LOCAL FACTORS OF FINITELY GENERATED WITT RINGS

ROBERT FITZGERALD AND JOSEPH YUCAS

ABSTRACT. The Witt rings considered here are the abstract Witt rings in the sense of Marshall [3]. A local Witt ring is one with a unique non-trivial 2-fold Pfister form. Our main result gives necessary and sufficient conditions for a finitely generated Witt ring to be a product (in the category of Witt rings) of two Witt rings, one of which is local. The basic motivation is to develop a tool for the study of whether every finitely generated Witt ring is of elementary type (that is, can be built from local Witt rings Z/4Z and Z/2Z by a succession of products and group ring extensions), cf. [3; problem 4, p. 123].

1. Introduction. R will always denote a non-degenerate finitely generated Witt ring and G will be the multiplicative subgroup of one-dimensional forms in R. The category of Witt rings is equivalent to the category of quaternionic structures and also to that of the quaternionic schemes defined in [1]. We let q denote the quaternionic mapping associated with R. For $a \in G$, $D\langle 1, a \rangle = \{b \in G | q(b, -a) = 0\}$ is the value set of the form $\langle 1, a \rangle$; i(a) will denote the index of $D\langle 1, a \rangle$ in G. For a subset K of G, we let $Q(K) = \{q(k, x) | k \in K, x \in G\}$. If $K = \{k\}$, we write Q(k) for Q(K). We will be mainly concerned with the existence of elements $a \in G$ such that i(a) = 2, equivalently, such that |Q(-a)| = 2.

For Witt rings R_1 and R_2 we let $R_1 \times_w R_2$ denote the product of R_1 and R_2 in the category of Witt rings. We say R_1 is a local factor of R if $R \cong R_1 \times_w R_2$ with R_1 a local Witt ring. C_2 denotes the group of order 2 and $R[C_2]$ denotes the group ring of C_2 with coefficients in R. Details on products and group rings of Witt rings may be found in [3].

For $a \in G$, we let $M(a) = \{m \in G | i(m) = 2, i(-am) = 2 \text{ and } D \langle 1, m \rangle \neq D \langle 1, a \rangle \} \cup \{a\}$, and we let $H(a) = \bigcap_{m \in M(a)} D \langle 1, m \rangle$. We say *a* is a local element if i(a) = 2 and $\rho \notin Q(H(a))$, where ρ is the unique non-trivial element in Q(-a). The main goal of this paper is to prove the following

THEOREM 1.1. Let R be a finitely generated non-degenerate Witt ring. R has a local factor if and only if R has a local element.

We take a moment here to motivate our definition of local element.

Received by the editors on August 27, 1984 and in revised form on December 7, 1984. Copyright © 1986 Rocky Mountain Mathematics Consortium

The Witt rings of elementary type which contain an element a with i(a) = 2 are of two types.

1. $\mathbb{R} \times_{w} L$, where R is of elementary type and L is local. Here we can choose a to be any element of the form (-1, x), $x \neq -1$.

2. $R \times S[C_2]$, where R is of elementary type and S is degenerate with $|G_S| > 2$. Here we can choose a to be any element of the form (-1, -x) with $x \neq 1$ and in the radical of S.

Thus to classify Witt rings with local factors a further condition on a is needed to distinguish between these two types. The element $\rho \notin Q(H(a))$ does just that. In the first case $H(a) = G_R$ and $-a \in G_L$ so clearly $\rho \notin Q(H(a))$. In the second case, $H(a) = G_R \times G_S$ thus $-a \in H(a)$ and $\rho \in Q(H(a))$.

§2 is devoted to the proof of (1.1). We close this section with a preliminary result which characterizes the subgroups of G which yield Witt ring factors of R. For a subgroup H of G, we let $C(H) = \bigcap_{h \in H} D\langle 1, -h \rangle$ = $\{k \in G | H \subseteq D\langle 1, -k \rangle\}$.

LEMMA 1.2. Let H be a subgroup of G.

i) $H \subseteq C(C(H))$.

ii) If $G = H \cdot C(H)$, then $H \cap C(H) = \{1\}$ and H = C(C(H)).

iii) If $h \in H$, $k \in C(H)$, then $D\langle 1, hk \rangle \cap H = D\langle 1, h \rangle \cap H$ and $D\langle 1, hk \rangle \cap C(H) = D\langle 1, k \rangle \cap C(H)$.

