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LOCAL FACTORS OF FINITELY GENERATED WITT RINGS 

ROBERT FITZGERALD AND JOSEPH YUCAS 

ABSTRACT. The Witt rings considered here are the abstract Witt 
rings in the sense of Marshall [3]. A local Witt ring is one with a 
unique non-trivial 2-fold Pfister form. Our main result gives neces
sary and sufficient conditions for a finitely generated Witt ring to 
be a product (in the category of Witt rings) of two Witt rings, one of 
which is local. The basic motivation is to develop a tool for the 
study of whether every finitely generated Witt ring is of elementary 
type (that is, can be built from local Witt rings Z/4Z and Z/2Z 
by a succession of products and group ring extensions), cf. [3; 
problem 4, p. 123]. 

1. Introduction. R will always denote a non-degenerate finitely generated 
Witt ring and G will be the multiplicative subgroup of one-dimensional 
forms in R. The category of Witt rings is equivalent to the category of 
quaternionic structures and also to that of the quaternionic schemes 
defined in [1]. We let q denote the quaternionic mapping associated with 
R. For aeG, Z)<1, a} = {be G\q(b, -a) = 0} is the value set of the 
form <1, a}', i(a) will denote the index of Z)<1, a} in G. For a subset K 
of G, we let Q(K) = {q(k, x) \ k e K, x e G}. If K = {k}, we write Q(k) 
for Q(K). We will be mainly concerned with the existence of elements 
a e G such that i(a) — 2, equivalently, such that \Q( — a)\ = 2. 

For Witt rings i?x and R2 we let Rx x w R2 denote the product of-Ri 
and R2 in the category of Witt rings. We say Rx is a local factor of R if 
R = Ri x w R2 with Rt a local Witt ring. C2 denotes the group of order 2 
and R[C2] denotes the group ring of C2 with coefficients in R. Details on 
products and group rings of Witt rings may be found in [3]. 

For a e G, we let M(a) = {me G\i(m) = 2, i( — am) = 2 and Z><1, m) 
# Z)<l,fl>} U {a}y and we let H(a) = f]mŒM(a)

 D0> ™>- W e saY a i s a 

local element if i(a) = 2 and p 4 Q(H(a))9 where p is the unique non-
trivial element in Q(-a). The main goal of this paper is to prove the 
following 

THEOREM 1.1. Let R be a finitely generated non-degenerate Witt ring. 
R has a local factor if and only if R has a local element. 

We take a moment here to motivate our definition of local element. 
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The Witt rings of elementary type which contain an element a with i(a) = 
2 are of two types. 

1. R x w L, where R is of elementary type and L is local. Here we can 
choose a to be any element of the form ( — 1, x), x # — 1. 

2. R x S[C2], where R is of elementary type and S is degenerate with 
\GS\ > 2. Here we can choose a to be any element of the form (— 1, —x) 
with x 7e 1 and in the radical of S. 

Thus to classify Witt rings with local factors a further condition on a 
is needed to distinguish between these two types. The element p <£ Q(H(a)) 
does just that. In the first case H(a) = GR and —aeGL so clearly p$ 
Q(H(a)). In the second case, H(a) = GR x Gs thus —aeH(a) and p e 
Q(H{a)). 

§2 is devoted to the proof of (1.1). We close this section with a pre
liminary result which characterizes the subgroups of G which yield Witt 
ring factors of R. For a subgroup H of G, we let C(H) = H ÏIŒHDO, — Ä> 
= {keG\H £ Z)<1, -&>}. 

LEMMA 1.2. Lef H be a subgroup of G. 

