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ABSTRACT. The submodules of the polynomial Kronecker 
module are investigated. A pair of vector spaces (V, W) over 
an algebraically closed field K is called a Kronecker module 
if there is a K - bilinear map form K2 x V to W. Every mod
ule over K[%] - the polynomial ring in one variable over K -
may be viewed as a Kronecker module. The polynomial 
Kronecker module P, is K[%] so viewed. Every infinite-dimen
sional submodule of P of finite rank has a unique infinite-di
mensional indecomposable direct summand. So attention is 
focussed on indecomposable submodules. In that direction 
the main result is: For each positive integer n > 1, there is a 
family {Vs: s e S], Card S = 2Ko, of indecomposable sub-
modules of P of rank n with the following properties : 

(a) Hom(KSl, K„) = 0 if JX * J 2 ; 
(b) End ( Vs) = K for every s in S; 
(c) dim Ext ( VSI, VS2) ^ 2Ko for any su sz in S. 

This result is proved by constructing extensions of finite-
dimensional modules by P using Liouville numbers. Each ex
tension, V, is shown to share with P a common submodule 
which reflects properties of V. A consequence of this is that, 
for each positive integer n > 1, P contains a nonterminating 
descending chain of nonisomorphic indecomposable submod
ules of rank n. 

1. Completely decomposable submodules of P. Throughout the paper 
AT is a fixed algebraically closed field and (#, b) is a fixed basis of the two-
dimensional K-vector space K2. Since the map from K2 x V to W is bili-
linear it is enough to specify it on (a, b) and a basis of V. In P = (K[g\, 
K[%]) the bilinear map is given by af = f, bf = £ / for all polynomials / . 

Each e e K2 gives rise to a linear transformation 7V V -> W defined by 
Te(v) = ev, the image of (<?, v) under the bilinear map from K2 x F to 
W. If Te is one-to-one for every nonzero e in K2, V is said to be torsion-
free. So P is torsion-free. Observe that P is an ascending union, (J £iVÄ, 
of finite-dimensional submodules where \ x = (0, [1]); and, for k ^ 2, 

(1) Vk = [1, £ , . . . , e"2] , Wk = [1, . . ., È*"2, È*"1]. 
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All references to \ k a P are to \ k in (1). 
Here as elsewhere [S] denotes the subspace spanned by S. (We are 

following the practice in [14] of using V, X, and U for the respective 
Kronecker modules (V, W), (X, Y) and (£/, Z).) The dimension of V = 
the sum of the dimensions of the vector spaces V and W. \ k above is an 
example of a finite-dimensional module of type IIP. A Kronecker module 
is torsion-free if and only if every finite-dimensional submodule is a direct 
sum of modules of type IIIm for various positive integers m. This latter 
definition generalizes readily to modules over tame hereditary finite-
dimensional algebras. For details see [10]. There it is shown that torsion-
free Kronecker modules may be viewed as flat, Z-graded K[X, F]-modules, 
see [10, Proposition 2.4 and Remark 4.8]. See also [9, Proposition 2.2]. 

If X is a submodule of V, i.e., X <= V,Y a fl/and T£X) c Y for every 
e e K2, then V/X is a module with e(v + X) = ev + Y. Let V* be the 
submodule of P described above. Then, for k ^ 2, Vx a Vk and VJVi 
is of type life"1; V*/(Vx 0 (0, [C*"1])) is of type P"1. If k ^ 2, then, for any 
0 G K, Vk = [1, £ - 0, . . ., (ç - 0)*-2], ^ = [l, ç - 0, . . . , ( £ - 0)A-i]. 
V*/(0, [(£ — 0)*-1]) is of type II | - 1 . As m runs over the positive integers 
the types IIIm, 11^, 11^, \m exhaust the finite-dimensional indecomposable 
isomorphism types, see [1] for details. We have recalled only as much as 
we need in the sequel. If V is a Kronecker module then there is a smallest 
submodule X c V such that V/X is torsion-free. V is torsion if V = X, 
e.g., the modules of type Il£, \\f or Im are torsion. A module V is divisible 
if Te: V -• W is onto for every nonzero e in K2. Divisible Kronecker 
modules have a finished structure, while reduced torsion Kronecker mo
dules are essentially torsion AT[f]-modules. For a systematic treatment of 
these matters in a setting that includes Kronecker modules as a special 
case, we refer to [10], where many of the results in [1] and [16] are given a 
unified treatment. [10, Corollary 2.3] is particularly pertinent to us because 
it gives the results of this paper a free ride to the category of modules over 
any tame hereditary finite-dimensional algebra. 

Even though the modules we deal with here have no analogues in 
abelian group theory our main result still bears a formal resemblance 
to several results on rigid families of abelian groups, see [5, p. 401], 
[8, §88], and [17]. We should point out that some of the results in [17] 
are beachheads of set theory. 