PROOF. i). If $k \in C(H)$, then $H \subseteq D\langle 1, -k \rangle$; hence $H \subseteq \bigcap_{k \in C(H)} D\langle 1, -k \rangle = C(C(H))$.

ii). Let $x \in H \cap C(H)$. Then $x \in C(H)$ and $x \in C(C(H))$ and so H, $C(H) \subseteq D\langle 1, -x \rangle$. But then $G = H \cdot C(H) \subseteq D\langle 1, -x \rangle$ and R nondegenerate implies x = 1. To show H = C(C(H)), let $x \in C(C(H))$ and write x = hk, $h \in H$, $k \in C(H)$. Then $C(H) \subseteq D\langle 1, -hk \rangle$ and $C(H) \subseteq$ $D\langle 1, -h \rangle$, hence, $C(H) \subseteq D\langle 1, -k \rangle$. But $H \subseteq D\langle 1, -k \rangle$, thus, G = $H \cdot C(H) \subseteq D\langle 1, -k \rangle$. Since R is non-degenerate, k = 1 and $x \in H$.

iii). Let $h' \in H$. Since $k \in C(H)$, $h' \in D\langle 1, -k \rangle$. Consequently $h' \in D\langle 1, hk \rangle$ if and only if $h' \in D\langle 1, h \rangle$. Similarly if $k' \in C(H)$, then $k' \in D\langle 1, -h \rangle$; thus, $k' \in D\langle 1, hk \rangle$ if and only if $k' \in D\langle 1, k \rangle$.

We introduce more notation. If $D\langle 1, -x \rangle \subseteq D\langle 1, -y \rangle$ we write $x \leq y$, and for a subgroup H of G we set $H_x = \{h \in H | x \leq h\}$. As in [4], the radical of an $x \in G$ is defined by $\operatorname{rad}(x) = \{y \in G | x \leq y\} = \bigcap_{z \in D\langle 1, -x \rangle} D\langle 1, -z \rangle$. Notice that $H_x = \operatorname{rad}(x) \cap H$, and if $H = D\langle 1, -x \rangle$, then $C(H) = \operatorname{rad}(x)$.

THEOREM 1.3. For a subgroup H of G the following statements are equivalent:

(1) For all $x \in G$, $xH_x \cap C(H) \neq \emptyset$;

(2) For all $x \in G$, $xH \cap rad(x) \cap C(H) \neq \emptyset$;

(3) For all $y \in G$, $x \in D\langle 1, y \rangle$ implies $xH \cap D\langle 1, y \rangle \cap C(H) \neq \emptyset$; and

(4) The collections $\{D\langle 1, h\rangle \cap H | h \in H\}$ and $\{D\langle 1, k\rangle \cap C(H) | k \in C(H)\}$ are quaternionic schemes on H and C(H), respectively, yielding Witt rings R_1 and R_2 such that $R \cong R_1 \times_w R_2$.

PROOF. (1) \Rightarrow (2). Since $H_x = \operatorname{rad}(x) \cap H$ we have $xH_x = x(\operatorname{rad}(x) \cap H) = \operatorname{rad}(x) \cap xH$. (2) now follows from (1).

(2) \Rightarrow (3). Let $y \in G$ and $x \in D\langle 1, y \rangle$. Notice that $\operatorname{rad}(x) = \bigcap_{z \in D\langle 1, -x \rangle} D\langle 1, z \rangle = \bigcap_{x \in D\langle 1, z \rangle} D\langle 1, z \rangle$. By (2), there is an $h \in H$ such that $xh \in \operatorname{rad}(x) \cap C(H)$. Since $x \in D\langle 1, y \rangle$ and $xh \in \bigcap_{x \in D\langle 1, z \rangle} D\langle 1, z \rangle$, we see that $xh \in D\langle 1, y \rangle$. This proves (3).

(3) \Rightarrow (4). First note that $G = H \cdot C(H)$. Namely, for any $y \in G$, $y \in D \langle 1, y \rangle$ and (3) imply that $yH \cap D \langle 1, y \rangle \cap C(H) \neq \emptyset$. Thus there exists an $h \in H$ such that $yh \in C(H)$, that is, $y \in H \cdot C(H)$. By (1.2) we thus also have $H \cap C(H) = \{1\}$.

Let $D_H \langle 1, a \rangle = D \langle 1, a \rangle \cap H$. To show that $\{D_H \langle 1, a \rangle | a \in H\}$ is a quaternionic scheme on H we must show, for all $a, b, c, d \in H$:

i) $a \in D_H \langle 1, a \rangle$;

ii) There is an $\alpha \in H$ such that $x \in D_H \langle 1, a \rangle \Rightarrow \alpha a \in D_H \langle 1, \alpha x \rangle$; and

iii) $bD_H\langle 1, \alpha a \rangle \cap D_H\langle 1, \alpha a c \rangle \cap dD_H\langle 1, \alpha c \rangle \neq \emptyset \Rightarrow aD_H\langle 1, \alpha b \rangle$ $\cap D_H\langle 1, \alpha b d \rangle \cap cD_H\langle 1, \alpha d \rangle \neq \emptyset.$

(i) is obvious. For (ii), since $-1 \in G = H \cdot C(H)$ we may write $-1 = \alpha\beta$, with $\alpha \in H$ and $\beta = -\alpha \in C(H)$. Suppose $x \in D_H \langle 1, \alpha \rangle$; then x, $a \in H$ and $-a \in D \langle 1, -x \rangle$. Since $-\alpha \in C(H)$, we have $-\alpha \in D \langle 1, -x \rangle$ and thus $\alpha a \in D \langle 1, -x \rangle$, $x \in D \langle 1, -\alpha a \rangle$. But $\alpha a \in H$, so $-\alpha \in D \langle 1, -\alpha a \rangle$ and $-\alpha x \in D \langle 1, -\alpha a \rangle$. Consequently, $\alpha a \in D_H \langle 1, \alpha x \rangle$.

