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ABSTRACT. The classic orthogonal polynomials which satisfy 
a differential equation of second order, the Jacobi (which in
cludes the Legendre and Tchebycheff), the Laguerre, the Her
mite and the Bessel polynomials, are examined closely. Their 
weight functions are found distributionally, and classically 
when possible. The boundary value problems they come from 
are rigorously developed as examples of the singular Sturm-
Liouville problem. Finally the indefinite boundary value pro
blems they satisfy, so far as we know them, are also examined. 

1.1. Introduction. In 1976, the second author was presented with the 
following problem: find a weight function for the Bessel polynomials. 
Although these polynomials were not named nor their properties de
veloped until H. L. Krall and O. Frink wrote about them in their memor
able 1949 paper [23], the Bessel polynomials have appeared in the litera
ture for quite some time. Indeed, in 1873, Hermite used a sequence of 
polynomials in his proof of the transcendency of e\ these polynomials 
turn out to be what Krall and Frink call the Bessel polynomials (see 
[34]). Also, in 1880, Hertz essentially produced the formula 

\2 ) e K'+v\x)-&2iJKn-j)l> 

where Kn+i/2(z) is Macdonald's function ; the right side of this equation is 
precisely the nth degree Bessel polynomial yn(x) (see [34]). In 1929, S. 
Bochner [4] classified, up to a linear change of variable, all second order 
differential equations admitting a sequence of orthogonal polynomial 
solutions. In his classification, Bochner rediscovered the Bessel poly
nomials but neglected to study their properties. Most of these properties 
were developed by Krall and Frink, except one: a real valued function 
(p(x) of bounded variation on R that generates the orthogonality of the 
Bessel polynomials is still unknown. That is, find (jj e BV(R) such that 

yn(x)ym{x)dil>{x) = K„Ö„m, K„¥=0,n,m = 0,l,... 
J —oo 

Like the classic orthogonal polynomials, a real orthogonality property is 
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essential to their use. A moment theorem due to R. P. Boas [3] guarantees 
the existence of such a real valued weight. But how is it found? If we 
proceed along the same lines as we do when we prove the orthogonality of 
the classical orthogonal polynomials, we see immediately the problem of 
finding a real weight. Indeed, since the ordinary Bessel polynomials satisfy 
the differential equation 

x2y" + 2(x + 1) / - n(n + \)y = 0, 

we arrive, after some manipulations, with the formula 

(x2e~2/x(y'nym - yny'm))f = (n - ni) (n 4- m + \)e~2/xynym. 

There is no interval on the real line for which the function x2e~~2/x is 
zero at both ends. In fact, x2e~2/x approaches 0 only at x = 0 and only 
from the right side. Hence, since there is no true interval of orthogonality, 
e~2/x is not a suitable weight for the Bessel polynomials. 

It did occur to the second author, however, that the support of cjj 
should be very near x = 0, an idea that has also occurred, for various 
reasons, to a number of others as well. Hence, cjj might be related to the 
Heaviside function or Dirac's delta function. It has been shown [27] that the 
delta series 

W(x\ - V -2*+1d (w)(*) W(x)-ëo~~~n!(n + iy 

serves as a weight for the Bessel polynomials. Is it true that 

where c/j(x) has bounded variation on R? The delta series concept, de
veloped in [27], works for other polynomial sets as well, even when classical 
weights are known. 

This raises a number of questions. How is the delta series related to 
the classical weight function? What really is the delta series? On what 
functions does it act continuously? Can it be used in other circumstances? 
Can it be expressed in more familiar terms? During the past eight years 
many of these questions have been answered, but by no means is the entire 
situation completely understood. 

Some of the results which answer in part the questions just raised led 
in another direction. Several new orthogonal polynomial sets were found, 
which turned out to be excellent examples of singular Sturm-Liouville 
problems of fourth and sixth order. While most people believe that the 
Sturm-Liouville problem was completely solved in the period 1910-1950, 
in fact work still goes on today, especially for higher order problems. 
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The orthogonal polynomial systems provide some of the few real examples 
researchers can look at. 

One basic problem is how to extend the minimal operator, associated 
with the Sturm-Liouville differential equation, so that the extension is 
self-adjoint, for only then will the polynomial's expansion of arbitrary 
functions be the eigenfunction expansion or spectral resolution of the 
extension. There are a number of domain problems, which are in the 
process of being solved by a close examination of singular boundary 
conditions. Work is continuing, even at present. Surprisingly, confusion 
was found in the classical cases as well, those thought long solved. 
The confusion has been cleared up for second order problems and the 
general situation is yielding slowly to increased pressure applied to it. 

The purpose of this paper is to survey known results, to tie them into 
some sort of general framework, to indicate what we believe occurs in 
cases still pending, and to list some still unsolved problems. This, part I, 
is restricted to considering polynomials whose differential equations are 
of second order. Part II will examine polynomials whose differential 
equation is of order four or six. 

1.2. Orthogonal polynomials. Traditionally orthogonal polynomials are 
introduced through the use of moments: Let {jun}%L0 be an infinite col
lection of real numbers with the property 

4,= 
ßO" ' Vn 

7 * 0 , 7 7 = 0 , 1 , . 

Mn fi2n ! 

Then the Tchebycheff polynomials pn are defined by setting p0 = 1, 

I /4) * ' * ßn 

Pn(x) = (1/4,.!) 
ßn-1 ' * * /"2w-l 

1 Xn 

n = 1 ,2 , . . . . These polynomials are orthogonal with respect to any linear 
functional w satisfying 

<w, xn} = jun, n = 0, 1, 

Since 

0,x"/?M(x)> = ( l / 4 - i ) 

/4> *•• Mn 

f-lm+n 
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for m — 0, 1, . . ., n — 1, the determinant has two equal rows and isO. 
Hence pn is orthogonal to any polynomial of degree less than n, including 
A)> • • •> Pn-h 

By use of such a linear functional [21] it is possible to show that {pn}%Lo 
satisfies a three term recurrence relation of the form 

Pn-i = O + Bn)pn - Cnpn-i, 

where, if pn = xn — S^'1 + . . ., then 

Bn = -SH+1 + Sn and Cn = anan-2\A\^. 