While the rank of a Kronecker module can be defined in a manner 
analogous to rank for modules over domains we shall need the compli
cated version of [6] which we now recall. A submodule X c Vis said to be 
torsion-closed in V if V/X is torsion-free. Let V be a torsion-free module 
and X, Y respective subsets of V and W. Then there is a smallest sub-
module V1 of V with X cz V\ Y c IV1 such that V/V1 is torsion-free. 
V1 is called the torsion-closure of (X, Y) in V and is denoted by tcY{X, Y). 
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A subset {WJIEEJ
 c W7 is said to generate V if V = t c v ( 0 , {wf-},-e/). It is 

linearly independent with respect to generation if, for every i0 e /, wio 4 Y 
where X = (X, Y) = t c v ( 0 , {w,}/Œ/Wo). If {HV},G/ has both of the above 
properties it is called a basis of V with respect to generation and card (I) 
is called the rank of V. As shown in [6, p. 431 ff], any subset of W that 
generates V contains a basis of V with respect to generation and a subset 
of Wlinearly independent with respect to generation can be extended to a 
basis of V with respect to generation. That is all we need to prove the 
following additive property of rank. 

THEOREM A ([6, Theorem 2.4]). Let X be a submodule of\. Then rank 
V ^ Rank X + Rank V/X, with equality, ifX is torsion-closed in V. 

PROOF. Let {yì)i<=i be a basis of X with respect to generation and let 
{wj}jŒj be coset representatives of {WJ}JŒJ a basis of V/X with respect to 
generation. Since {>v}*e/ U {WJ}JŒJ clearly generates V, it is enough to show 
that if X is torsion-closed in V, then the set is linearly independent with 
respect to generation. Let Vx = t c v (0 , {yì)ic=i U {WJ}J<=J)- It is immediate 
that X e Vi. Also, Vi/X is a torsion-closed submodule of V/X. WiJY 
contains {wj}JŒJ. Therefore, V = Vx. From the set {yt}ÏŒl U {WJ}JŒJ 

extract a basis B of V with respect to generation that includes {j^}^/ . 
Since {wj}jŒj is a basis of V/X with respect to generation, no Wj can be 
omitted. Hence B = { j^}^/ U {WJ}JŒJ

 anc* we are done. 

As a result of Theorem A, a torsion-closed submodule, X, of a torsion-
free module of finite rank is a proper submodule if and only if rank X < 
rank V. 

The rank one torsion-free Kronecker modules, like rank one torsion-
free abelian groups, are characterized by height functions, [6, §3]. Let 
K = K U {oo}. Let V be a torsion-free module and let w e W. Let \ k 

be the submodule of P described in (1). We shall define HY(w)d-the 
height of w in V at 6 in terms of homomorphisms from \ k to V. Recall 
that a homomorphism (<p, 0): Vj -> V2 is a pair of linear maps <p: V\-* 
V2 and </>: W\-+ W2 such that, for all e in K2 and all v in Kl9 

(2) e<p(v) = <p(ev). 

#v(w)oo Sä & — 1 if and only if there is a homomorphism (#>, (JJ) from 
V* to V with 0(1) = w. If u # oo then Hy(w)d à k - 1 if there is a 
homomorphism from V* to V with 0(£ - d)k~l = w. For 0 e K, Hv(w)d = 
oo if Hy(w)e > k for all positive integers k. If Hy(w)e ^ m we shall say 
that at 0, w generates a submodule of V of type IIP, k ^ m. In §3 we 
shall repeatedly use the fact that if (<p, 0) is a homomorphism from 
\ 1 to V2, both assumed torsion-free, and at 0, w in W\ generates a sub-
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module of Vx of type IIP, k = m, then <̂ (w) does the same in V2 unless 
^(w) = 0. So, 

(3) Hom(IIIwi, III»*) = 0 if mx > m2. 

We shall now see, mostly by quoting results from [15], why the study of 
submodules of P of finite rank may be restricted to studying extensions of 
(n - OUI1 by P, n = 2. (n\ stands for V 0 . . . © V (n copies).) The 
next proposition disposes of the rank one submodules. 

PROPOSITION B. (a) A rank one torsion-free module V is isomorphic to P 
if and only if any nonzero element w in W has the property that 

Hy(w)d = oo if and only if 6 = co and HY(w)e = 0 

(4) for all but finitely many 0 in K. 

(b) Every infinite-dimensional submodule of P of rank one is isomorphic 
to P. 

(c) Every endomorphism (<p, ab) of P is given by multiplication by some 
polynomial fi i.e., cp(p) = (ft(p) = pf for all polynomials p. 

PROOF, (a). This follows from [6, Theorem 3.7] or [8, Section 85]. 
(b). If X cz P, then, for any y in Y, H\y)d = Hp(y)d for all OeK.lfX 

is infinite-dimensional and of rank one, then Hx{y)6 = oo for some 0. 
By (4), 0 =oo. So (b) follows from (a). 

(c). This follows from (2) with / = ^p(l). 
The next result gives us some structure for infinite-dimensional sub-

modules of P of finite rank > 1. 

THEOREM C. (a) [15, Corollary 1.6, Proposition 1.11 and 11, Lemma 
1.11]. Let X be an infinite-dimensional submodule of F of finite rank n. 
Then P/X is finite-dimensional. Moreover, X is isomorphic to an extension 
of a module of type (n — 1) IIP by P. 

(b) [15, Theorem 1.14]. An extension of a finite-dimensional torsion-free 
module by P is isomorphic to a submodule of F. 

(c) [15, Corollary 1.15]. An extension of a module of type IIIm by F is 
isomorphic to a submodule XofF where X is of codimension one in K[%] 
and Y = K[Ç]. 

Theorem D below justifies zeroing in on the indecomposable sub-
modules of P. In P a submodule of finite rank is indecomposable if and 
only if it is purely simple, [15, Theorem 1.8] or [13, Theorem 4]. 