To prove (iii) we first make the following

Claim. For x, $y \in H$, $x \in D_H \langle 1, \alpha y \rangle$ if and only if $x \in D \langle 1, -y \rangle$.

Namely, $D\langle 1, -y \rangle \cap H = D\langle 1, \alpha\beta y \rangle \cap H = D\langle 1, \alpha y \rangle \cap H$ by (1.2) (iii).

Thus $bD\langle 1, -a\rangle \cap D\langle 1, -ac\rangle \cap dD\langle 1, -c\rangle \neq \emptyset$. Since (iii) holds for G, there exists $y \in aD\langle 1, -b\rangle \cap D\langle 1, -bd\rangle \cap cD\langle 1, -d\rangle$. Since $y \in D\langle 1, -bd\rangle$ we have, by (3), that there exists an $h \in H$ with $yh \in D\langle 1, -bd\rangle \cap C(H)$. Consequently, $h \in D\langle 1, -bd\rangle$ and $yh \in D\langle 1, -c\rangle$. Also, yc, $yh \in D\langle 1, -d\rangle$, hence $ch \in D\langle 1, -d\rangle$. This shows $aD\langle 1, -b\rangle$. $\cap D\langle 1, -bd\rangle \cap cD\langle 1, -d\rangle \cap H \neq \emptyset$. The Claim then implies (iii).

To show $\{D \leq 1, k > \cap C(H) | k \in C(H)\}$ is a quaternionic scheme on C(H), it suffices to show C(H) satisfies (3). Multiplying, (3) applied to H, by x yields $H \cap D \leq 1, y > \cap x C(H) \neq \emptyset$. Since $H \subseteq C(C(H))$ by (1.2), (3) holds for C(H).

Now we have $G = H \times C(H)$ as groups and the distinguished element of C(H) is $\beta = -\alpha$, where α is the distinguished element of H. So it remains to show only that $D\langle 1, y \rangle = D_H \langle 1, y \rangle \cdot D_{C(H)} \langle 1, y \rangle$, for all $y \in G$. Let $z \in D\langle 1, y \rangle$. By (3), $zH \cap D\langle 1, y \rangle \cap C(H) \neq \emptyset$ so there exists an $h \in H$ with $h \in D\langle 1, y \rangle$, $zh \in D\langle 1, y \rangle$ and $zh \in C(H)$. Consequently $z = h(zh), h \in D_H \langle 1, y \rangle$, and $zh \in D_{C(H)} \langle 1, y \rangle$. And, finally, if $h \in D_H \langle 1, y \rangle$ and $k \in D_{C(H)} \langle 1, y \rangle$, then clearly $hk \in D\langle 1, y \rangle$.

(4) \Rightarrow (1). For an $x \in G$, (4) implies x = hk, for some $h \in H$, $k \in C(H)$. Notice that $k = xh \in xH \cap C(H)$, so it suffices to show that $D\langle 1, -x \rangle \subseteq D\langle 1, -h \rangle$. Now $D\langle 1, -x \rangle = D\langle 1, -hk \rangle = D_H \langle 1, -hk \rangle D_{C(H)} \langle 1, -hk \rangle$, by (4). Let $z \in D\langle 1, -x \rangle$. Write $z = z_1 z_2$ where $z_1 \in D\langle 1, -hk \rangle \cap H$ and $z_2 \in D\langle 1, -hk \rangle \cap C(H)$. Now $z_2 \in D(H)$ implies $z_2 \in D\langle 1, -h \rangle$, and $z_1 \in H \subseteq C(C(H))$, by (1.2), implies $z_1 \in D\langle 1, -k \rangle$. Thus $z_1 \in D\langle 1, -h \rangle \cap D\langle 1, -hk \rangle \subseteq D\langle 1, -h \rangle$, and so $z = z_1 z_2 \in D\langle 1, -h \rangle$.

2. Local elements and local factors. Throughout, we fix a local element $a \in G$. We will write M for M(a) and H for H(a). We begin with the case |M| = 1.

PROPOSITION 2.1. If $M = \{a\}$, then $-1 \notin D\langle 1, a \rangle$ and $D\langle 1, a \rangle = \bigcup_{x \in D\langle 1, a \rangle} D\langle 1, x \rangle$.