There is certainly a linear functional to assure this. In fact, 

oo 

is an orthogonalizing weight distribution for {pn(x)}%L0 [27]. 
Since the classic examples of mathematical physics, the Legendre, 

Laguerre and Hermite polynomials, all satisfy a collection of differential 
equations, it is natural to ask when does this happen in general? More 
specifically, when does a collection of orthogonal polynomials {pn}^o 
satisfy a linear differential equation in which all the coefficients except 
that of the 0th derivative are independent of the indexing parameter nl 

This was answered in 1938 by H. L. Krall [22] who showed that the 
order of such a differential equation has to be even. An elementary examin
ation shows that the coefficient of the /th derivative can be at most a poly
nomial of degree /, so such a differential equation must have the form 

Lfe^ y V W ) W = ^3<^ ,-=o \/=o / 

and Xn must be given by 

h = 4o + n/n + n(n - 042 + • • • + n(n - 1) . . . (n - 2r+ l)/2r,2r-

Krall [22] showed that the polynomials {pn}^=o satisfy the equation above 
if and only if the moments {ftn}^Lo satisfy the recurrence relations 

»==2*4-1 u=0 \ K / 

where (p)W = p(p - l) . . . (p-q + 1), (^(O) = i? for 2k + 1 ^ 2r and 
m = 2k + 1, 2k + 2, . . ., and Ak ¥* 0, k = 0, 1, . . . . 

Further, since, for the classic examples, the differential equations can 
be multiplied by the weight function w to become symmetric, this should 
be expected in general. Therefore, in order to find w, Littlejohn [25] 
showed this 
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THEOREM. Let L2r(y) = TÂ=obk(x)y(k){x). Then w(x)L2r(y) is symmetric 
if and only if w satisfies the r homogeneous differential equations 

U ^ \2k-l){ j ) s-k+l **-*>+'b* w ; W 

- b2k-iw(x) = 0, 

k = 1,2, ... r, where B2h is the Bernoulli number defined by xj(ex — 1) 
= 1 -X/2+ j:^i(B2kx^)/(2k)l 

When k = r, the differential equation is easily solved to yield the 
solution 

w = (exp(i- f far-ilbzJdtybzr. 

Littlejohn also proved the following result [26]. 

THEOREM. If w(x)L2r(y) is symmetric and w satisfies the equations above 
in a distributional sense, acting on a space of test functions of slow growth, 
then w is a distributional weight function for {pn}%=o and jun = <vv, xny, 
n = 0, 1, . . . . Further, if b{ — 2]y=o AjX'* / = 1, . . ., 2/% then <w, b2i-i) 
= 0, j = 1, 2, . . ., r. 

Finally it is possible to find the moments rather easily provided the 
polynomials {/?„}£L0

 a r e known [19]. If 

Pn(x) = %anjxì, n = 0, 1, . . ., 

are orthogonal then 

Mn = ( - 0* àet(at> y_i)w / Ü aH, 

where 

fct(<*u-i)n = 

#1,0 • * ' al,n-l 

«2,0 " " ' 

«»,0 an,n-l 

In addition, the same argument used to determine the formula above 
establishes the following necessary conditions: 

n 

2 anj jLLp-n+j = 0, (p + l)/2 ^ n ^ p, p = 1, 2, . . . . 

These are required in order to assure orthogonality. 
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So, in theory at least, there is a connection from moments to differential 
equations to polynomials to moments. In practice it is not all that simple. 

ILI. The classic orthogonal polynomials. As mentioned earlier, S. 
Bochner [4] first attacked the problem of classifying all orthogonal 
polynomial sets which satisfy a second order differential equation of the 
form 

{/22x
2 + /21x + /2o)>>" + (/ux + / io) / = (/n/i 4- /22n(n - l))y, n = 0 ,1 , . . . . 

Since Bochner there have been a number of papers written on the subject 
[1], [«], [8], [10], [13], [20], [24], usually from slightly different points of 
view. There are four different situations, each arising from the zeros of 

(a) If there are two different zeros, then by appropriate translation and 
scaling, the Jacobi polynomials are discovered; 

(b) If there is a single zero, the generalized Laguerre polynomials are 
the result; 

(c) If there are no zeros, then we find the Hermite polynomials; and 
(d) If there is a double zero, as Bochner [4] found, and H. L. Krall 

and O. Frink explored [23], the Bessel polynomials are recovered. 
We shall discuss each in turn. We note first that for the second order 

differential equation above, the moments jun must satisfy a three term 
recurrence relation. Further, the differential equation must be symmetric. 

We prove this since the original proof, which gives the general result, 
is quite complicated [22]. 

THEOREM. Let {pn}%Lo be a set of orthogonal polynomials given in §1.2. 
Ifpn satisfies 

(/22x
2 + /21x + /2o)/' + (/nx + /io)/ = (4i« + 42«(« — i))y, 

then 

wLy = w((/22x
2 + /21x + /20)y" + (/nx + /10)y') 

is symmetric and the moments {jun}™=o satisfy 

'nMn + 4o/V-i + (n - \)(/z2ß„ + 4i/4»-i + 40/V-2) = 0, n = 1, 2, 

Conversely, if the moments {jLtn}%L0 satisfy 

4 i / ^ + 4o/v-i + (/i - l)(42#i + 4 1 ^ - 1 + 4o/*»-2) = 0> 

then 

wLy = w((/22x
2 + 4 i* + 40) / ' + ('11* + <îo)/> 

is symmetric, and pn satisfies 
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(/22*2 + /2lX + /2Q)f + (/nX + /10)y = (/n„ + /22n(n-l))y. 

PROOF. Let pn satisfy the differential equation. Then, since {Pn}^z=o is 
an orthogonal set with respect to u>, 

0 = (Xn - Xm) <w, pnpmy 

= <W, AnPnPm> - <W,Pn*mPm> 

= O , M,/>m> - <W,PnLpm> 

= (wL/?„, / ? J - (pn, wLpm), 

where Aw = /nn 4- /22«(/* — 0» anc* (•> •)» is t n e standard notation for 
inner product. 