0 // s c(C(/0). 
ii) If G = H - C(H), then H f] C(H) = {1} and H = C(C(H)). 
iii) If heH, keC{H\ then Z)<1, hk} Ç] H = Z><1, h} f] H and 

/)<i, M > n c(#) = z><i, *> n c(#). 
PROOF, i). If keC(H), then / / s Z><1, - * > ; hence # £ n*=c(tf) 

£><1, _Jfc> = C(C(//)). 
ii). Let x e # fi C(#). Then JC e C(//) and x e C(C(H)) and so 77, 

C(H) £ D<1, - x > . But then G = H - C(H) £ Z><1, -JC> and i* non-
degenerate implies x = 1. To show H = C(C(H)\ let jc e C(C(H)) and 
write x = hk, heH, ke C(H). Then C(i/) £ Z><1, -Aifc> and C(#) <= 
Z)<1, -A>, hence, C(//) £ Z)<1, -&>. But / / £ Z)<1, - £ > , thus, G = 
/ / • C(H) £ Z><1, — &>. Since R is non-degenerate, & = 1 and x e H. 

iii). Let h! eH. Since k e C{H\ A'eZ><l, -k}. Consequently A'e 
Z)<1, AA:> if and only if h! e D<1, A>. Similarly if jfc' 6 C(//), then it' e 
£><1, -A>; thus, A:'e/)<1, A&> if and only i f /c 'eD<l, fc>. 

We introduce more notation. If Z)<1, — x} £ D<1, ~^> we write 
x ^ j , and for a subgroup H of G we set Hx= {he H\x S h}. As in [4], 
the radical of an x e G is defined by rad(x) = {y e G\x ^ y] = Pi 2<=D<I,-*> 
Z><1, - z> . Notice that i/x = rad(x) fl # , and if i / = D<1, -jc> ,then 
C(H) = rad(x). 

THEOREM 1.3. For a subgroup H of G the following statements are equi
valent : 

(1) For all xeG, xHx Ç] C(H) # 0 ; 
(2) For all x e G, xH f] rad(jc) fi C(7f) # 0 ; 
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(3) For all y e G, xeDO, y} implies xH f] DO, y> fi C(H) * 0 ; 
and 

(4) The collections {DO, A> fi H\heH) and {DO, Jfc> fl C(//)| 
A: 6 C(//)} ûfre quaternionic schemes on H and C(H), respectively, yielding 
Witt rings /?! and R2 such that R ^ Ri x w R2. 

PROOF. (1) => (2). Since //* = rad(jc) fi H we have x/7, = x(rad(x) fi 
/ / ) = rad(x) fi xH. (2) now follows from (1). 

(2) => (3). Let y e G and x e DO, >>>. Notice that rad(x) = rUaej><i,-*> 
/)<15 z> = n*GD<i,«> ^<1> z>- By (2), there is an h e H such that xhe 
rad(x) H C(H). Since xeZ)<l, j> and xhe [)x(=D<hz> £<1, *>, we see 
that xhe DO, y). This proves (3). 

(3) => (4). First note that G = H • C(//). Namely, for any j e G, 7 e 
DO, y> and (3) imply that yH f] DO, y> C\ C(H) # 0 . Thus there 
exists Sin he H such that yh e C(H), that is, y e H • C(^). By (1.2) we thus 
also have H fi C(J7) = {1}. 

Let DffO, a) = DO, a} f] H. To show that {DH0, a}\ae H) is a 
quaternionic scheme on H we must show, for all a, b, c, de H: 

i) aeZ>ff<l, a>; 
ii) There is an a e H such that x e DH0, a} => aae DH0, <xx} ', and 

iii) bDH0,cca} fi £ /Kl , <*ac> fi dDH0, ccc} # 0 => <*/>#<l, «*> 
fi D//<1, aM> fi c D ^ l , a</> * 0 . 

(i) is obvious. For (ii), since — 1 e G = H • C(H) we may write — 1 = 
a/3, with a e H and ß = - a e C(H). Suppose xeDH0,a}; then x, 
a e H Sind -a e DO, -x}. Since - a e C{H\ we have — creD<l, -x} 
Sind thus a a e D < l , —x>, xeDO, — oca}. But aaeH, so — a e D < l , 
— a#> and —ax e DO, —oca}. Consequently, aaeDH0, ocx}. 

To prove (iii) we first make the following 

Claim. For x, y e H, x e DH0, ccy} if and only if x e DO, — >>>. 

Namely, Z)<1, -y} fl # = Z><1, a/3}>> fi # = /><1, ^ > f] # by 
(1.2) (iii). 