PROOF. If $-1 \in D\langle 1, a \rangle$, then *a* cannot be a local element, since $-a \in D\langle 1, a \rangle = H \Rightarrow \rho \in Q(H)$. Hence $-1 \notin D\langle 1, a \rangle$. Assume there exist $x \in D\langle 1, a \rangle$ and $y \in D\langle 1, x \rangle$ with $y \notin D\langle 1, a \rangle$. We have $\langle 1, a \rangle \simeq \langle x, xa \rangle$, $\langle 1, x \rangle \simeq \langle y, xy \rangle$. Since i(a) = 2 and $-1 \notin D\langle 1, a \rangle$, $\langle 1, 1, a, a \rangle \simeq \langle 1, a, -y, -ay \rangle$. On the other hand $\langle 1, 1, a, a \rangle \simeq \langle 1, a, x, xa \rangle \simeq \langle a, xa, y, xy \rangle$. Thus $\langle 1, a, -y, -ay \rangle \simeq \langle a, xa, y, xy \rangle$; hence, $\langle 1, a, -xy, -xa \rangle \simeq \langle y, y, ay, a \rangle$. Upon multiplying by ya, we obtain $\langle ya, y, -xa, -xy \rangle \simeq \langle a, a, 1, y \rangle$. After cancelling $\langle y \rangle$ we see that ya is represented by the pure part of $\ll 1, a \gg$. Consequently, $\rho = q(-1, -a) = q(-ya, z)$, for some $z \in G$. Now $-ya \in D\langle 1, a \rangle = H$; thus $\rho \in Q(H)$, contradicting the fact that *a* is a local element.

COROLLARY 2.2. If $M = \{a\}$, then $R \cong \mathbb{Z} \times_{w} S$ for some nondegenerate Witt ring S.

PROOF. Let $K = \{1, -a\}$. We show first that (1.3) (3) is satisfied. Notice that $C(K) = D\langle 1, a \rangle$. Let $y \in G$, $x \in D\langle 1, y \rangle$. If $x \in D\langle 1, a \rangle$, then clearly $x \in xK \cap D\langle 1, y \rangle \cap D\langle 1, a \rangle$. Suppose $x \notin D\langle 1, a \rangle$. By (2.1), $-1 \notin D\langle 1, a \rangle$, and, since i(a) = 2, we have $-x \in D\langle 1, a \rangle$. Now $-y \in D\langle 1, -x \rangle$, so $-y \in D\langle 1, a \rangle$ by (2.1). Consequently, $-xa \in xK \cap$ $D\langle 1, y \rangle \cap D\langle 1, a \rangle$. Now since $q(-a, -a) \neq 0$, it follows from [3, p. 42, Case 4] that the Witt ring associated with K is Z. The statement and proof of (2.2) are implicit in [5, 3.3].

From this point on we assume $M \neq \{a\}$, that is we assume |M| > 1. We begin a study of the structure of M.

LEMMA 2.3. Let G be an arbitrary group with subgroups H_1 , H_2 , H_3 of index 2. If $H_1 \cap H_2 = H_1 \cap H_3$ and $H_2 \neq H_3$, then $G = H_1 \cup H_2 \cup H_3$.

PROOF. Suppose $g \in G$ with $g \notin H_1 \cup H_2 \cup H_3$. We show $H_2 = H_3$, contradicting our hypothesis. Let $h \in H_2$. If $h \in H_1$, $h \in H_1 \cap H_2 \subseteq H_3$. If $h \notin H_1$, then $gh \in H_1$. Notice that $gh \notin H_3$, for, otherwise, $gh \in H_1 \cap H_3 \subseteq H_2$, implying that $g \in H_2$. Consequently, $h = g(gh) \in H_3$ and $H_2 \subseteq H_3$. Since H_2 and H_3 are subgroups of the same index, $H_2 = H_3$.

LEMMA 2.4. Let $m, m' \in M, m \neq m'$. Then: (1) Q(-m) = Q(-a) = Q(-m');(2) $D\langle 1, m \rangle \neq D\langle 1, m' \rangle;$ (3) i(-mm') = 2; and (4) $G = D\langle 1, m \rangle \cup D\langle 1, m' \rangle \cup D\langle 1, -mm' \rangle.$

PROOF. To prove (1), it suffices to show that Q(-m) = Q(-a). Clearly we may assume $m \neq a$. Since $m \in M$, i(a) = i(m) = i(-am) = 2, D < 1, $-am > \cap D < 1$, a > = D < 1, $-am > \cap D < 1$, m > and D < 1, $a > \neq D < 1$, m >. By (2.3), G = D < 1, $a > \cup D < 1$, $m > \cup D < 1$, -am >. Since G is not the union of two proper subgroups, there exists $x \notin D < 1$, $a > \cup D < 1$, m >, $x \in D < 1$, -am >. This implies that $q(x, -a) \neq 0$, $q(x, -m) \neq 0$ and q(x,am) = 0. But q(x, am) = 0 forces q(x, -a) = q(x, -m). Since i(a) = i(m) = 2, |Q(-a)| = |Q(-m)| = 2; hence, Q(-a) = Q(-m). To prove (2) and (3), notice that $|Q(-m) \cap Q(-m')| = 2$, so by [3, 5.2], D < 1, $m > \cap D < 1$, m' > has index 2 in D < 1, -mm' >. Since D < 1, $m > \cap D < 1$, m' > has index 2 or 4 in G, this forces D < 1, $m > \cap D < 1$, m' > to have index 4 in G and thus D < 1, -mm' > must have index 2 in G. Statement (4) now follows from (2), (3) and (2.3).