It is well known that wL is symmetric if and only if 

- (H<42*2 + 4 i* + 4o))' + w(/nx 4- 4o) = 0 

If this is applied distributionally to xm, m = 0, 1, . . . , then 

0 = <-(w(/22x2 + /2lx + /2o))' + vv(/nx + 4o), *m> 

= 0(/ 22* 2 + 4 i* + 4o), mx™-1} 4- <w(/nx + 4o), x™} 

= '22m(w, *m+1> + 4i™< w, xw> + /20m <w, I"1"1) 

4- /n<w, ;C"+1> 4- /io<w, x*>. 

Since //m = <w, xw>, this is the recurrence relation. 
Conversely, if the recurrence relation holds, then 

-(w(/22x2 4- /21x + /20))' + w(/nx 4- 4o) = 0. 

As a consequence wL is symmetric. Let b2 = /22x
2 4- /2\x 4- /2o, &i = 4 i* 

4- /i0. Symmetry implies 

0 = <W, b2(PnPm - PnPm + *l(/>»/>m ~ / > * / 4 ) > -

If m = 0, 

o = o , (b2p"n + i^;)>. 

This states that {b2p'n 4- i i / O is orthogonal to pQ. 
If AW = 1, 

0 = <w, {b2p"n 4- i i r ô p i - (bxpjpiy 

Now 

O , (bxpjpiy = <w, pn{bip[y = o 

since /7W is orthogonal to polynomials of the first degree. Thus 

0 = <w, (b2pn + bip'H)p{>, 
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and (b2Pn + bxp'n) is orthogonal to ph 

If this is continued, we find(62/>« 4- ^ i / 0 is orthogonal to p0, pÌ9 . . ., 
pn-i. But by inspection it is a polynomial of degree n. Therefore it must be 
a multiple, Xn9 of pn. If the coefficients of xn are compared in 

(/22x
2 + 4 i * + 4o)/>« + Oil* + 4o)/?i = 4/?w, 

it follows immediately that Xn = /\\n 4- 42«(/? - 1). The proof is complete. 

As we have noted, 

is a solution to the equation 

- (w(/22x
2 4 /2 i* + 4o))' + w(/nx 4- 4o) - 0 

in a distributional sense. It is, in fact, a distributional Taylor's series. 
For, if (j) is analytic, 

< oo 

»=0 

i.e., 

= S 0(w)(O)<w, JC»>/AI/ 

= S(-iWta,(xM>/<,/».' 
«=0 

= (z;(-iw ( , i(#^), 
\w=0 

= 2 ( - i ) V M 5 ^ w / A 7 / . 

II.2.a. The Jacobi polynomials. If the coefficient of the second derivative 
has two distinct zeros, they may be located at 4 1 by a suitable transforma
tion. Then, by choosing the remaining coefficients appropriately, the result 
is the Jacobi differential equation 

(1 - x2)y" 4 ((j8 - a) - (2 + a + ß)x)y' 4 n(n + a + j8 4- \)y = 0. 

The moments, jun, satisfy 

(a 4- ß 4- « 4- l)/i„ 4 (a - ß)ftH-i - (n - O/V-2 = 0. 

While a bit of a bother, they can be found [27]: 
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ßn = SG)(-l)'-2% + !)//(« + ß + 2), 

= Jo(y)(- 0"-^(/3 + !),•/(« + /3 + 2)y, 

where (a); = a(tf 4- 1) . . . (a + j - 1), « = 0, 1, . . . . 
The weight equation is 

(1 - x2)w' - ((ß - a) - (a 4- /3);c)u> = 0, 

which, so long as a, ß > —1, has the solution 

w = (1 - x)«(l + x)ß(AH(\ - x) 4- £//(l 4- *) 4- C) 

where 

H(x) = 0, x < 0 

= 1, x à 0. 

When A = \, B = \, C = - 1 , this, of course, is the classic Jacobi 
weight function 

w = (1 - JC)«(1 4- *)*, - 1 ^ Je g 1, a, j8 > - 1 

= 0 , otherwise. 

When either a or ß or both are less than — 1, a regularization of 
(1 - x)a(l + x)ß is required [27]. If -TV - 1 < a < -N<-M-l<ß< 
— M, where M and N are positive integers, we replace 

<w, ^> = 1^(1 - x)«(l 4- x ) ^ ( x ) ^ , 

which holds when a, ß > — 1. By [27], 

y=o 7/ |,=i / 

+ £ ( 1 + x)fl(( 1 -x)«4>(x) - g o
H ( l ~xyx)(t>|^_ {i+xy)dx 

( - i y ç (d + *y#*)y. 
1 (« + 1 +j) 

1 
=_! (ß+1+k) 

The regularization generates an indefinite inner product space through 
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the inner product (/, g) = <w, /g>, in contrast to the Hilbert space gen
erated by 

(/, g) = £/(*)gW (i - *)«(i + xydx 

when a, ß > — 1. To the authors' knowledge, the inner product space 
has not been carefully examined. 

II.2.b The Legendre polynomials. As a special case, when a = ß = 0, 
the Legendre problem is found. The differential equation is 

(1 - x2)y" - 2xy' + n(n + \)y = 0. 

The moments, /un9 satisfy (n + \)ßn — (n — l)/iw_2 = 0, and are /Lt2n = 
2/(2« 4- 1), ju2n+i = 0, /i = 0, 1, . . . . 

The weight function w satisfies (1 — x2)w' = 0. Its distributional 
solution is 

w = ,4/f(l - x) + £#(1 + x) + C. 

The choice A = I, i? = 1, C — — 1 gives the classic 

w = 1, - 1 ^ x ^ 1 

= 0, otherwise. 

II.2.c. The Tchebycheff polynomials of the first kind. When a — ß = 
— 1/2, we find the differential equation satisfied by the Techebycheff 
polynomials of the first kind, 

(1 - x2)y" - xy' + n2y = 0. 

The moments, jun, satisfy njun — (n — 1)^„_2 = 0, and are/^2w = (2«)!/ 
22»(*!)2, ^2w+1 = 0,« = 0, 1 , . . . . 

The weight function, w, satisfies [1 — x2]w' — xw = 0. 
Its distributional solution is 

w = (1 - x2)-1/2(,4/J(l - x) + £#(1 + x) + C). 

Again, if ,4 = 1, B = 1, C = —1, the classic weight function 

w = ( l - JC 2 ) - 1 / 2 , - 1 ^ x ^ 1 

= 0 , otherwise 

is recovered. 

