rangle$. Consequently, $D\langle 1, x\rangle=D\langle 1, x\rangle \cap D\langle 1, y\rangle \cup D\langle 1, x\rangle \cap D\langle 1, z\rangle \cup D\langle 1, x\rangle \cap$ $D\langle 1,-y z\rangle$. Now $D\langle 1, x\rangle \cap D\langle 1, y\rangle \subseteq D\langle 1,-x y\rangle=D\langle 1, z\rangle$ and $D\langle 1, x\rangle \cap D\langle 1,-y z\rangle \subseteq D\langle 1, x y z\rangle=D\langle 1, z\rangle$, so $D\langle 1, x\rangle \subseteq D\langle 1, z\rangle$. Since $i(x)=i(z), D\langle 1, x\rangle=D\langle 1, z\rangle$ and $D\langle 1, x\rangle=D\langle 1,-x y\rangle=$ $D\langle 1, y\rangle$, a contradiction.

Lemma 2.7. Let $m_{1}, m_{2} \in M$. Then

(1) $-m_{1} m_{2} \in M \cup\{-1\}$; and
(2) $a m_{1} m_{2} \in M \cup\{-1\}$.

Proof. (1). First note that if $m_{1}=m_{2}$, then $-m_{1} m_{2}=-1 \in M U$ $\{-1\}$. If $m_{1}=a$ and $m_{2} \neq a$, then $i\left(-m_{1} m_{2}\right)=i\left(-a m_{2}\right)=2$, since $m_{2} \in M$ and $i\left(a m_{1} m_{2}\right)=i\left(m_{2}\right)=2$. If $D\left\langle 1,-m_{1} m_{2}\right\rangle=D\langle 1, a\rangle$, then $D\left\langle 1,-a m_{2}\right\rangle=D\langle 1, a\rangle=D\left\langle 1, m_{2}\right\rangle$, a contradiction. So in this case, (1) is true. Similarly, if $m_{1} \neq a$ and $m_{2}=a$, the result is true. If $-m_{1} m_{2}=$ a, then clearly $-m_{1} m_{2} \in M$ so we may assume that $m_{1} \neq m_{2}, m_{1} \neq a$, $m_{2} \neq a$ and $-m_{1} m_{2} \neq a$. By (2.4) (3), $i\left(-m_{1} m_{2}\right)=2$. Notice that $i(a)=$ $i\left(m_{1}\right)=i\left(m_{2}\right)=2, i\left(-a m_{1}\right)=i\left(-a m_{2}\right)=i\left(-m_{1} m_{2}\right)=2$ and $D\langle 1, a\rangle \neq$ $D\left\langle 1, m_{1}\right\rangle, D\langle 1, a\rangle \neq D\left\langle 1, m_{2}\right\rangle$, and by (2.4) (2), $D\left\langle 1, m_{1}\right\rangle \neq D\left\langle 1, m_{2}\right\rangle$. So by (2.5), $i\left(a m_{1} m_{2}\right) \leqq 2$. But if $i\left(a m_{1} m_{2}\right)=1$, then $-m_{1} m_{2}=a$, contradicting our assumption; thus, $i\left(a m_{1} m_{2}\right)=2$. If $D\left\langle 1,-m_{1} m_{2}\right\rangle=$ $D\langle 1, a\rangle$, then $D\left\langle 1, m_{1}\right\rangle=D\left\langle 1, m_{2}\right\rangle$, by (2.6), a contradiction. Hence $i\left(-m_{1} m_{2}\right)=2, i\left(a m_{1} m_{2}\right)=2$, and $D\left\langle 1,-m_{1} m_{2}\right\rangle \neq D\langle 1, a\rangle$, so $-m_{1} m_{2} \in$ M.
(2). By (1), $-m_{1} m_{2} \in M \cup\{-1\}$. If $-m_{1} m_{2}=-1$, then $a m_{1} m_{2}=$ $a \in M$. If $-m_{1} m_{2} \in M$, then $a m_{1} m_{2}=-(a)\left(-m_{1} m_{2}\right) \in M \cup\{-1\}$, by (1).