LEMMA 2.5. Let $x_1, x_2, x_3 \in G$ and suppose: (a) $i(x_1) = i(x_2) = i(x_3) = 2$; (b) $i(-x_1x_2) = i(-x_1x_3) = i(-x_2x_3) = 2$; and (c) $D\langle 1, x_i \rangle \neq D\langle 1, x_j \rangle$, for $i \neq j$. Then $i(x_1x_2x_3) \leq 2$.

PROOF. Since $D\langle 1, x_1 \rangle \cap D\langle 1, -x_2x_3 \rangle \subseteq D\langle 1, x_1x_2x_3 \rangle$ we have $i(x_1x_2x_3) \leq 4$. Assume $i(x_1x_2x_3) = 4$. In this case $D\langle 1, x_1x_2x_3 \rangle = D\langle 1, x_1 \rangle \cap D\langle 1, -x_2x_3 \rangle$, so, in particular, $D\langle 1, x_1x_2x_3 \rangle \subseteq D\langle 1, x_1 \rangle$. Similarly, $D\langle 1, x_1x_2x_3 \rangle \subseteq D\langle 1, x_2 \rangle$ and $D\langle 1, x_1x_2x_3 \rangle \subseteq D\langle 1, x_3 \rangle$. By (c), we get $D\langle 1, x_1x_2x_3 \rangle = D\langle 1, x_i \rangle \cap D\langle 1, x_j \rangle$, for $i \neq j$. But then $D\langle 1, x_1 \rangle \cap D\langle 1, x_2 \rangle = D\langle 1, x_1 \rangle \cap D\langle 1, x_3 \rangle$, so, by (2.3), $G = D\langle 1, x_1 \rangle \cup D\langle 1, x_2 \rangle \cup D\langle 1, x_3 \rangle$. Since G is not the union of two proper subgroups, there exists $g \in D\langle 1, x_3 \rangle$, $g \notin D\langle 1, x_1 \rangle \cup D\langle 1, x_2 \rangle$. Recall that $D\langle 1, x_1 \rangle \cap D\langle 1, -x_2x_3 \rangle = D\langle 1, x_1x_2x_3 \rangle = D\langle 1, x_1 \rangle \cap D\langle 1, x_2 \rangle$. Also, $D\langle 1, -x_2x_3 \rangle \neq D\langle 1, x_2 \rangle$, else $D\langle 1, x_3 \rangle = D\langle 1, x_2 \rangle$; by (2.3), $G = D\langle 1, x_1 \rangle \cup D\langle 1, x_2 \rangle \cup D\langle 1, -x_2x_3 \rangle$. Consequently, $g \in D\langle 1, -x_2x_3 \rangle$. Then $g \in D\langle 1, x_3 \rangle \cap D\langle 1, -x_2x_3 \rangle \subseteq D\langle 1, x_2 \rangle$, a contradiction.

LEMMA 2.6. Let x, y, $z \in G$, $z \neq -xy$, with i(x) = i(y) = i(z) = i(-yz)= 2. If $D\langle 1, -xy \rangle = D\langle 1, z \rangle$, then $D\langle 1, x \rangle = D\langle 1, y \rangle = D\langle 1, z \rangle$.

PROOF. If $D\langle 1, y \rangle = D\langle 1, z \rangle$, then $D\langle 1, y \rangle = D\langle 1, -xy \rangle = D\langle 1, x \rangle$; so assume $D\langle 1, y \rangle \neq D\langle 1, z \rangle$. Also, $D\langle 1, z \rangle = D\langle 1, -xy \rangle \cap D\langle 1, z \rangle \subseteq D\langle 1, xyz \rangle$; thus $D\langle 1, z \rangle = D\langle 1, xyz \rangle$, since i(z) = 2 and $z \neq -xy$. Now, $D\langle 1, -yz \rangle \cap D\langle 1, y \rangle = D\langle 1, -yz \rangle \cap D\langle 1, z \rangle$; thus, by (2.3), $G = D\langle 1, y \rangle \cup D\langle 1, z \rangle \cup D\langle 1, -yz \rangle$. Consequently, $D\langle 1, x \rangle = D\langle 1, x \rangle \cap D\langle 1, y \rangle \cup D\langle 1, x \rangle \cap D\langle 1, z \rangle \cup D\langle 1, x \rangle \cap D\langle 1, z \rangle$. Requestly, $D\langle 1, -yz \rangle$. Now $D\langle 1, x \rangle \cap D\langle 1, y \rangle \subseteq D\langle 1, -xy \rangle = D\langle 1, z \rangle$ and $D\langle 1, -yz \rangle$. Now $D\langle 1, x \rangle \cap D\langle 1, xy \rangle = D\langle 1, -xy \rangle = D\langle 1, z \rangle$. Since i(x) = i(z), $D\langle 1, x \rangle = D\langle 1, z \rangle$ and $D\langle 1, x \rangle = D\langle 1, -xy \rangle = D$