II.2.d. The Tchebycheff polynomials of the second kind. When a = ß 
= 1/2, we find the differential equation satisfied by the Tchebycheff 
polynomials of the second kind : 

(1 - x2)y" - 3xy' + n(n + 2)y = 0. 
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The moments, ßn, satisfy (n + 2)/un — (n — l)ßn-2 = 0, and are 
fi2n = (2n)l2*»(n)\(n + 1)!, jLt2n+1 = 0, n = 0, 1, 

The weight function, w, satisfìes(l — x2)w' + xw = 0. Its distributional 
soulution is 

W = (1 - X2)1/2(AH(\ - JC) + BH(\ + X) + C). 

If A = 1, B = 1, C = — 1, the classic weight function 

w = (1 - x2)1/2, - 1 g * ^ 1 

= 0 , otherwise 

is recovered. 

II.3.a. The generalized Laguerre polynomials. If the coefficient of the 
second derivative has only one zero, it may be located at 0 by a suitable 
translation. By choosing the remaining coefficients appropriately, the 
generalized Laguerre equation 

xy" 4- (a + 1 - x)y' 4- ny = 0 

emerges. The moments, /*„, satisfy fxn — (n 4- à)(jin-i = 0. An easy 
induction shows fin = T(n + a + 1)/Aa + 1). 

The weight equation is xw' + (x — a)w = 0 This may be rewritten as 

xa+1e-x(x-aexw)' = 0. 

which, so long as a > - 1, has the solution 

w = xae-*(AH(x) + B). 

When A = 1, B = 0, the result is the classic Laguerre weight function 

w = xae~x, 0 ^ x < oo 

= 0 , JC < 0 

When a ^ — 1, difficulties arise. If a is a negative integer, the polynomial 
set degenerates. But if —j — 1 < a < —j, where j is a positive integer, 
then the weight function is a regularization of the classic function above, 
[27], 

If integration by parts is performed j times, this can be expressed by 
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Just as in the Jacobi case a < — 1 or ß < — 1, when a < — 1 here, the 
regularization leads to an indefinite inner product space through the 
inner product 

(f,g) = <»,fg>. 

This situation has been explored extensively [16], [17] and will be described 
later. 

II.3.b. The ordinary Laguerre polynomals. When a = 0, the ordinary 
Laguerre polynomials result. The differential equation is 

xy" + (1 - x)y' + ny = 0. 

The moments satisfy jun — n fxn-\ = 0 and are jun = n\ 
The weight function satisfies xw' -f xw = 0. As before, this may be 

written as 

xe~x(exw)' = 0. 

The distributional solution is w = e~x(AH(x) + B), and the classic 
Laguerre weight function 

w = e~x, 0 ^ x < oo 

= 0 , x<0 

is attained by letting ,4 = 1, B = 0. 

II.4. The Hermite polynomials. If the coefficient of y" is never zero, 
then, by appropriately choosing the coefficients, the Hermite equation 

y" - 2xy' + 2ny = 0 

is found. The moments, /zw, satisfy 2fin — (n — l)/v-2 = 0 a n d are 
^ = V^(2«)!/(4w/2!), ft2n+1 = 0, « = 0, 1, . . . . 

The weight equation is w' 4- 2JCW = 0. Rewritten as 

e-x\ex2w)' = 0, 

its only solution is w = Ae~x2, — oo < x < oo, which when A = 1 yields 
the classic weight function 

w = e~x2, — oo < x < oo. 

II.5.a. The generalized Bessel Polynomials. If the initial coefficient has 
a double zero, it may be located at x = 0. The equation that results is 

x2y" + (ax + b)y' - n(n + a - \)y = 0. 

Since this equation is related to the Bessel (function) equation [23], it, as 
well as its polynomial solutions, bear the same name: Bessel. 
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The moments satisfy (n + a - \)jun + bftn-i = 0; so if JUQ = -b, 
then 

fin = (-by^l(a)n, n = 0, 1, . . . , 

where (a)„ = #(# 4- 1) . . . ( # + « — 1). 
The weight equation is x2wf + ((2 — a)x — b)w = 0. This may be 

rewritten as 

xae-b/x(x2-aeb/xw)' = 0. 

For the past 40 years or so, however, no one has been able to find a sa
tisfactory solution of these equations. The obvious solution 

w — xa-2e-b/x 

fails to vanish at oo, or any other point other than zero, rapidly enough to 
serve as a weight function. The distributional solution 

u, = _ yi bn+1ô{n)(x) 
k (a)nn\ 

satisfies the equation [26], and does indeed serve as a distributional weight 
(see [27]), but is apparently not the weight generated by a function of 
bounded variation guaranteed by Boas [3]. Hence it is not fully accepted. 

There are variations on the formula above. In [18] it is shown that w, 
defined by 

O , <j>y = l im i - P ^ ) I m { ( - ò / z h F x O , a, -b/z)}dx 
£—•0 J a 

where z = x + is and a < 0, ß > 0, also works. Indeed, this is the 
Stieltjes-Perron inversion for the Cauchy representation of w (see [29; 
pp. 369-372]), but again it does not seem to be what has so long been 
sought; the problem is open. 

II.5.b. The ordinary Bessel polynomials. When a = b = 2, the ordinary 
Bessel polynomials, first discussed by H. L. Krall and O. Frink [23] are 
found. The differential equation is 

x2y" + (2x + 2)y' - n(n + \)y = 0. 

The moments satisfy (n + \)[in — 2fin-i = 0; if /i0 = — 2, then 

//ll = (-2)»+V(/r+ 1)!, « = 0, 1 , . . . . 

The weight equation is x2w' — 2w = 0, which, as mentioned earlier, 
defies solution. And e~2/x is not the correct solution. The distributional 
solution 
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ko (n + \)\n\ 

does generate orthogonality [27], but no connection with anything more 
familiar is known. 

The formula 

<w,*> = Um - i J V ( x ) e x p ( ^ , ) s i n ( ^ - , ) ^ 

seems to be another variant on the distributional series. It likewise gener
ates orthogonality [18]. 