Thus bDO, - * > f] # 0 , ~ ^ > H <Ü?<1, - c > # 0 . Since (iii) 
holds for G, there exists yeaDO, - * > fi £<1, - W > fl cZ)<l, -<*>. 
Since ye DO, — bd} we have, by (3), that there exists an h e H with 
yheDO, -bd} fl C(J/). Consequently, h e DO, -bd> and yheDO, 
— z>, for all zGi / . Now, ^a, j/z e Z><1, -Z>>, hence ah e DO, — by. 
Also, yc, yheDO, -d}, hence che DO, -d}. This shows ^D<1, -&> 
fi DO, -bd} Ç] cDO, -dy fi H # 0 . The Claim then implies (iii). 

To show {DO, k} fi C(//)|& e C(#)} is a quaternionic scheme on 
C(H), it suffices to show C(H) satisfies (3). Multiplying, (3) applied to 
H, by x yields H f] DO, y> PI x C(H) * 0 . Since H s C(C(#)) by 
(1.2), (3) holds for C(H). 
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Now we have G = H x C(H) as groups and the distinguished element 
of C(H) is ß = — a, where a is the distinguished element of H. So it re
mains to show only that D< 1, y} = DH{ 1, y} • DC{H) < 1, y}, for all j e G . 
Let ZGZ)<1 , J>>. By (3), z// f] D(l, y} fi C(#) ^ 0 so there exists 
an h G H with /z G /XI , >>>, zheD(\, y} and z/* G C(//). Consequently 
z = /z(z/z), /* G D^<1, y}, and z/z G DCŒ)(l, y}. And, finally, if /z e Z)#<1, 
y} and /: G Z>C(#) <1, y}, then clearly M G £><1, J>>. 

(4) => (1). For an x G G, (4) implies * = M, for some he H, ke C(H). 
Notice that k = xhe xH f| C(/f), so it suffices to show that Z)< 1, - x} 
ç £<1, -A>. Now Z)<1, - x > = D(\, -hk} = DH0, ~hk}Dc{H) 

<1, —hk}, by (4). Let z e D ( l , — JC>. Write z = zxz2 where zi G 
D{\, -*£> fi / / and Z 2 G£><1, -hk} f] C(H). Now z2 G D(H) implies 
z2 G D(\, -A>, and zxeH ^ C(C(H)\ by (1.2), implies zx G Z)<1, -&>. 
Thus zieZ><l, - £ > fi £<1, -A&> c £><1, -h}, and so z = zxz2 G 
/><1, -h}. 

2. Local elements and local factors. Throughout, we fix a local element 
a eG. We will write M for M(#) and H for //(#). We begin with the case 
\M\ = 1. 

PROPOSITION 2.1. If M = {a}, then - 1 £ Z><1, a} and Z)<1, #> = 

PROOF. If — 1 e D(\, Û>, then a cannot be a local element, since —ae 
D<1, a) = H=>peQ(H). Hence — 1£D<1, a}. Assume there exist 
xeD(\, 0>and ye Z)<1, x> with y$D(l, a}. We have <l, a} ^ 
<JC, xa), <1, x} Ä <>>, jcy>. Since /(#) = 2 and - 1 <£ D<1, #>, <1, 1, 
a, a} ^ <1, a, —7, — #y>. On the other hand <1, 1, a, a} ^ <1, a, x, xa} 
Ä <a, XÖ, 3;, xy>. Thus <1, a, - j , -ßy> ~ <a, xa, >>, xy>; hence, <1, 
a, — xy, —xa} ^ (y, y, ay, a}. Upon multiplying by ya, we obtain 
(ya, y, —xa, —xy} c~ <a, a, 1, j ) . After cancelling <j> we see that ya 
is represented by the pure part of < 1, # » . Consequently, p = #( — 1, 
— A) = #(—jtf, z), for some Z G C . NOW —yaeD(l,a} = H; thus pe 
Q(H), contradicting the fact that a is a local element. 

COROLLARY 2.2. If M = {a}, then R ^ Z x w S for some nondegenerate 
Witt ring S. 