THEOREM D. [15, Corollary 1.9]. An infinite-dimensional submodule X 
of F of finite rank is of the form 
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X = Xi + X2, 

where Xi w finite-dimensional and X2 w # unique infinite-dimensional in
decomposable submodule of X. Moreover any infinite-dimensional inde
composable submodule ofX is contained in X2. 

The last sentence in Theorem D is not in [15] but it is proved in the 
same manner as the uniqueness of X2. 

A consequence of Theorem D and Proposition B (b) is that a completely 
decomposable submodule of P of finite rank n is isomorphic to a direct 
sum of a finite-dimensional submodule of rank n — 1 and a module 
isomorphic to P. Moreover by the last sentence in Theorem D, its iso
morphism type is determined by the isomorphism type of the finite-
dimensional component. Since by Kronecker's theorem [6, Theorem 4.3], 
a torsion-free finite-dimensional module of rank n — 1 is of type IIImi © 
• • • © IIP"»-1, we have 

THEOREM 1.1. The set INn~l of unordered (n — \)-tuples of natural num
bers is a parametrisation of the isomorphism classes of completely de
composable submodules of P of rank n. 

2. Indecomposable submodules of P of finite rank. By Theorem C (a), 
an infinite-dimensional submodule V of P of rank n is isomorphic to an 
extension of a module of type (n — 1) III1 by P. So we may assume that 
we have the extension 

(5) E : 0 -> X' -> V -+ P -> 0, 

where 

X' = (0, [w29. . ., wn]\ V = K[Ç], W=V® [w2, . . ., wn]. 

The bilinear map from K2 x V to W is given by af = / + yj, bf=£f + 
y'f, where yf and y) are elements of Y' depending on the polynomial/. 
Fortunately there is no loss of generality if this unwieldy bilinear map is 
replaced by 

*/ = / 
(6) 

where 4 , . . ., /„ are linear functional on K[Ç\9 see [11, Theorem 1.8]. 
Since we may, by Theorem 1.1, restrict ourselves to indecomposable 
submodules of P we shall assume throughout that {/2, . . . , / „} is a linearly 
independent set of linear functional [14, Lemma 2.2]. 

By setting /,(£*) = aik, A may be identified with L£Lo #**£*• Hence L 
may be considered an element of #[[£]]w_1, where K[[£]] is the ring of 
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formal power series over K. Conversely any element of A [̂[f]]M_1 gives 
some L which can be used to get a bilinear map from K2 x V to W. 
Denote the corresponding extension by EL and the middle module by \L. 

Throughout the paper all extensions of (n - 1) III1 by P will be con
structed from the vector spaces in (5) using some L. 

PROPOSITION 2.1. Ext(P, (n - OUI1) is isomorphic toK[[^]]n~l as K[%\-
modules. 

PROOF. We have the following short exact sequence 0 -> (n — OUI1 -> 
(n — l ) II i -> (n — 1)P -• 0. This induces an isomorphism 

(7) Hom(P, (n - I)!1) -+ Ext(P, (n - OUI1) 

because Hom(P, Hi) = 0 = Ext(P, Hi) see, e.g., [7]. Given a power 
series £S£=oa*£* one gets an element of Hom(P, I1) by setting <p(£k) = ak v, 
</>(Çk) = 0» where {v} is a basis of the top space of I1. Conversely if (<p, é) 
is an element in Hom(P, I1), then cp(£k) = ak v and 2g=oo:^*e AT[[f]]. 
Hence Hom(P, (n — 0I1), and so Ext(P, (n - OUI1) is isomorphic to 
K[[Ç]]n-h Since both Hom(P, (n - l)!1) and Ext (P, (n - OHI1) are mo
dules over End(P) = K[£] it follows that the isomorphism in (7) is a 
AT[f]-module isomorphism. 

REMARK 2.2. If q e K[Ç] and q(0) =£ 0, then qK[[£\] = K[[£]]. So q acts 
as a unit on Ext(P, (n — OUI1). This implies that the modules in (7) are 
modules over the discrete valuation ring R = {p/q\p, q e K[%], q(0) ^ 
0}. However VL need not be isomorphic to VqL, even when q is a unit 
in R. We illustrate this with an example when n = 2. Let L = (1, 
0, 0, . . .) and q = 1/(1 - £2) = l + £2 + £4 . . . 6 *[[£]]. So in VL (see 
(6) with « = 2) 

a • £* = £*, * = 0, 1, . . ., 

b.l = £ + u>2, 

be* = o, * = i, 2 , . . . . 

So VL = ([1], [1, £ + w2]) + (£*[£], ftffê]), ûl = 1, b.l = Ç + w2; (£*[£], 
££[£]) C P. That is, VL is a module of type III2 0 P. 

Let L' = qL. In VL, 

flf* = f*,* = 0, 1 , . . . , 

&£* = £*+1 •+ w2, if k is even, 

if* = f*+i, if A: is odd, 

vL, = (K, £2], K, £2, £3 + w2]) + ((l - &K[Ç]9 (l - e2)*KD, 
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aÇ = £,££ = & a£2 = ^ bç2 = ç3 + W2> 

and 

(1 - Ê 2 ) ^ ] , (1 - &)K[Ç] c P. 

That is, VL is a module of type III3 © P. Hence \ L is not isomorphic 
to YL,, by Theorem 1.1. 