II.5.C. Besselpolynomials and the Laplace transform. In 1955, 1958 and 
1961 H. E. Salzer established a connection between the Bessel polynomials 
with a = b = 1 and the inversion of the Laplace transform [31, 32, 33]. 
The book by Grosswald [12] contains an excellent summary of his results. 
Rather than reproduce it here, let us merely cite that in this case the dif
ferential equation is 

x2y" + (JC + 1 ) / - n2y = 0. 

The moments satisfy njun + jun-i = 0; if ju0 = — 1, then 

f4n = (-l)H+1lnl, n = 0, 1, . . . . 

The weight equation is x2w' + (x — l)w = 0 and is just as enigmatic 
as ever. Weights given by 

or by 

are available. 

ULI. Second order boundary value problems. The method of separation 
of variables has been employed for at least two centuries in the solution 
of certain partial differential equations. Some of the ordinary differential 
equations, resulting from the method, have associated with them boundary 
conditions applied at the ends of the interval involved. Others, especially 
those which have as solutions the classical orthogonal polynomials, have 
other constraints placed at the interval'-s ends in order to uniquely deter
mine the solution. These seemed to be inherently different. Until recently 
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they were not well understood. Usually, physical intuition was used to 
choose the right solution. 

We now classify these problems as regular and singular. As it turns 
out, the singular theory can be developed so it includes the regular prob
lems as a special case. We shall, however, discuss the regular case briefly, 
so it may be contrasted to the singular theory, and also so we may use 
the results in the singular case as well. 

Our setting is L2(a, b\ w), the Hilbert space on the interval from a to 
b with weight w > 0. The differential equation to be considered is of the 
form 

(py'Y + gy = h»y> 

which comes from the operator equation /y = Xy\ where /y = (1/w) 
((py'Y + qy)- We assume that w, p, q, \\p are continuous on (a, b) and 
that w > 0. It is easily recognized that / is symmetric, or formally self-
adjoint in the language of differential equations. In L2(a, b; w), however, 
there is more to the story. Not only must the form of / be given, its domain 
also must be specified. The same is true of its (Hilbert space) adjoint. For 
self-adjointness to occur, both form and domain must be the same. This 
is equally true for both regular and singular problems. 

III.2. The differential operator and adjoint operator. In order to specify 
a differential operator on L2(a, b ; w) we first consider the minimal operator 
L0. Operators L defined then by the use of boundary conditions are ex
tensions of LQ. Since L0 <= L, their adjoints satisfy L* c Lff. The operator 
LJ is the maximal operator, and since its form is known, the form of L* 
is likewise known: 

DEFINITION. We denote, by Z>0, those elements y in L2(a, b\ w) satisfying: 
\./y = (1/vv) ((py'Y + gy) exists a.e. and is in L2(a, b;w)\ and 
2. Both y and y' vanish in a neighborhood of a and b. 

DEFINITION. We define the operator LQ by setting 

L'Qy = />', 

for all y in D'Q. 

We define the operator L0 as the closure of LQ. 

We also define the maximal operator LM in a similar fashion : 

DEFINITION. We denote, by DM, those elements y in L2(a, b\ w) satisfy
ing 

1. /y = (1/w) ((py'Y + gy) exists a.e. and is in L2(a, b; w). 

DEFINITION. We define the operator LM by setting 
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LMy = /y, 

for all y in DM. 
This leads us to the well known result, found in Naimark [28; pp. 68-

70]. 

THEOREM. The domain of L$ is DM. L% = LM Furthermore, L% = L0. 

As stated earlier, since L0 c L, where L is any differential operator 
given by 

Ly = (1/w) ((pyj + qy\ 

whose domain D is restricted by either regular or singular boundary con
ditions at a and b, the adjoints satisfy L* ^ L$ = LM- Hence the form of 
L* is given by 

L*z = (1/HO ((pyj + qy). 

The question of domain is still open at this point. 

III.3. Regular boundary value problems. We assume that w, /?, q, l/p 
are continuous on [a, b] and that w > 0, We define the operator L in 
the following way. 

DEFINITION. We denote, by Z)L, those elements >> in L2(a, b; w) satisfying: 
1. /y = (1/w) ((py'y 4- qy) exists a.e. and is in L2{a, b; w); and 
2. For 1 S m S 4, 

tf/iX«) + aj2y'(a) + bny(b) + é^/tfO « 0, y « 1, . , . , /w, 

where the augmented matrix [a/;, è,-;-] has rank m. 

DEFINITION. We define the operator L by setting 

Ly = /y 

for all >> in DL. 

The boundary conditions may be written in matrix form as well by 
setting À = [a0l B = [b0]9 Y = [J,]. Then 

^ r ( a ) + £F(6) = 0. 

Since we already know the form of the adjoint operator, all that is 
necessary is to calculate its domain, i.e., the boundary conditions con
straining it. We do so by first looking at Green's formula, Let y be in 
DL and z be in the domain of the adjoint. Then 
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0 = (Ly, z) - (y, L*z) 

= P *((/>/)' + qy)dt - V((pzJ + qz)y dt 
Ja Ja 

= $\p(y'z-yz'))'dt 

= p(y'z-yz')& 

J = r °*i , Y = ~y ' 

y _ 
, z = z 

_z'_ 

this can be written as 0 = Z*JY\b
a, or 

0 = [Z*{a\ Z*(b)] J(a) 0 " 
0 /(b). 

Y(a) 
L1WJ 

Now let C and D be chosen so that the square matrix [£ $\ is nonsingular. 
Let 

^* C* 
5* 5* 

satisfy 

Then 

'Ä* C*' 
B* D* 

A B' 
C D 

-J {a) 0 
0 J(b) 

A*A + C*C = -J(d) 

Ä*B + C*D = 0 

B*A + 2)*C = 0 

£*£ + 5*Z) = J(b\ 

and Green's formula becomes 

0 = [Z*(a)Z*(b)] ,4* C*" 
5* 5* 

,4 ^ 
C D 

Y(aJ 
Y(b\ 

or 

0 = (ÄZ(a) + 5 Z ( O ) ) * ( ^ 7 ( Ö ) + BY(b)) 

+ (cz(fl) + 5z(é))*(cy(fl) + 2>y(*)). 

Since i4y(a) + BY(b) = 0, while CF(A) + DY(b) may be arbitrary, 
we find the following theorem. 