LEMMA 2.7. Let $m_1, m_2 \in M$. Then (1) $-m_1m_2 \in M \cup \{-1\}$; and (2) $am_1m_2 \in M \cup \{-1\}$.

PROOF. (1). First note that if $m_1 = m_2$, then $-m_1m_2 = -1 \in M \cup \{-1\}$. If $m_1 = a$ and $m_2 \neq a$, then $i(-m_1m_2) = i(-am_2) = 2$, since $m_2 \in M$ and $i(am_1m_2) = i(m_2) = 2$. If $D \langle 1, -m_1m_2 \rangle = D \langle 1, a \rangle$, then $D \langle 1, -am_2 \rangle = D \langle 1, a \rangle = D \langle 1, m_2 \rangle$, a contradiction. So in this case, (1) is true. Similarly, if $m_1 \neq a$ and $m_2 = a$, the result is true. If $-m_1m_2 = a$, then clearly $-m_1m_2 \in M$ so we may assume that $m_1 \neq m_2, m_1 \neq a$, $m_2 \neq a$ and $-m_1m_2 \neq a$. By (2.4) (3), $i(-m_1m_2) = 2$. Notice that $i(a) = i(m_1) = i(m_2) = 2$, $i(-am_1) = i(-am_2) = i(-m_1m_2) = 2$ and $D \langle 1, a \rangle \neq D \langle 1, m_1 \rangle$, $D \langle 1, a \rangle \neq D \langle 1, m_2 \rangle$, and by (2.4) (2), $D \langle 1, m_1 \rangle \neq D \langle 1, m_2 \rangle$. So by (2.5), $i(am_1m_2) \leq 2$. But if $i(am_1m_2) = 1$, then $-m_1m_2 = a$, contradicting our assumption; thus, $i(am_1m_2) = 2$. If $D \langle 1, -m_1m_2 \rangle = D \langle 1, a \rangle$, then $D \langle 1, m_1 \rangle = D \langle 1, m_2 \rangle$, by (2.6), a contradiction. Hence $i(-m_1m_2) = 2$, $i(am_1m_2) = 2$, and $D \langle 1, -m_1m_2 \rangle \neq D \langle 1, a \rangle$, so $-m_1m_2 \in M$.

(2). By (1), $-m_1m_2 \in M \cup \{-1\}$. If $-m_1m_2 = -1$, then $am_1m_2 = a \in M$. If $-m_1m_2 \in M$, then $am_1m_2 = -(a)(-m_1m_2) \in M \cup \{-1\}$, by (1).

PROPOSITION 2.8. (1) If $m_1, m_2, \ldots, m_{2n+1} \in M \cup \{-1\}$, then $m_1 \cdot m_2 \cdot \cdots \cdot m_{2n+1} \in M \cup \{-1\}$.

(2) If $m_1, m_2, \ldots, m_{2n} \in M \cup \{-1\}$, then $-m_1 \cdot m_2 \cdot \cdots \cdot m_{2n} \in M \cup \{-1\}$.

PROOF. (1). It sufficies to do the case n = 1, for then $m_1 \cdot m_2 \cdot \cdot \cdot$ $m_{2n+1} = (m_1 m_2 m_3) m_4 \cdots m_{2n+1}$ is a product of (2n - 1) elements of $M \cup \{-1\}$. Thus we must show $m_1 m_2 m_3 \in M \cup \{-1\}$. First notice that we may assume that the m_i are distinct, for otherwise it is trivial. We may also assume that $m_i \neq a$, i = 1, 2, 3, since then $m_1 m_2 m_3 \in M \cup \{-1\}$ by (2.7) (2). Further, we may assume $m_1 \neq -m_2m_3$, since then -1 = $m_1m_2m_3 \in M \cup \{-1\}$. Finally, we may assume that $m_i \neq -1$, for then the result is either trivial or follows from (2.7) (1). Now, by (2.4) (2) and (3), $i(-m_im_i) = 2$ and $D\langle 1, m_i \rangle \neq D\langle 1, m_i \rangle$, for $i \neq j$. By (2.5), with $x_i = m_i$, $i(m_1m_2m_3) \leq 2$. Strict inequality holds only if $m_1 = -m_2m_3$ which we are assuming is not so, thus $i(m_1m_2m_3) = 2$. We now want to apply (2.5) with $x_i = -am_i$. Now $m_i \neq a$, so $x_i \in M$ by (2.7) (1). Also $x_i \neq a$, since $m_i \neq -1$. Applying (2.5), we get $i(-am_1m_2m_3) \leq 2$. Again, $i(-am_1m_2m_3) = 2$, else $m_1m_2m_3 = a \in M$. It remains only to show that $D\langle 1, m_1m_2m_3\rangle \neq D\langle 1, a\rangle$. If this is not so, then, by (2.6), $D\langle 1, m_1\rangle =$ $\langle 1, -m_2m_3 \rangle = D \langle 1, a \rangle$, a contradiction.