PROOF. Let K= {1, -a). We show first that (1.3) (3) is satisfied. 
Notice that C(K) = £><1, a}. Let >> G G, xeZ) ( l , ^>. If XGZ><1, a>, 
then clearly xexK fl £><1, ^> fì #<1, «>. Suppose x £ D<1, a>. By 
(2.1), —1 £D<1, Û>, and, since i(a) = 2, we have — JCGZ)<1, a>. Now 
- ^ G Z ) < 1 , -JC>, so - j e Z ) < l , a> by (2.1). Consequently, -xaexK fl 
>̂<U ^> fl ^KU «>• Now since q(-a, -a) ^ 0, it follows from [3, 

p. 42, Case 4] that the Witt ring associated with K is Z. 
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The statement and proof of (2.2) are implicit in [5, 3.3]. 
From this point on we assume M =£ {a}, that is we assume \M\ > 1. 

We begin a study of the structure of M. 

LEMMA 2.3. Let G be an arbitrary group with subgroups Hx, H2, H3 of 
index 2. JfHx fl H2 = Hx f] H3 and H2 # //3, then G=H1{J H2{J Hs. 

PROOF. Suppose g e G with g <£ Hx [} H2 U H3. We show H2 = H3, 
contradicting our hypothesis. Let h e H2. If he Hi, he Hx f] H2 £ H3. 
If h <£ Hi, then gh e Hx. Notice that gh $ H3, for, otherwise, gh e Hx [\ 
H3 £ H2, implying that g e H2. Consequently, h = g(gh) e H3 and H2 ç 
H3. Since H2 and / /3 are subgroups of the same index, H2 = H3. 

LEMMA 2.4. Let m, m! e M, m ^ m'. 7%^«: 

(1) Q(-m) = ß ( - a ) = ß ( - m ' ) ; 
(2) Z)<l,m> # Z><l,/w'>; 
(3) i(-mm') = 2; #ra/ 
(4) G = £><1, m> U DO, " O U /><1, - W M ' ) . 

PROOF. TO prove (1), it suffices to show that Q(~m) = Q(-a). Clearly 
we may assume m ^ a. Since me M, i(a) = /(m) = i( — am) = 2, D<1, 
- a m ) H DO, a> = £<U -*"*> fi #<1, ™> and Z)<1, a} ^ DO, 
m). By (2.3), G = Z)<1, a> U DO, ™> U £<1, -amy. Since G is not 
the union of two proper subgroups, there exists x$ DO, a> U DO, my, 
xG Z)<1, —am}. This implies that #(x, — #) # 0 , q(x, —m)^0 and g(x, 
örm) = 0. But q(x, am) = 0 forces q(x, —a) = q(x, —m). Since i(a) = 
i(m) = 2, | ß ( - ö ) | = |fi(-/w)| = 2; hence, ß ( - a ) = Q(-m). To prove 
(2) and (3), notice that \Q(-m) f] Q(-m')\ = 2, so by [3, 5.2], DO, 
m) fl £<1, m'y has index 2 in DO, -mm'}. Since Z)<1, m> fl DO, 
m'y has index 2 or 4 in G, this forces £><1, m> fl ^KU w '> t 0 have index 
4 in G and thus DO, —mm'y must have index 2 in G. Statement (4) now 
follows from (2), (3) and (2.3). 

LEMMA 2.5. Let x1? x2, x3eG and suppose: 
(a) i'(*i) = i(x2) = /(x3) = 2; 
(b) / ( - x ^ ) — i'(-*i*3) Ä *(•—*2*3) = 2; «wrf 
(c) Z)<1, x,-> # DO, */>, for 1 # 7. 

jHÄe/Z / ( x ^ ^ ) ^ 2. 

PROOF. Since DO, *i> fl DO, -x2x3y c Z><1, x ^ x s ) we have 
1(̂ 1̂ 2-̂ 3) ^ 4- Assume /(X]X2x3) = 4. In this case D<1, X]X2x3> = 
DO, *i> fl DO, -X2*ù, so, in particular, DO, *i*2*3> s Z><1, *i>. 
Similarly, DO, *i*2*3> - DO, x2> an<i DO, *i*2*3> ^ DO, *ù-
By (c), we get DO, *i*2-X3> = DO, •**•> f) DO, */>> f° r ' ^ j . But then 
Z)<1, xx> fl DO, *2> = /><1, *i> fl /><1, *3>, so, by (2.3), G = /)<!, 
*i> U DO, *2> U DO J *3>- Since G is not the union of two proper 
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subgroups, there exists g e DO, x3>, g$DO, xx> U DO, x2>. Recall 
that DO, jd> H DO, -x2x3y = DO, *i*2*3> = DO, x{> H DO, 
x2y. Also, DO, -x2x3y # DO, x2y, else D<1, x3> = DO, *2>; by 
(2.3), G = Z><1, JCI> U DO, x2y U 0<1, -x2x3y. Consequently, g e 
DO, -x2x3y. Then g e DO, x3y fl DO, ~x2xsy Ç DO, x2y, a con
tradiction. 