Our indecomposable modules will come from judicious choices of L. 
As in the proof of Proposition 2.1, L may be considered a homomorphism 
from P to (n — I)!1. So we get the exact sequence 

0 -> XL -» P - 0 - OI1 -> 0 

where 

* L = HKer/y, Y=X[£). 

Since A^ c VL, Y <=- W, W as in (5), the module XL = (XL, Y) is also a 
submodule of VL. It shares many properties with V^. In particular VL 

is indecomposable if and only if XL it indecomposable; see Corollary 2.6. 

PROPOSITION 2.3. Rank XL = Rank VL. 

PROOF. Since {/2, . . ., /M} is a linearly independent set of functional on 
^[£]> ^ L is of codimension n — 1 in £[£]. Let/i,/25 • • .,/»-i be representa
tives of a basis of V/XL. In V/XL, û/i = af2 = . . . = «/„_! = 0 while 
bfi = ££ + w; 7̂  0 from (6) and the fact that ft$ XL. So we have the 
exact sequence: 

(8) 0 -> XL -> V -+ (/i - 1)IU - 0. 

There is a surjective map (̂ >, 0) from (« — 1)III2 to {n — 1)114 with 
kernel of type (n — lJIII1. Using (8) and pullback we get 

0->XL-+YL-+(n - l ) I U - . 0 

(9) Il î(p',^> lfo>,0 
0 -> XL -* V -• (n - 1)IH2 -* 0. 

From the middle part of (9) we get 

(10) 0 -> (n - OUI1 -+ V -> VL -> 0. 

From Theorem A, (9), and (10) we get that 

Rank V = (n - 1) 4- Rank XL, 

Rank V - (n - 1) + Rank -VL. 

Hence Rank XL = Rank VL. 
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Let L, Lx be two elements of ^K] ] w _ 1 and let (<p, $) e Hom(VL, VLl). 
Since from (2), a<p(f) = c/j(af), we deduce from (6) that 

(11) <p = (J) on K[£]. Moreover, <p determines (p. 

See (12) below for the justification of the last sentence in (11). ftXL if 
and only if bf = £/, by (6). Since av = v for all v e V, this implies that 
fe XL if and only if there is a nonzero homomorphism (ju, v) from V3 <= 
P in (1) to VL with v{\) = / . From this and (2) we deduce that (p(XL) c 
XLr So we have the homomorphism 

X : Horn (VL, VLl) - Hom(XL, XLl) 

(<p, cjj) -+ (cp\ <p) 

where <p' denotes the restriction of <p to XL. The injectivity of % follows 
from (11). x is5

 m feet, bijective. Let(#>', <p) e Hom(XL, XLl). We want to 
extend this to (<p, 0), an element of Hom(VL, VLl). On K[£], put <p = </;. 
So we need only define $ on [w2, . . ., wn]. Choose /2, . . ., /„ in K[£] 
such that for each j = 2, . . ., n, /Jfj) # 0 but /,()}) = 0 for i # j . 
This is possible because {/2, . . ., /„} is a linearly independent set of 
functionals on K[£\. Set 

(12) frwj) = W>) + W - ptf/y) 

where a> = [w2, . . ., wn]
f an (n - 1) x 1 matrix and L(<pi(fj)) = (Si(<p(fj)), 

• • •> Ki^ifj))) - a 1 x (« — 1) matrix. This proves. 

THEOREM 2.4. 77ze restriction map 

X : Hom(VL, VL]) -> Hom(XL, XLl) 

/j bijective. 

From Theorem 2.4 we obtain the following corollaries. 

COROLLARY 2.5. XL /.y isomorphic to XLl if and only Ì/YL is isomorphic to 

COROLLARY 2.6. XL w indecomposable if and only ifYL is indecomposable. 

REMARK 2.7. If VL is completely decomposable then by Theorem Z>, 
VL = Xx 4- X2 where Xx is finite-dimensional and X2 is isormorphic to 
P. From Proposition B (a) and (6) we deduce that X2 <=• XL. Hence XL = 
X2 + X3 where X3 is finite-dimensional. Since XL # VL, dim Xx # dim 
X3. Hence from Theorem 1.1, XL is not isomorphic to YL. Also if VL is a 
module in the set {Vs: s e S} of Theorem 3.6 then YL is not isomorphic to 
XL c YL because End(VL) = K. This implies that the modules in the 
chain in Proposition 2.8 are not isomorphic when n > 1. 
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PROPOSITION 2.8. For any positive integer n, P contains a nonterminating 
descending chain of indecomposable submodules of rank n. 

PROOF. If I is a nonzero ideal in K[%] then (I, I) is a submodule of P 
isomorphic to P. So if n = 1 any nonterminating descending chain of 
ideals of K[£]9 lx ZD l2 ZD . . ., gives rise to a similar chain of submodules 
of P of rank one. 

Let V be an indecomposable module of rank n ^ 2 constructed as in 
Theorem 3.1. By Theorem C (b), for some X0 cz P, V ^ X0. We now show 
that every indecomposable submodule, Xh of P of rank n ^ 2 contains 
an indecomposable submodule also of rank n. By Theorem C (a), Xk is 
isomorphic to an extension of (n — Olli1 by P. So for some in — 1)-
tuple of linearly independent functionals L on K[%] we have an isomor
phism ((p, (fi): yL •-> Xk. By Proposition 2.3 and Corollary 2.6, XL is a 
proper indecomposable submodule of \ L of rank n. Let Xk+i = (<p, cfi) (XL). 
The required nonterminating chain is X0 ZD Xi ZD . . . . 