(2). Again it suffices to do only the case n = 1, for then $-m_1 \cdot m_2 \cdot \cdots \cdot m_{2n} = (-m_1m_2)m_3 \cdot \cdots \cdot m_{2n}$ which is a product of (2n - 1) elements of $M \cup \{-1\}$ and by (1) must be in $M \cup \{-1\}$. If $m_1, m_2 \in M$, then $-m_1m_2 \in M \cup \{-1\}$ by (2.7) (1). If $m_1 = -1$ and/or $m_2 = -1$, the result is trivial.

PROPOSITION 2.9. (1) M^2 is a subgroup of G. (2) $M^2 = -M \cup \{1\}.$

PROOF. (1). Let m_1m_2 , $m_3m_4 \in M^2$. Then $(m_1m_2) (m_3m_4) = m_1(m_2m_3m_4) \in M \cdot (M \cup \{-1\}) = M^2 \cup -M$, by (2.8) (1). Thus it suffices to show $-M \subseteq M^2$. Let $-m \in -M$. There exists $m_1 \in M$ with $m_1 \neq m$ (otherwise $M = \{a\}$, contrary to the assumption made after (2.2)), and so $-m = m_1(-mm_1) \in M^2$ by (2.7) (1).

(2). As in (1), $-M \subseteq M^2$ and so $-M \cup \{1\} \subseteq M^2$. On the other hand, $-M^2 \subseteq M \cup \{-1\}$ by (2.7), so $M^2 \subseteq -M \cup \{1\}$.

We turn now to the relationships among M, H and C(H).

COROLLARY 2.10. $M^2 \cap H = \{1\}.$

PROOF. Let $x \in M^2 \cap H$. By (2.9) (2) we may assume $-x = m \in M$. Then by (2.4) (1), Q(x) = Q(-a), that is, $\rho \in Q(x)$ and $x \in H$, contradicting our basic assumption.

For $g \in G$, let $S(g) = \{-m \in -M | g \in D \langle 1, m \rangle\} \cup \{1\}$.

PROPOSITION 2.11. (1) For each $g \in G$, S(g) is a subgroup of M^2 .

(2) S(g) has index ≤ 2 in M^2 with equality holding if and only if $g \notin H$.

(3) For $x, y \in -M^2$, $x \neq y$, we have $S(x) \neq S(y)$.

PROOF. (1). Notice that $S(g) = (-M \cup \{1\}) \cap D\langle 1, -g \rangle$, so (1) follows from (2.9).

(2). Suppose $x, y \in M^2 - S(g)$. We show $xy \in S(g)$. Clearly we may assume $x \neq y$. Now $x, y \in -M$ by (2.9) (2), so $g \notin D\langle 1, -x \rangle \cup D\langle 1, -y \rangle$, and thus $g \in D\langle 1, -xy \rangle$. Also, $-xy \in M$ by (2.7) (1); hence, $xy \in S(g)$. This shows that $|M^2/S(g)| \leq 2$. Notice that $M^2 = S(g)$ if and only if $g \in H$.

(3). Suppose S(x) = S(y). Then, for all $m \in M$, either x and y are in $D\langle 1, m \rangle$ or x and y are not in $D\langle 1, m \rangle$. Since i(m) = 2, we see that in either case $xy \in D\langle 1, m \rangle$; hence, $xy \in H$. Recall that $-M^2 = M \cup \{-1\}$. If $x \in M$ and y = -1, then $x \in -H \cap M$. By (2.4)(1), Q(-a) = Q(-x), and then $\rho \in Q(-x)$ and $-x \in H$, contradicting our basic assumption. If $x \in M$ and $y \in M$, then $xy \in M^2 \cap H = \{1\}$, by (2.10), again a contradiction.

We thank M. Kula for simplifying an earlier version of (2.11 (1)).

PRODOSITION 2.12. (1) $G = M^2 H$. (2) $G = H \cdot C(H)$. (3) $H \cap C(H) = \{1\}$. (4) $C(H) = M^2$. (5) $Q(C(H)) = \{0, \rho\}$.