THEOREM. If z is in Dt, the domain of L*, then CZ(a) + DZ(b) = 0. 
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Conversely, the domain ofL*, Df, consists of those elements y in L2(a, b;w) 
satisfying : 

1. /z = (1/vv) {{py'y + qy) exists a.e. and is in L2(a, b; w); and 
2. CZ(a) + DZ(b) = 0 or cnz(a) + cJ2z((a) + dnz(b) + dj2z'(b) = 0, 

7 = 1 , . . . , 4-m. 

There are other forms. If 

AY(a) + BY(b) = 0 

CY(a) + DY{b) = <j>, 

then, by using the coefficient equations derived earlier, we find 

Y(a) = -/(fl)-iC*0 

y(6) = J(bYlD*<p. 

These are parametric boundary conditions. (See [7]). Likewise, if 

CZ(a) + DZ(b) = 0 

iZ(fl) + BZ(b) = <f>9 

then 

Z(a) = -/(fl)*-M*^ 

Z(6) = J(b)*~lB*<f>, 

the adjoint parametric boundary conditions. These parametric forms are 
fully equivalent to the originals. 

It is an easy calculation to show that the following holds. 

THEOREM. The differential operator L is self-adjoint if and only if 

AJ{a)-1A" = BJibY^B*. 

An equivalent equation is 

CJiaY^C = DJibY^D. 

One might inquire what happens if the matrices A and B are multiplied 
by a nonsingular matrix F, thus mixing up the boundary conditions de
fining DL. In the calculation of Green's formula this amounts to inserting 
two extra matrices in the middle: 

0 = [Z*(a)Z*(b)] A* C* F'1 0 " 
-H-iGF-1!!-1 

[F 01 
IG H] 

[A B~\ 
[C D\ 

\Y(a) 
\Y(b) 

where H likewise is nonsingular. When this is expanded, 
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0 = ((F-!*i - F - 1 * G * / / - 1 * C ) Z ( Û ) 

+ (F-l*Ë - F-i*G*H-l*D)Z(b))* • (FAY(a) + FBY(b)) 

+ (H-iCZ(a) + H-lDZ(b))*((GA + HC)Y(a) + (GB + HD)Y(b)\ 

The constraint on the adjoint domain is now 

H-lCZ(ä) + H~lDZ(b) = 0 

which is clearly equivalent to the original. 

III.4. Singular boundary conditions. The techniques of the last section 
are not applicable in singular situations, which occur when p, q, w, \\p 
become infinite or when (a, b) is infinite. The trouble, quite simply, is that 
limits at a and b may not exist. Something else must be done. Our pro
cedure, therefore, will be to first establish solutions of 

(py'Y + qy = ^y 

in L2(a, b ; w), and then using these, to define appropriate boundary con
ditions. It will not be too surprising to see that they are extensions of 
regular boundary conditions. 

We follow the path described in [2]. First note that the differential equa
tion above can be written in system format 

0 = u w 0" 
0 0 + 

- < ? 0 
0 -\/p_ 

y\ 
J2_ 

if yx = j 5 y2 = — py'. Now let X be complex. If we premultiply by 
[y\ M we have 

[y\H = [hydfo ~w 0" 
0 0 + 

Its conjugate transpose is 

- [yiM = [yiyziiJi 
w 0 
0 0 

-q 0 
0 -1/pX 

-q 0 ] \ 
0 -\lp])lyz 

y\ 
J2S 

yi 

If this is subtracted from the first, we find 

( [ * H 0 - 1 
1 0 $ = a-~X)[yiyJL 

w 0 
0 0 

If c is chosen in (a, b) and c < b' < b, we integrate from c to b'. Further 
we let [£*] and [£*] be specific solutions so that Y = [%[ ^] is a fundamental 
matrix for the system, and we assume that Y(c) = L Then [$] = [l\ g] [%] 
for some constants ci and c2. The left side becomes 
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[cic2] 
_Vl 

= fa £2] 

w2 1 
V2I 

~Üi 

_Vl 

10 
1 1 
w2 

v2J 

- 1 1 

10 
Li 

1 ^2 
- 1 1 

vi 
V2I 

1 Wl 
[ß2 

k i 
k2| 

Vll 
v2J 

\bf 

\c 

k i 
k2_ (^)-fac2] 0 - 1 " 

1 0 

The right side is li Im(A) ß ' \yx\
2 w dt. Hence 

2\m(X)\b
c'\y\2wdt 

fa c2] f; 
«1 "21 

Lvi v2J 
r ° n 
i-* °J 

k i vi] 
LW2 V2J 

Cl 

k 2 j 00 - fa 2̂] 
0 Ï 

-i 0 
<?i 

JL^J 

If [_p ô] is examined, it is found to be symmetric with eigenvalues X = ± 
1. Since Y(t) is never singular, 

«1 t/2~l 
ih v2J 

r ° fi 
[_-* oj 

k i vf 
Lw2 V2_ 

is never singular, and also has one positive, one negative eigenvalue. Let 
Im(A) > 0. Choose [3] so that |ci|2 + \c2\

2 = 1 and 

fa c2] 
u\ u{\ 

_h v2J 
r ° n 
[_-/ oj 

k i vi] 
Vu2 V2J 

k i 
1 C2 

< 0 

when t = b'. Then 

r. \yi\2wdt ^ 
1 

2Im(A) 
fa, c2) 

0 - / 
/ 0 < 

1 

since $ J] is unitary. This is equivalent to 

fa, c2] rt ux u2 
Vi V2_ 

1 0 
0 0 

Wi Vi 

Lw2 V2 
A C\ 

\S2. 

•2Im(A) 

1 
2Ima) ' 

which implies that the matrix in the brackets has an eigenvalue less than 
l/2Im(A) and [c

c\] may be chosen to be the eigenvector associated with this 
small eigenvalue. Since all these eigenvectors lie on the unit circle, as b' 
-> b a subcollection can be chosen which converges to [k

k\]. Through this 
subcollection, we find that 

[*1,*2](£ 
Wl U2 

Vi V2_ 

1 0 
0 0 

Wi Vi 

Lw2 V2J 
dt 'k{ 1 

2Im(A) 

or if 

then 

y\ Wl W2 

.vi v2J 

J: bil2 w ^ ^ 2Im(A) 
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We have proven 

THEOREM. If Im(A) ^ 0, the differential equation (py')' + qy = Àwy has 
a solution yx which is in L2(c, b; w), a < c < b. 