LEMMA 2.6. Lef x9 y, z G G, z 7e — *y, vw'/A /(x) = /(>>) = /(z) = i( — yz) 

= 2. //£><!, -*;>> = DO, z>, then DO, xy = DO, >̂> = DO, z}. 

PROOF. If DO, ^> = DO, z>, then DO, J> = ^<1 , - ^ > = 
DO,*y, s o assume Z)<l,.y> + /><l,z>. Also, DO, z} = Z)<1, -*>>> fl 
Z><1, z> ç Z><1, xyz>; thus Z)<1, z> = £><1, xyz>, since i(z) = 2 and 
z * -xy. Now, Z)<1, -j/z> fi DO, J> = #<1, - J*> (1 J><1, *>; 
thus, by (2.3), G = Z)<1, yy U /><1, ^> U DO, -yz\ Consequently, 
Do,xy = DO, xy n DO, yy u DO, xy n /><i, zy u /><i, *> n 
DO, -yz>- Now Z)<1, x> fi DO, yy ^ DO, -xyy = DO,z> and 
DO,xy n DO, -yzy <= z><i, xyz> = z><i, z>, soz><i, xy <= z)<i, z>. 
Since /(*) = /(z), Z)<1, x> = DO, ^> and £><1, x> = Z)<1, -xy> = 
DO, yy, a contradiction. 

LEMMA 2.7. Le/ m b w2 e M. Then 
(1) -m1m2e M [) {- 1); am/ 
(2) am1m2eM U {-1}. 

PROOF. (1). First note that if mx = m2, then —m1m2 = — 1 G M U 
{ — 1). If mi = 0 and m2 # tf, then i( — mim2) = i( — am2) = 2, since 
m2 e M and i(amxm2) = /(/w2) = 2. If Z)<1, —mxm2y = DO, <*), then 
Z><1, —am2y = D<1» û ) = ^O? w2)> a contradiction. So in this case, 
(1) is true. Similarly, if w^ ^ a and ra2 = a, the result is true. If —mim2 = 
a, then clearly — mxm2 G M so we may assume that m\ # w2, ni\ ^ #, 
m2 ^ a and —mitn2 ^ tf. By (2.4) (3), i( — niim2) = 2. Notice that /(a) = 
/(fii) = i{m2) = 2, i(-ami) = i( — am2) = i( — mxm2) = 2 and Z><1, #> # 
D<1, mx>, DO, ay * DO, m2), and by (2.4) (2), £><1, i ^ ) # Z)<1, m2>. 
So by (2.5), i(amim2) ^ 2. But if i{am\m2) = 1, then —mim2 = a, con
tradicting our assumption; thus, i(amim2) = 2. If DO, —mim2y = 
DO, ay, then DO, mù = DO, mù, by (2.6), a contradiction. Hence 
i{ — m\m2) — 2, i(amim2) = 2, and Z)<1, —m\m2y ^ DO, ay, s o —m\m2 e 
M. 

(2). By (1), —mim2eM [} {—1}. If —mi?n2 = — 1, then aniim2 — 
aeM. If —mim2eM, then amxm2 — —(a)( — m1m2) e M \J {—1}, by 
(1). 