Proposition 2.8. (1) If $m_{1}, m_{2}, \ldots, m_{2 n+1} \in M \cup\{-1\}$, then $m_{1} \cdot m_{2}$. $\cdots m_{2 n+1} \in M \cup\{-1\}$.
(2) If $m_{1}, m_{2}, \ldots, m_{2 n} \in M \cup\{-1\}$, then $-m_{1} \cdot m_{2} \cdots m_{2 n} \in M \cup$ $\{-1\}$.

Proof. (1). It sufficies to do the case $n=1$, for then $m_{1} \cdot m_{2} \cdots$ $\cdot m_{2 n+1}=\left(m_{1} m_{2} m_{3}\right) m_{4} \cdots m_{2 n+1}$ is a product of $(2 n-1)$ elements of $M \cup\{-1\}$. Thus we must show $m_{1} m_{2} m_{3} \in M \cup\{-1\}$. First notice that we may assume that the m_{i} are distinct, for otherwise it is trivial. We may also assume that $m_{i} \neq a, i=1,2,3$, since then $m_{1} m_{2} m_{3} \in M \cup\{-1\}$ by (2.7) (2). Further, we may assume $m_{1} \neq-m_{2} m_{3}$, since then $-1=$ $m_{1} m_{2} m_{3} \in M \cup\{-1\}$. Finally, we may assume that $m_{i} \neq-1$, for then the result is either trivial or follows from (2.7) (1). Now, by (2.4) (2) and (3), $i\left(-m_{i} m_{j}\right)=2$ and $D\left\langle 1, m_{i}\right\rangle \neq D\left\langle 1, m_{j}\right\rangle$, for $i \neq j$. By (2.5), with $x_{i}=m_{i}, i\left(m_{1} m_{2} m_{3}\right) \leqq 2$. Strict inequality holds only if $m_{1}=-m_{2} m_{3}$ which we are assuming is not so, thus $i\left(m_{1} m_{2} m_{3}\right)=2$. We now want to apply (2.5) with $x_{i}=-a m_{i}$. Now $m_{i} \neq a$, so $x_{i} \in M$ by (2.7) (1). Also $x_{i} \neq a$, since $m_{i} \neq-1$. Applying (2.5), we get $i\left(-a m_{1} m_{2} m_{3}\right) \leqq 2$. Again, $i\left(-a m_{1} m_{2} m_{3}\right)=2$, else $m_{1} m_{2} m_{3}=a \in M$. It remains only to show that $D\left\langle 1, m_{1} m_{2} m_{3}\right\rangle \neq D\langle 1, a\rangle$. If this is not so, then, by (2.6), $D\left\langle 1, m_{1}\right\rangle=$ $\left\langle 1,-m_{2} m_{3}\right\rangle=D\langle 1, a\rangle$, a contradiction.
(2). Again it suffices to do only the case $n=1$, for then $-m_{1} \cdot m_{2} \cdots$ - $m_{2 n}=\left(-m_{1} m_{2}\right) m_{3} \cdots m_{2 n}$ which is a product of $(2 n-1)$ elements of $M \cup\{-1\}$ and by (1) must be in $M \cup\{-1\}$. If $m_{1}, m_{2} \in M$, then $-m_{1} m_{2} \in M \cup\{-1\}$ by (2.7) (1). If $m_{1}=-1$ and/or $m_{2}=-1$, the result is trivial.

Proposition 2.9. (1) M^{2} is a subgroup of G.
(2) $M^{2}=-M \cup\{1\}$.

Proof. (1). Let $m_{1} m_{2}, m_{3} m_{4} \in M^{2}$. Then $\left(m_{1} m_{2}\right)\left(m_{3} m_{4}\right)=m_{1}\left(m_{2} m_{3} m_{4}\right) \in$ $M \cdot(M \cup\{-1\})=M^{2} \cup-M$, by (2.8) (1). Thus it suffices to show $-M \subseteq M^{2}$. Let $-m \in-M$. There exists $m_{1} \in M$ with $m_{1} \neq m$ (otherwise $M=\{a\}$, contrary to the assumption made after (2.2)), and so $-m=$ $m_{1}\left(-m m_{1}\right) \in M^{2}$ by (2.7) (1).
(2). As in (1), $-M \subseteq M^{2}$ and so $-M \cup\{1\} \subseteq M^{2}$. On the other hand, $-M^{2} \subseteq M \cup\{-1\}$ by (2.7), so $M^{2} \subseteq-M \cup\{1\}$.