The next proposition is an isomorphism criterion which will be used a 
lot in §3. 

PROPOSITION 2.9. If (<p, <]j) is an isomorphism from \ L onto VLl then 
there exists a positive integer M such that deg p(£) = deg <p(p(^)) whenever 
p(£) is a polynomial of degree not less than M. 

PROOF. Let (<p, (p): VL -• VL] be an isomorphism onto VLl. From (11) 
we know that <p = <J> on K[Ç]. Let (p(£k) = pk = <ft($k). Using the notation 
in (12), we get from (6) that bÇ*"1 = £k + L ^ 1 ) ^ . So ^(bÇ*-1) = cjj 
(£*) + L ( ^ - ! ) ^ ( Û ) ) = pk + £(£*-!)#»). On the other hand, from (2) and 
(6), we have 

0 ( ^ - 1 ) = fy(£*-i) = çPk_x + L ^ * " 1 ) ) ^ 

£/>,_! + L x ^ * - ! ) ) ^ = />* + L(ê*-i)#û>). 

The components of both sides in [vv2,. . . , wn] are equal. So the equations 
below implicitly ignore them, because pk is a polynomial. 

(13) Pk = £/>*-i - UP^M»)-

Hence, 

/>* = f*Po - tk~l £0¥(*>) - £*~2
 £ ( 0 # U > ) £L(£*"2¥M 

- L ( £ * - i ) ^ ) . 

Since <p is an automorphism of K[£], [p0, px,. . . ] = K[£]. So there exists 
an integer m ^ 0 such that 

(14) deg />w ^ max{deg 0(w2), . . . , deg ^(ww)}. 
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Since pm+1 = f/?m - L(Çm)(/>(œ) it follows that deg/?w+1 = deg/?w + 1. 
Similarly, for k = 1, 2 , . . ., 

(15) deg/?m+* = deg/7m + &. 

Since ^ is an automorphism of K[£], [pm+\, pm+2, • • • ]> like [f w+1, f w+2, 
. . .], is of codimension m + 1 in AT[£]. From that we deduce that deg/?OT = 
m. Let m' = max{deg/?;:y = 1 , . . . , m — 1}. The required M of the 
proposition is m 4- m'. 

REMARK 2.10. If (cp, </;) in Proposition 2.9 is only one-to-one then (14), 
hence (15), is still valid. So we can conclude that there are integers M ^ 0 
and k0 such that for all polynomials of degree exceeding M, deg /?(£) and 
deg (<p(p(ç))) differ by at most \k0\. In fact, k0 = m — deg pm, m as in (15). 
We shall use this form of the proposition in the proof of Lemma 3.3. 

C3ROLLARY 2.11. Let VL be an indecomposable module. Then the group 
of automorphisms ofVL is isomorphic to the group of units of K. 

PROOF. Let (<p, cjj) be an automorphism of VL. Let M be the integer in 
Proposition 2.9. Then <p maps the finite-dimensional subspace V = [1, 
£ , . . . , ÇM] into itself. Since AT is algebraically closed, <p\v, has an eigenvalue 
a with corresponding eigenvector v ^ 0. Therefore the endormorphism 
(<p, (/}) — al, I the identity map on YL, is not one-to-one. Since VL is purely 
simple by [15, Theorem 1.8]; (p, cf)) = al by Proposition 1.3 of [14]. 

Immediate from Corollary 2.11 is 

COROLLARY 2.12. Let VL, VLl be two indecomposable modules. Then 
there is at most one isomorphism from \ L onto VLl up to a scalar multiple. 

Corollary 2.12 was first proved in [3] for the case n = 2. 

We conclude this section with an example showing that for any positive 
integer M there exist VL, VLl and an isomorphism from VL onto VLl that 
does not preserve degree before M. If \ L is indecomposable, then Corol
lary 2.12 implies that no other isomorphism can do any better. 

EXAMPLE 2.13. In this example, n = 2. So L is a single sequence. Let 
L = (a0, ax, a2 , . . . , % - i , aM, . . . ) with a0 = 1, ax = . . . = aM-\ = 0, 
aM—\. aM+k c a n t>e arbitrary for k = 1, 2, . . . . (L(£*) = ak). In partic
ular we can start with a sequence L' that gives an indecomposable module 
VL, and then perturb the first M entries as above. The new sequence still 
gives an indecomposable module, [15, Proposition 2.3]. Choose a basis 
{p0, / ? ! , . . . } for K[Ç] with p0 = £M and 

(16) Pk = Çpk-i - ak-iq, 

where q = fM+1 - 1. q plays the role of (J)(a>) in (13). So, p0 = £M, px = 
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1,P2 = £ , . . . > PM = SM-\ PM+I = fM - fM+1 + 1, etc. Let Lx{pk) = 
L{^k). Since {po,pi, . . .} is a basis of K[£], L\ extends to a linear func
tional on K[£]. So we get the module VLl. Now define (<p, $): VL -> VL] 

as follows: #>(£*) = </>(t;k) = pk and <p(w2) = q + w2. <p is a vector space 
automorphism of ÄT[f] and ^ is onto W = V © [w2]. So it remains only 
to check that (<p, (p) is a Kronecker module map, i.e., for the fixed basis 
(a, b) of K2, 

a<p(f) = # * / ) , 

b<p(f) = <J>(bf) f o r a l l / e t f f ê ] . 