PROOF. (1). Let $|M^2| = 2^k$. By (2.11) (1) (2), $\{S(x) | x \in -M^2\}$ is a collection of 2^k distinct subgroups of M^2 , all of index ≤ 2 . Since there are only $2^k - 1$ subgroups of index 2 in M^2 , the collection $\{S(x) | x \in -M^2\}$ consists of all subgroups of M^2 of index ≤ 2 . Now let $g \in G$. Then S(g) is a subgroup of M^2 of index ≤ 2 . Hence there exists $x \in -M^2$ such that S(g) = S(x). But then, as in the proof of (2.11) (3), $gx \in H$. Consequently, $g \in xH \subseteq -M^2H$. That is, $G = -M^2H$ and so $G = M^2H$.

(2). $M^2 = -M \cup \{1\}$ by (2.9) (2). Thus if $x \in M^2$, $H \subseteq D\langle 1, -x \rangle$ and so $x \in C(H)$. That is, $M^2 \subseteq C(H)$. Hence (2) follows from (1).

(3). This follows from (2) by (1.2).

(4). We have shown $M^2 \subseteq C(H)$. Parts (2) and (3) imply $|G| = |H| \cdot |C(H)|$. If $M^2 \neq C(H)$, then $|G| > |H| \cdot |M^2|$, which contradicts (1).

(5). $Q(C(H)) = \{q(c, x) \mid c \in C(H), x \in G\} = \{q(-m, x) \mid m \in M, x \in G\}$ by (4) and (2.9) (2). But q(-m, x) = 0 or ρ by (2.4) (1). Hence $Q(C(H)) = \{0, \rho\}$.

PROOF OF THEOREM 1.1. Recall that if |M| = 1, we have already proved the result in Corollary 2.2. For |M| > 1, we first show that $D\langle 1, mh \rangle \subseteq D\langle 1, m \rangle$, for every $h \in H$. Let $x \in D\langle 1, mh \rangle$. Then q(x, -mh) = 0,

626

WITT RINGS

hence, q(x, -m) = q(x, h). If q(x, -m) = 0, then $x \in D < 1, m >$ as desired. If $q(x, -m) \neq 0$, then $q(x, -m) = \rho$ by (2.4) (1). Consequently, $q(x, h) = \rho$ and thus $\rho \in Q(H)$, contradicting our basic assumption. Now, to prove that $G = H \times_w C(H)$, we need only show that statement (1) of (1.3) is satisfied. Let $x \in G$. We must show $xH_x \cap C(H) \neq \emptyset$. By (2.12) (2), x = hc for some $h \in H$, $c \in C(H)$. By (2.12) (4) and (2.9) (2), $c \in -M \cup \{1\}$. If c = 1, then x = h; clearly $1 \in xH_x \cap C(H)$. Suppose then that $c \in -M$. Write c = -m, for some $m \in M$. Then x = hc = -hm. Since $xh \in C(H)$, it suffices to show that $xh \in xH_x$. That is, we will show $h \in H_x$. Let $y \in D < 1, -x > = D < 1, hm >$. By the first part of our proof we see that $y \in D < 1, m > \cap D < 1, hm > \subseteq D < 1, -h >$. Consequently, $D < 1, -x > \subseteq D < 1, -h >$ and $h \in H_x$. Finally, by (2.12) (5) we see that C(H) is a local factor.

To illustrate the use of (1.1) we close with a proof of a result due to Kaplansky [2].

COROLLARY 2.13. If |G| > 1 and i(a) = 2, for every $a \in G - \{-1\}$, then |Q(G)| = 2.

PROOF. Let $a \in G$. We have $M(a) = \{m \in G | D \langle 1, m \rangle \neq D \langle 1, a \rangle\} \cup \{a\}$. Notice that if $-1 \neq g \in G - M(a)$, then $D \langle 1, g \rangle = D \langle 1, m \rangle$, for some $m \in M(a)$. Hence $H(a) = \bigcap_{m \in M(a)} D \langle 1, m \rangle = \bigcap_{g \in G} D \langle 1, g \rangle = \{1\}$, since R is non-degenerate. Thus $C(H) = \bigcap_{h \in H(a)} D \langle 1, -h \rangle = G$. Clearly a is a local element, so (1.1) implies |Q(G)| = |Q(C(H))| = 2.

References

1. A. Carson and M. Marshall, *Decomposition of Witt rings*, Can. J. Math. 34 (1982), 1276–1302.

2. I. Kaplansky, Fröhlich's local quadratic froms, J. Reine Angew. Math. 239 (1969), 74-77.

3. M. Marshall, *Abstract Witt Rings*, Queen's Papers in Pure and Applied Math. No. 57, Queen's Univ. Kingston, Ontario, Canada (1980).

J. Yucas, Witt rings and associated Boolean rings. J. Algebra 71 (1981), 40-49.

SOUTHERN ILLINOIS UNIVERSITY AT CARBONDALE, CARBONDALE, IL. 62901