We turn now to the relationships among M, H and $C(H)$.
Corollary 2.10. $M^{2} \cap H=\{1\}$.
Proof. Let $x \in M^{2} \cap H$. By (2.9) (2) we may assume $-x=m \in M$. Then by (2.4) (1), $Q(x)=Q(-a)$, that is, $\rho \in Q(x)$ and $x \in H$, contradicting our basic assumption.

For $g \in G$, let $S(g)=\{-m \in-M \mid g \in D\langle 1, m\rangle\} \cup\{1\}$.
Proposition 2.11. (1) For each $g \in G, S(g)$ is a subgroup of M^{2}.
(2) $S(g)$ has index $\leqq 2$ in M^{2} with equality holding if and only if $g \notin H$.
(3) For $x, y \in-M^{2}, x \neq y$, we have $S(x) \neq S(y)$.

Proof. (1). Notice that $S(g)=(-M \cup\{1\}) \cap D\langle 1,-g\rangle$, so (1) follows from (2.9).
(2). Suppose $x, y \in M^{2}-S(g)$. We show $x y \in S(g)$. Clearly we may assume $x \neq y$. Now $x, y \in-M$ by (2.9) (2), so $g \notin D\langle 1,-x\rangle \cup D\langle 1$, $-y\rangle$, and thus $g \in D\langle 1,-x y\rangle$. Also, $-x y \in M$ by (2.7) (1); hence, $x y \in S(g)$. This shows that $\left|M^{2} / S(g)\right| \leqq 2$. Notice that $M^{2}=S(g)$ if and only if $g \in H$.
(3). Suppose $S(x)=S(y)$. Then, for all $m \in M$, either x and y are in $D\langle 1, m\rangle$ or x and y are not in $D\langle 1, m\rangle$. Since $i(m)=2$, we see that in either case $x y \in D\langle 1, m\rangle$; hence, $x y \in H$. Recall that $-M^{2}=M \cup\{-1\}$. If $x \in M$ and $y=-1$, then $x \in-H \cap M$. By (2.4)(1), $Q(-a)=Q(-x)$, and then $\rho \in Q(-x)$ and $-x \in H$, contradicting our basic assumption. If $x \in M$ and $y \in M$, then $x y \in M^{2} \cap H=\{1\}$, by (2.10), again a contradiction.

We thank M. Kula for simplifying an earlier version of (2.11 (1)).
Prooosition 2.12. (1) $G=M^{2} H$.
(2) $G=H \cdot C(H)$.
(3) $H \cap C(H)=\{1\}$.
(4) $C(H)=M^{2}$.
(5) $Q(C(H))=\{0, \rho\}$.

Proof. (1). Let $\left|M^{2}\right|=2^{k}$. By (2.11) (1) (2), $\left\{S(x) \mid x \in-M^{2}\right\}$ is a collection of 2^{k} distinct subgroups of M^{2}, all of index $\leqq 2$. Since there are only $2^{k}-1$ subgroups of index 2 in M^{2}, the collection $\left\{S(x) \mid x \in-M^{2}\right\}$ consists of all subgroups of M^{2} of index $\leqq 2$. Now let $g \in G$. Then $S(g)$ is a subgroup of M^{2} of index $\leqq 2$. Hence there exists $x \in-M^{2}$ such that $S(g)=S(x)$. But then, as in the proof of (2.11)(3), $g x \in H$. Consequently, $g \in x H \subseteq-M^{2} H$. That is, $G=-M^{2} H$ and so $G=M^{2} H$.
(2). $M^{2}=-M \cup\{1\}$ by (2.9) (2). Thus if $x \in M^{2}, H \subseteq D\langle 1,-x\rangle$ and so $x \in C(H)$. That is, $M^{2} \subseteq C(H)$. Hence (2) follows from (1).
(3). This follows from (2) by (1.2).
(4). We have shown $M^{2} \subseteq C(H)$. Parts (2) and (3) imply $|G|=|H|$. $|C(H)|$. If $M^{2} \neq C(H)$, then $|G|>|H| \cdot\left|M^{2}\right|$, which contradicts (1).
(5). $Q(C(H))=\{q(c, x) \mid c \in C(H), x \in G\}=\{q(-m, x) \mid m \in M, x \in G\}$ by (4) and (2.9) (2). But $q(-m, x)=0$ or ρ by (2.4) (1). Hence $Q(C(H))$ $=\{0, \rho\}$.