It is enough to check this on {£*: Â: = 0, 1 , 2 . . . } . 

a ' Pk= Pk = #*£*), 

bPk = %Pk + ^i(/?*)w2 in VLl, 

£*+i + L(£*)w2 in KL, 

0(f *+i) + L(£*)#w2) = / ? m + L(f *)(? + w2). 

From (16), pk+1 = fpft - L(Ç*)q. So #6f*) = £/>, - Li&)q.+ L(&)q + 
£(£*)H>2 = ^Pk + £(f*)w2. Since L(Ç*) = Lx(pk), we get from (17) that 
cjj{b^k) = b<p(£k) as required. Since p does not preserve degree till M + 1, 
we are done. 

REMARK 2.14. An important advance towards classifying rank two 
submodules of P would be a technique for constructing modules isomor
phic to a given VL that did not depend on computing recursively with the 
components of L, see (16). If a = (a2, . . . , an)9 a2 a^. . . an ^ 0, then, 
with I! = (a2 /2, . . . , a„ /„), VL, £ VL, by Corollary 2.5. 

3. Modules constructed from Liouville sequences. In this section the 
main results on indecomposable submodules of P are proved. We recall 
that the vector spaces remain as in (5). All we have to do is specify the 
sequence of linear functionals L = (/2, . . . , / „ ) on K[£]. 

To that end let A = (O,-)£O be the Liouville sequence (1,0, 1, 0, 0, 1, 
0, . . . , 0, 1, . . .) where the number of zeros between successive Vs is 1 !, 
2!, 3!, etc. Let A\ — (akv ak2, . . .) be the subsequence of A consisting of 
the l's in A, e.g., k\ = 0, k2 = 2, k3 = 5. For i = 2 , . . . , n, let 

(18) AXi = ( ^ . , aki+n, aki+2H, . . . ) . 

We shall now define n — 1 linear functionals /2, . . . , /n on K[Ç] by 

«£*<+*) = i j = Q 1 , 2 . . . , 

/,(?-) = 0 if m * *,.+yjr 

What (19) says is that, for a fixed /, <•(£*) = 0 if the component ak in 

(17) 

a<p(^) 

btp(&) 

<l>(b£k) 
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the sequence A is 0 or if ak is a term outside AXi. So for any £*, <•(£*) = 1 
for at most one element / in {2, 3, . . . , n). Using L = (/2 , . . . , /„) from 
(19) we construct a module YL of rank n as in (6). 

THEOREM 3.1. The module VL constructed from (19) z's indecomposable. 

PROOF. By Theorem C (b), KL is isomorphic to a submodule of P. So, 
by Theorem £>, it has the form Xx © V where V is a unique infinite-di
mensional indecomposable submodule of \L. We shall show that Xi = 0. 
Suppose Xi # 0. Then by Kronecker's theorem it is of type IIImi © • • • 
© IIImr for some positive integers m[, m2 , . . . , m'r. Since the length of 
zeros in the Liouville sequence A keeps on increasing we can find some 
positive integery such that the number of zeros mi preceding ak2 .n and the 
number of zeros m2 following it are respectively greater than max [m[, 
m2, . . . , m'r). So there is a homomorphism (<p, cjj) from VW]+2

 Œ P (see 
(1)) to VL with ^(1) = Çk2+Jn-m and </>(^+1) = f^ + 1 + w2. Since 
Vm+2 is of type HImi+2 and mi + 2 > max{mi, m2 , . . . , m'r}, it follows 
from (3) that the submodule of VL generated by £*2+/«-wi is contained 
in V. In particular, fÄ2+/«+i + >v2 6 W. Similarly, by the choice of m2, 
£*2+/»+i e ^ ' . Hence w2 e W. Replacing 2 by / = 3, . . . , n in the above 
argument gives that [w2 , . . . , wn] c PF'. Hence the torsion-closed finite-
dimensional submodule (0, [wn , . . . , wj) c V'. Since V is infinite-di
mensional, the remark after Theorem A gives that V = \L. Hence Xi = 0 
and \ L is indecomposable. 

In order to get many isomorphism classes of VL's we shall now, as in 
[15], construct lots of Liouville sequences. Let F be the field Z/2Z. Choose 
a set of S of representatives for a basis of the F- vector space H^F/tB^F. 
The set S has the following properties. 

LEMMA 3.2. (a) Card (S) = 2*. (b) For s = (sj)^ in S the set {j e N: 
Sj = 1} is infinite, (c) For two distinct elements s, t in S the set {j e N: 
Sj # tj] is infinite. 

A typical sequence in S may not have large enough lengths of zeros to 
qualify as a Liouville sequence. To introduce enough zeros we define a 
function, g, on nonnegative integers: 

g(0) = 0 

(For later use we note that (r + 1)! ^ g(r) for all r.) If s = (̂ y)ŷ o is m 

S, we construct a new sequence whose nth term (counting from 0) is sr 

if n = g(r) and is 0 if « ^ gW, for any r. So Rs = Çs0 0 ^ 0 0 s2 0 . . . ) 
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where the number of zeros between successive sfs is 1!, 2!, 3!, etc. By 
Lemma 3.2 (a) there are 2*° distinct elements in T = {Rs: s e S}. 