PROPOSITION 2.8. (1) lfmx, m2, . . ., m2n+i G M (J {-1] , //ze« mx- m2> 
. . . .m 2 f f + 1 GMU {-1}. 
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(2) If mi, m2, . . ., m2n e M \J {- 1}, then -m1 • m2 m2n e M U 

{ - i } -
PROOF. (1). It sufficies to do the case n = 1, for then mx • m2- • • • 

•m2n+i = (m1w2m3)m4 #*2»+i is a product of (In — 1) elements of 
M U {— 1}. Thus we must show m1m2m3 e M U {—1}. First notice that 
we may assume that the m{ are distinct, for otherwise it is trivial. We may 
also assume that m{ ^ a, i = 1, 2, 3, since then mim2m$ e M [j {—1} 
by (2.7) (2). Further, we may assume mx # — m2m3, since then —1 = 
m1m2m36M U {—1}. Finally, we may assume that mf- ̂  — 1, for then 
the result is either trivial or follows from (2.7) (1). Now, by (2.4) (2) 
and (3), z(-m,m ;) = 2 and Z)<1, m,-> ̂  Z)<1, my>, for / ^ / By (2.5), 
with je,- = m/, i(mim2m3) g 2. Strict inequality holds only if mx = — ra2m3 

which we are assuming is not so, thus i(m\m2m^) = 2. We now want to 
apply (2.5) with x{ — —ami. Now w,- ̂  a, so #,- e M by (2.7) (1). Also 
Xi ^ a, since mt• ¥> — 1. Applying(2.5), we get i( — am\m2m^) '<£ 2. Again, 
/(-amim2m3) = 2, else mim2m3 = ae M. It remains only to show that 
£><1, mim2mzy ^ Z)<1? a>. If this is not so, then, by (2.6), D<1, m{) = 
<1, —m2ms} = Z><1, a>, a contradiction. 

(2). Again it suffices to do only the case « = 1, for then — wx • m2 • • • • 
•m2w = ( — mim2)ms m2n which is a product of (In — 1) elements 
of M U {-1} and by (1) must be in M U {-1}. If mx, m2 e M, then 
-mxm2eM jj {-1} by (2.7) (1). If rax = - 1 and/or m2 = - 1 , the 
result is trivial. 

PROPOSITION 2.9. (1) M2 is a subgroup of G. 
(2) M2 = -M U {1}. 

PROOF. (1). Let m\m2, m^m^ e M2. Then (mim2) (m3m4) = mx(m2m^m^ e 
M • (M U {-1}) = M2 U - M , by (2.8) (1). Thus it suffices to show 
— M e M2. Let — m e — M. There exists mxeM with mx ^ m (otherwise 
M = {a}, contrary to the assumption made after (2.2)), and so — m = 
mù-mmùeM2 by (2.7) (1). 

(2). As in (1), - M £ M2 and so - M U {1} £' M2. On the other hand, 
- M 2 s M U {-1} by (2.7), so M2 s - M U {!}• 

We turn now to the relationships among M, / / and C(H). 

COROLLARY 2.10. M2 fi H = {1}. 

PROOF. Let JC e M2 fi #• By (2.9) (2) we may assume ~x = m e M. 
Then by (2.4) (1), Q(x) = Q(-a), that is, p e g(x) and x 6 H, contradict
ing our basic assumption. 

For g 6 G, let S(g) = { - m e -M|ge£><l , m » U {1}. 

PROPOSITION 2.11. (1) For each geG, S(g) is a subgroup of M2. 
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(2) S(g)has index ^ 2 in M2 with equality holding if and only if g£H. 
(3) For x,ye -M2,x ^ y, we have S(x) ^ S(y). 

PROOF. (1). Notice that S(g) = (-M{J {1}) f] Z)<1, -g> , so (1) follows 
from (2.9). 

(2). Suppose x, y e M2 — S(g). We show xy e S(g). Clearly we may 
assume x ^ y. Now x, ye -M by (2.9) (2), so g $ Z><1, -x} \J Z><1, 
-y}, and thus geD(l, - •*>>>• Also, — xye M by (2.7) (1); hence, 
*y G Sfe)- T h i s s h o w s t h a t \M2/S(g)\ ^ 2. Notice that M2 = S(g) if and 
only if ge H. 

(3). Suppose »S'(JC) = S(y). Then, for all me M, either x and 7 are in 
Z)<1, m> or x and j> are not in Z><1, m>. Since /(m) = 2, we see that in 
either case xy e D<1, m>; hence, xy e H. Recall that — M2 = M {] {— 1}. 
UxeM &ndy = - 1 , then x e -H Ç] M. By(2.4)(l), Q(-a) = Q(-x), 
and then p e Q( — x) and —x e H, contradicting our basic assumption. If 
xeM and y e M, then xy e M2 f| / / = {1), by (2.10), again a con
tradiction. 