Only minor modifications are needed when Im(/l) < 0. 
The proof fails if X is real, but if there exist two solutions in L2(c, b\ w) 

for any A, then variation of parameters can be used [14] to show that every 
solution for any X is in L2(c, b; w). 

We have two situations which can arise. 
1. For all A, Im(/l) ^ 0, there exists only one solution which is in L2 

(c, b; w). This is commonly called the limit-point or limit-1 case due to 
the geometry involved in Herman WeyPs original proof [35]. 

2. For all A, every solution is in L2(c, b;w). This is called the limit-circle 
or limit-2 case. 

If the interval (a, c) is examined, the same situation occurs. This yields 
in general four different cases. 

By using the solutions which are in L2(c, b\ w) we can now define bound
ary conditions at b (see [11]). Although we do not assume that Y(c) = I, 
let us require instead that, at c, 

det Y = Uiv[ — u[vi = 1. 

Then it is automatically 1 for all t in (a, b). If y is in DM (§ III. 1), let y1 = 
y> y* = -py'\let LMy = / , i.e., 

{py')' + qy = wf. 

Then let [~fj] be the algebraic solutions of 

""1 v l l 
_w2 v2J 

r-vi 
L bu_ 

= 

bv = p{y\K - vi'vi) 

bu = P(y\U\ - J'i'wi). 

If their derivatives are calculated, 

K = - (M - Xyiv^w 

K = - (M - iy\Ui)w. 

If vi is in L2(c, b\ w), then Schwarz's inequality shows that b'v is in L\c,b\ 
and so 

Bv{y) = lim bv 

exists. Likewise, if ux is in L2(c, b\ w), then Bu(y) = \imx->bbu exists. It is 
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these expressions which replace such regular boundary terms as y(b), 
y'(b), etc. In the regular case, by choosing w1? vi, u2, v2 appropriately 0 
or 1 at b, the singular limits above can be made to generate the regular 
expressions. 

We formalize this discussion with the following. 

THEOREM. Let u be a solution of /y = Xy in L2(c, b ; w). Then, for all y 
in DM, 

Bu(y) = lim bu(y) = lim p{yu' - y'u) 
x-*b x-*b 

exists, and, in the sense of Dunford and Schwartz [9], is a boundary value at 
b. 

It is tempting to use Green's formula to attempt to establish the relation 
between a given set of singular boundary conditions and its adjoint col
lection. This cannot be done, as we shall show, and so it is necessary to 
defer the definition of self-adjoint problems to the next section. 

Green's formula does, however, illustrate the difficulties involved. Let 
us set 

LMy = ({py'y + qy)lw = f 

LMz = ((pz'Y + qz/w = g 

in L2(a, b; w). Further set yx = y, y2 = —py', z\ = z, z2 = —pz'. Then 

"0 -
1 

= 

11 [>1 
U2 

~w 01 
_0 OJ 

fo 0][ 

+ 

LoJ 
w 0" 
0 0 

[qO 1 
Lo i/p] 

\y{ 

- [Zl, Z2Ï 

1' 
"0 
1 

-r 
0 

+ [zi, z2] 
[qO 1 
_0 \\p_ 

Premultiply the first by \zxz2\, postmultiply the second by [JJ], add, and 
integrate from a to b: 

lzi>z2\ 
0 - 1 

Li OJL^J 
y\ b Cb rb _ 

= I ziwfdx - I gwyxdx 
a J a Ja 

= (LMy, z) - (y, LMz). 

The left side can be transformed as follows. Let cv = bv{z), cu = bu(z), 
the boundary Wronskians associated with z. Then 

" l V l \ \ ~ C v \ . 

[ß2 V2JL Cui _Z2\ 

Since 
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wi vili" bv 

the limit as x -» b can be written as 

V^vf Cu\ 
"1 W 2 1 

_vi v2J 
10 
1 1 

- 1 1 
0| 

[~"i v i l 
Lw2 v 2 j 

1 -K 

1 *. 
(*) = [cJ>u-cM(b). 

Likewise, at x = a, a similar limit can be found. If this is expressed as 
(cvbu — cubv) (a), then Green's formula can be expressed by 

(LMy, z) = (cvbu - cubv) (b) - (cvbu - cubv) (a). 

Unfortunately, even though the terms on the right exist, the limits of 
individual terms do not necessarily exist. If only u is in L2(c, b\ w) then 
cu -* Bu(z), bu -+ Bu(y), but the other terms may be infinite. Further, the 
individual products cjbu and cubv may become infinite, with cancellation 
between them occurring to allow cvbu —cu bv to have a limit. Only when 
the problem is limit circle (at both ends) can the individual terms be 
separated. In order to overcome this difficulty, a different approach is 
needed. 

IILS.a. Singular boundary value problems. In order to determine singular 
self-adjoint boundary value problems a new approach is required, that 
of finding a Green's function. Since the Green's function is a bounded 
operator, its properties are well known, and, through it, its unbounded 
counterpart, the differential operator, can be more readily attacked. 

Let us choose u and ü to be solutions of (/?/)' + qy = À0wy, which 
are analytic in A0, with u in L2(c, b\ w) and ü in L2(a, c; w), a < c < b. 
In addition we assume that bu(ü) = p(uu' — ü'u) = 1. Hence 

bü(u) = p(uü' — u'u) — — 1. 

DEFINITION. We denote, by DL, those elements y in L2(a, b ; w) satisfying : 
\./y = (1/vv) ((py'Y + qy) exists a.e. and is in L2(a, b;w); 
2. For all XQ for which u is in L2(c, b\ w)9 

Bu(y) = lim bu(y) = lim p{yiï - y'u) = 0; 
x-*b x-^b 

and 

3. For all Ao for which ü is in L\a, c\ w), 

Bü(y) = lim bü(y) = lim p(yüf - y'ü) = 0. 
x-*a x-+a 

DEFINITION. We define the operator L by setting 

Ly = /y, 

for all y in DL. 
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This definition is in fact equivalent to that in IH.e when the boundary 
conditions in III. 3 are separated. 