Let R] = (akl ak2. . .) be the subsequence of Rs consisting of l's. For 
each i = 2 , . . . , n, obtain R]' from R] exactly as An was obtained from 
Ai in (18). Then, using these R]\ / = 2 , . . . , « , we define / 2 , . . . , /„ exactly 
as in (19). With these linear functional we construct a module, Vs, as in 
(6). Like \ L in Theorem 3.1, V5 is indecomposable. We shall now prove 
that if s ^ s' then V5 is not isomorphic to Vs,. This will follow from 

LEMMA 3.3. If s and s' are distinct elements ofS, then Hom(Vs, V5,) = 0. 

PROOF. Since V5 and Vs, are indecomposable, hence purely simple by 
[14, Theorem 1.8], [13, Proposition 1.3] says that any nonzero homomor
phism is monic. We shall suppose (<p9 <fi) monic and then get a contradic
tion. (<p, (p) monic implies the existence of integers M ^ 0, k0 such that if 
k > M, then deg £* and deg cp(£k) differ by at most \k0\, (\k0\ = absolute 
value of k0), by Remark 2.10. For an integer r ^ 4 4- |&ol + M, 

( r + l)i >g(r) + \k0\ +M 

g(r) > M. 

Suppose, for some r satisfying (21), we have that 

(22) sr+i = 0, but Sf+1 = 1 . 

sr+i = 0 implies the existence of a homomorphism (/̂ , v) from Vk c P to 
Vs, *: = r! + (r •+• 1)!, with y(l) = £*<r>+i. By the choice of r, </>(&(r)+1) 
= ô + ci£ + • • • + c^(r)+l*ol+1. The presence of ^ + 1 = 1 rules out the 
existence of a nonzero homomorphism (//, v) from \ k <= P to Ys, with 
v
f{\) = ^,(^(r)+i). Hence ^ ( f ^ ) + 1 ) = 0. 

If (22) is not satisfied, then, for all r satisfying (21), we have 

(23) sr+i = 0 implies that s'r+1 = 0. 

Since the components of s and s' are either 0 or 1, (23) is equivalent to 

(24) s'r+l = 1 implies that sr+i = 1. 

Since s # s', Lemma 3.2 (c) and (24) ensure the existence of a triple (r1? 
r2> 3̂)» >'i < r2 < r3> such t n a t e a c n ri satisfies (21) and sr

n— 1, s'n = 0, 
and s'n = 1 while sn = 1, sn — 1, and sn = 1. Moreover, all entries (in 
Rs) between sn and\sy2, sn and sn are zero. 

There is a homomorphism (^, v) from \kl c P to Vs with v(l) = f^(ri)+1 

and Kf*1-1) = £*ta>+i + W.Q for some i0 in {2, 3, . . . , /1}, &!.= {rx + 
1)! + 2. Composing this with (<p, cjj) gives a homomorphism (//, y') 
from VÄ1 to V5, with j / ( 0 = 0(£*(ri)+1). If the latter is 0, then we con
clude from (2) that (<p, </>) = 0. So let ^(^ ( r ] ) + 1) = c0 + erf + • • • + 
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c£#(n)+i*0i+i ^ o. Since s'n = 1, the existence of (//, y',) forces ct = 0 
for / ^ gfo). Since |fc0| is small relative to (r2 + 1)! we conclude that 
v\Wk$ c r = [^<i)+!, f^i>+2, _ ? £*(r3)-i]. in particular 0(£*(r2)+1 

+ wiQ) e W. Now, ^(f«(r2)+i) and f s ^ + i differ in degree by at most |jfc0|. 
So the former is also in W. So <p(wi() e W. 

Now pick a positive integer j such that the number of zeros mx preced
ing akiQ+jn and the number of zeros m2 following it are respectively greater 
than g(V3). The same argument as above puts (Jj(wio) in a subspace of K[%] 
that intersects W trivially. So < (̂wl0) = 0. Hence {ç, (jj) = 0 as required. 

The idea necessary for the proof of the next lemma is already in the 
proof of the preceding one. 

LEMMA 3.4. For each s e S, End(V5) = K. 

PROOF. Let (<p, cjj): Vs -• Vs be a nonzero homomorphism. Let rl5 r2 

satisfy (21) with rx < r2, sn = sn = 1. With hx = (n + 1)! + 2, there 
is a homomorphism (/i, v) from Vkl e P to V„ where y(l) = £*<n)+i. 
Let 0(£*(ri)+1) = c0 + cif + . . . 4- c£*(n)+i*oi+i. As in the last lemma, 
ct = 0 for t ^ g(/i). Since sn = 1, the only way to have a nonzero homo
morphism (//, v) from V* to Vs with v\\) = 0(£*(n)+1) is for ct to be zero 
for t ^ g(rx) + 2. Also, c = 0. So 0, hence #>, acts as multiplication by 
scalars on high powers off. The scalars must be identical, otherwise ijj{wt) 
would not be well-defined; see the concluding argument in the proof of 
the last lemma. With the scalars identical on these high powers of £* we 
conclude that 0([w2, . . . , wn]) = [vv2, . . . , wn]. Therefore, (<p, <fi) induces 
an endomorphism (<p, 0) of P (see (5)). But, by Proposition B (c), (p, $) 
is multiplication by a polynomial which must therefore be a constant. 
So (<p, (j;) is multiplication by a constant a on all of K[£]. From (2) and 
(6) we conclude that 0(wt) = awü i = 2, 3, . . . , n. 