We thank M. Kula for simplifying an earlier version of (2.11 (1)). 

PROOOSITION 2.12. (1) G = M2H. 

(2) G = H . C(#). 
(3) # n c(iï) = {i}. 
(4) C(#) = M2. 
(5) Ô(C(i/)) = {0, p}. 

PROOF. (1). Let \M2\ = 2*. By (2.11) (1) (2), {S(jc)|jce -M2} is a col
lection of 2k distinct subgroups of M2, all of index ^ 2. Since there are 
only 2k — 1 subgroups of index 2 in M2, the collection (S(x)|x G —M2} 
consists of all subgroups of M2 of index ^ 2. Now let g G G. Then 5(g) 
is a subgroup of M2 of index ^ 2. Hence there exists x e - M2 such that 
S(g) = 5(x). But then, as in the proof of (2.11) (3), gx e H. Consequently, 
gexH s -Af 2 #. That is, G = -M2H and so G = Af2#. 

(2). M2 = - M U {1} by (2.9) (2). Thus if xeM2, H £ £<l , _*> 
and so x e C(H). That is, M2 s C(^). Hence (2) follows from (1). 

(3). This follows from (2) by (1.2). 
(4). We have shown M2 <= C(H). Parts (2) and (3) imply \G\ = \H\ • 

\C(H)\. If M2 # C(#), then |G| > | # | • |M2|, which contradicts (1). 
(5). Q(C(H)) = {q(c, x)\ce C(H\ xeG} = {q(-m, x)\me M, xeG} 

by (4) and (2.9) (2). But q( - m, x) = 0 or p by (2.4) (1). Hence Q(C(H)) 
= {0, pi 

PROOF OF THEOREM 1.1. Recall that if \M\ = 1, we have already proved 
the result in Corollary 2.2. For \M\ > 1, we first show that D<1, mh} £ 
Z)<1, m>, for every h e H. Let x e Z)<1, mh}. Then q(x9 -mh) = 0, 
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hence, q(x, —m) — q(x, h). If q(x, — m) = 0, then x e Z)<1, rrC) as desired. 
If q(x, -m) # 0, then #(.*, -m) = p by (2.4) (1). Consequently, q(x, h) = 
p and thus p e ß( / / ) , contradicting our basic assumption. Now, to prove 
that G — H xw C(H), we need only show that statement (1) of (1.3) 
is satisfied. Let xe G. We must show xHx fl C(H) # 0 . By (2.12) (2), 
A- = Äc for some heH.ee C(H). By (2.12) (4) and (2.9) (2), ce -M [j 
{{}. If c = 1, then x = A; clearly 1 exHx f] C(H). Suppose then that 
e e — M. Write c = — m9 for some me M. Then x — he — — km. Since 
x/z e C(//) ; it suffices to show that xh e xHx. That is, we will show h e Hx. 
Let yeD(l, — x} = D<1, /*m>. By the first part of our proof we see 
that y e D(\, m} Ç) D(\, hm} c i)<l, -/*>. Consequently, Z><1, - x > 
e D<1, -A> and heHx. Finally, by (2.12) (5) we see that C(H) is a 
local factor. 

To illustrate the use of (1.1) we close with a proof of a result due to 
Kaplansky [2]. 

COROLLARY 2.13. If \G\ > 1 and i(d) = 2, /<?r every 0 e G - {-1}, 
then \Q(G)\ = 2. 

PROOF. Let a eG. We have M(a) = {me G|Z><1, wi> # Z><1, a » U 
{a}. Notice that if - 1 ^ g e G - M(a), then Z)<1, £> = Z)<1, ra>, for 
some meM(a). Hence #(a) = fLeM («)#<!, ™> = fl^ec #<*, £> = 
{1}, since R is non-degenerate. Thus C(H) = PAGÊ O*) ^O» "^> = G. 
Clearly a is a local element, so (1.1) implies \Q(G)\ = |ö(C(/f))l = 2. 
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