Proof of Theorem 1.1. Recall that if $|M|=1$, we have already proved the result in Corollary 2.2. For $|M|>1$, we first show that $D\langle 1, m h\rangle \subseteq$ $D\langle 1, m\rangle$, for every $h \in H$. Let $x \in D\langle 1, m h\rangle$. Then $q(x,-m h)=0$,
hence, $q(x,-m)=q(x, h)$. If $q(x,-m)=0$, then $x \in D\langle 1, m\rangle$ as desired. If $q(x,-m) \neq 0$, then $q(x,-m)=\rho$ by (2.4) (1). Consequently, $q(x, h)=$ ρ and thus $\rho \in Q(H)$, contradicting our basic assumption. Now, to prove that $G=H \times{ }_{w} C(H)$, we need only show that statement (1) of (1.3) is satisfied. Let $x \in G$. We must show $x H_{x} \cap C(H) \neq \varnothing$. By (2.12) (2), $x=h c$ for some $h \in H, c \in C(H)$. By (2.12) (4) and (2.9) (2), $c \in-M \cup$ $\{1\}$. If $c=1$, then $x=h$; clearly $1 \in x H_{x} \cap C(H)$. Suppose then that $c \in-M$. Write $c=-m$, for some $m \in M$. Then $x=h c=-h m$. Since $x h \in C(H)$; it suffices to show that $x h \in x H_{x}$. That is, we will show $h \in H_{x}$. Let $y \in D\langle 1,-x\rangle=D\langle 1, h m\rangle$. By the first part of our proof we see that $y \in D\langle 1, m\rangle \cap D\langle 1, h m\rangle \subseteq D\langle 1,-h\rangle$. Consequently, $D\langle 1,-x\rangle$ $\subseteq D\langle 1,-h\rangle$ and $h \in H_{x}$. Finally, by (2.12) (5) we see that $C(H)$ is a local factor.

To illustrate the use of (1.1) we close with a proof of a result due to Kaplansky [2].

Corollary 2.13. If $|G|>1$ and $i(a)=2$, for every $a \in G-\{-1\}$, then $|Q(G)|=2$.

Proof. Let $a \in G$. We have $M(a)=\{m \in G \mid D\langle 1, m\rangle \neq D\langle 1, a\rangle\} \cup$ $\{a\}$. Notice that if $-1 \neq g \in G-M(a)$, then $D\langle 1, g\rangle=D\langle 1, m\rangle$, for some $m \in M(a)$. Hence $H(a)=\bigcap_{m \in M(a)} D\langle 1, m\rangle=\bigcap_{g \in G} D\langle 1, g\rangle=$ $\{1\}$, since R is non-degenerate. Thus $C(H)=\bigcap_{h \in H(a)} D\langle 1,-h\rangle=G$. Clearly a is a local element, so (1.1) implies $|Q(G)|=|Q(C(H))|=2$.

References

1. A. Carson and M. Marshall, Decomposition of Witt rings, Can. J. Math. 34 (1982), 1276-1302.
2. I. Kaplansky, Fröhlich's local quadratic froms, J. Reine Angew. Math. 239 (1969), 74-77.
3. M. Marshall, Abstract Witt Rings, Queen's Papers in Pure and Applied Math. No. 57, Queen's Univ. Kingston, Ontario, Canada (1980).
4. -, Intersection properties of value groups of quadratic form schemes, preprint. 5. J. Yucas, Witt rings and associated Boolean rings. J. Algebra 71 (1981), 40-49.