Since the set T = {Rs: s e S} is uncountable we can now prove 

THEOREM 3.5. Let n be any positive integer and let c be the cardinality 
of the continuum. Then (a) there are at least c isomorphism classes of inde
composable extensions of a module of type (n — 1) III1 by P; (b) there are 
at least c isomorphism classes of indecomposable submodules of F of rank n. 

PROOF, (a) Each Vs is an extension of (n — 1) III1 by P. So (a) follows 
from Lemma 3.2 (a), Theorem 3.1, and Lemma 3.3. (b) follows from (a) 
and Theorem C (b). 

We now exhibit a set of rank 1 modules {V,-: i e I}, Card (/) = Card 
(K) and Hom(V,, Vy) = 0 if i # j . Write the field K as a disjoint union 
K = ÙK=/ K» Card (AT,) = Card (I) = Card (K). Let V{ = [l/(£ - 0): 
e e Kt] and W{ = V{ + [1]. 
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V,- is a module with av{ = v{ and bv{ = Çv,- for all v{ in V{. Also rank 
Yt• = 1. If i ^ j , then K,- and Ky have no poles in common. Hence Horn 
(V,., Vy) = 0. Moreover, by [13, Theorem 1], dim Ext (V,-, Vy) ^ 2Card(««) 

for any /, j in I. By Proposition B (b) no submodules of P of rank one can 
have such properties. It is quite a different story for higher ranks. 

THEOREM 3.6. Let n be a fixed positive integer > 1. The modules in {V5: 
se S} are all of rank n and have the following properties 
(a) Hom(Vsl, VS2) = 0, if Sl * s2 

(b) End(V5) = Kfor each seS. 
(c) dim Ext(Vsl, V52) ^ c for any sÌ9 s2 in S. 

PROOF. For (a) and (b) see Lemma 3.3 and Lemma 3.4. (c) We have 
the exact sequence 

(25) 0 -* {n - OHI1 -> V51 -> P -* 0. 

The proof consists of comparing dimensions from several long exact 
sequences obtained from (25). First we have 

Ext(P, P) -* Ext(Vsl, P) - Ext((« - 1)IIP, P). 

Ext(P, P) = 0 (see, e.g., the table in [7]) and Ext((/i - OHI1, P) = 0 
because a module of type III1 is projective. Therefore 

(26) Ext(Vs, P) = 0 for any s in 5, 

We also have the exact sequence 

0 - Hom(VS2, (n - 1)IIP) - Hom(VS2, VS1) 

(27) - Hom(V52, P) - Ext(VS2, (n - OUI1) -> Ext(VS2, VS1) 

- Ext(VS2, P) -> 0. 

By the already-proved part (a) and part (b), dim Hom(V52, V51) ^ 1. By 
(26), Ext(VS2, P) = 0. Therefore, from (27) we obtain 

dimExt(Vs„ in- 1)IIP) 
(28) 2 

= dim Ext(V52, VS1) + dim Hom(VS2, P) 

provided all the cardinal numbers are infinite. 
Let us now compute the dimensions of Ext(VS2, (n — OUI1) and 

Hom(VS2, P). From (25) again we obtain the long exact sequence 

Hom((« - l)IIIi, („ _ i)ini) _> E x t (p 9 („ _ xyijï) 

-• Ext(V51, (n - OUI1) - Ext((/i - OUI1, (II - 1)IIP). 

Ext((« - 1)IIP, (n - I)!!!1) = 0 and Hom((« - 1)IIP, (n - 1)IIP) is 
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finite-dimensional. By Theorem 1 of [13], dim Ext (P, (n - OUI1) ^ 2««. 
Therefore for any s e S, in particular s2, 

(29) dim Ext(V52, (n - OUI1) ^ 2*°. 

Finally from (25), with s2 replacing sÌ9 we get 

0 -> Hom(P, P) -» Hom(V52, P) -> Hom((/i - OHI1, P) -> Ext(P, P). 

As already remarked, Ext(P, P) = 0. Hom(P, P) is countable-dimensional 
by Proposition B (c), as is Hom((« - OHI1, P). Therefore, Hom(VS2, P) 
is also countable-dimensional. Going back to (28) with all the informa
tion gives that 

dim Ext(V52, V51) = dim Ext(VS2, (n - \)\\\l) ^ 2"o 

by (29). 

REMARKS 3.7. (a) Theorem 3.6 is proved in [16, Theorem 6.9] for rank 
one modules over tame finite-dimensional hereditary algebras. In fact 
the example before Theorem 3.6 is merely the Kronecker module analogue 
of the modules in the proof of [16, Theorem 6.9]. Nevertheless, combining 
this example with [10, Corollary 2.3] gives a slight strengthening of Rin-
gel's result in the rank 1 case. 

(b) We conclude with the following observation on submodules of P of 
infinite rank. The module V in Lemma 1.3.2 of [12] is of infinite rank and 
has no direct summand of type IIP* for any m. However every submodule 
of V of finite rank is finite-dimensional. Therefore any direct summand 
of V is of infinite rank. It can be shown that for any integer k > 0, V is a 
direct sum of 2k submodules each of which has the same decomposition 
property. In the light of [4, Theorem B] it is still possible for V to have 
an indecomposable direct summand. Since we can embed V in P we can 
state : either P contains a superdecomposable submodule or an indecom
posable submodule of infinite rank. 
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