We emphasize that conditions 2 and 3 in the definition of DL are to 
hold for all XQ for which they are defined. In particular this includes all 
complex XQ. Finally we note that the limits involved do exist, no matter 
what limit case holds at a and b. 

We now solve the problem 

(L- X0)y=f. 

That is, we assume that Xo is such that u is in L2(c, b;w),u is in L2(a, c\ w). 
Then we solve 

(py'Y + qy - h^y = w/, 

Bu(y) = 0, Bü{y) = 0. 

Variation of parameters establishes that 

y = u I üwfd£ — ü I uwfd£ 4- Au + Bü9 

for some c in (a, b). Then 

bu(y)= -JWrff +B. 

As x -+ b, the l i n r ^ bu(y) clearly exists. Setting this limit, Bu(y) = 0, we 
find 

B 

Likewise 

= j uwfdÇ. 

bü(y) = - fawfdÇ - A. 

As x -> a, the linv_>ß bü(y) clearly exists. Setting this limit, Bü(y) = 0, 
we find 

A = - fewfdl 

Consequently, 

y = w I uwfd£ + fî uwfdÇ. 

This formula is well known to yield an expression for y in L2(a, b; w) 
(see [15].). 

If we define the Green's function G(X09 x, £) by setting 
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G(X0, x, £) = u(x, X0)ü(£, X0\ a S £ < x è b 

= "(£, A0)«O, A0), 0 <: x < £ ^ Z>, 

then 

We have proved 

THEOREM. Let XQ be a complex number such that u is in L2(c, b\ w), ü is 
in L2(a, c; w), and p(uu' — u'u) = 1. Then Xo is in the resolvent of L. If 
(L - X0)y = f then 

If Rf=(L- hYlf then it is easy to see that R*g = (L* - X0)~
lg is 

generated by G(X0, £, x), for 

$bWg)fwdx = <f,R*g> 

= <Rf, g> 

= J*^w(£GWo> *' S)ASMÇ)dÇy(x)dx 

= £ ( £ G a ° ' f ' xM£MÇ)dÇ)*f(xMx)dx. 

Since/can be arbitrary in L2(a, b; w), 

R*g(x) = PGÖO, f.xMfMörff 

This proves 

THEOREM. ((L - ^o)-1)* = (L - ^o)-1, 

Taking inverses and cancelling ^0, we have 

THEOREM. L is self adjoint. L = L*. 

The situation now needs a bit of polishing. We shall show in the re
maining part of this section that if the limit point case holds at either a 
or b, then the boundary condition required in the definition of DL is 
automatically satisfied, and, hence, does not need to be stated. Second, if 
the limit circle case holds at either a or b, and if the boundary condition 
at a or b is satisfied for a particular choice of XQ, then it is satisfied for all 
XQ. Third, if the limit circle case holds at both a and b, then the boundary 
conditions can be made considerably more flexible. In particular, bound
ary conditions at a and b can be mixed together, just as in the regular prob-
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lem. Indeed, the regular problem is a special example of a limit circle 
problem. 

We first consider the limit point case. 

THEOREM. If the limit point case holds at a, then the boundary condition 
Bü(y) — 0 holds automatically for all Xo, Im(^o) ^ 0. 

If the limit point case holds at b, then the boundary condition Bu(y) = 0 
holds for all X0, lm(X0) =£ 0. 

PROOF. If the limit point case holds at a, then Bü(y) = 0 is equivalent 
to requiring that y be in L2(a, c; w). Since this is assumed, Bü(y) = 0 
automatically. 

At b, the same argument can be applied. 

A word is in order about how the L2 solutions u and ü can be continued 
from one value of X to another. Let w0, #o be these solutions for X = X0. 
For X ^ XQ, any solution of (py')f = qy = Xwy satisfies (py')' + (q — 
Xow)y = (X — Xo)wy and, if it is in L2(c, b; w), it can be written as 

y = (X - XQ)\ u0 Ju0wyd£ + u0 J u0wyd% + au0 + /3t/0. 

(In the limit point case at b, ß = 0.) We wish to consider the case a = 1, 
ß = 0. Then 

y = (X - X0) ( u0 J u0wyd£ + ü0 J u0wyd£j + u0 

= (X - X0)Gy + i/o, 

where G is bounded on L2(c, b; w). If |A - X0\ \\G\\ < 1, the sequence 
jo = w0,. . . , yn = GjVi + w0 converges to a function w in L2(c, b; w). 
Furthermore, Riesz and Sz. Nagy [30] show that u can be extended an
alytically to all X, Im(/l) 7* 0. It is this solution we identify as "the" 
continuation of w0. 

THEOREM. The function u defined above satisfies: 
(i) (puj + qy = Xu, Im(A) * 0 

(ii) w |^;0 = w0; o«âf 
(iii) limx_^ p(u'u0 - U'QU) = 0. 

Only the last statement needs verification. Since u satisfies 

u = (X - /lo)(wo I u0wud£ + w0 I wo^^f) + w0, 

a simple computation shows 

p(u'u0 - u'0u) = - j u0wyd£. 
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Hence, as x -• b, the limit is 0. 
Continue ü in a similar manner. It satisfies 

ü = (A - A0) (UQ J ÜQWÜdC + Wo JC u0wüd£) + w0-

In the limit point cases these are the only L2 solutions. In limit circle 
cases they are not. Nonetheless, even in the limit circle cases, the con
straints placed on DL by boundary conditions Bü(y) = 0 and Bu(y) = 0 
can be considerably weakened. 

THEOREM. Let y be in L2(c, b\ w); let /y = (l/w) ((py'Y + qy) be in 
L2(c, b; w) and satisfy Bu(y) = Ofor A = A0. Then Bu(y) = 0, for all Xfor 
which u is in L2(c, b ; w). 

Let y be in L2(a, c\ w)\ let /y = (l/w) ((py'Y + qy) be in L2(a, c; w) and 
satisfy Bü(y) = 0 for A = A0. Then Bü(y) = 0 for all A for which ü is in 
L2(a, c; w). 

PROOF. Consider (c, b). Only the limit circle case needs to be considered. 
Now, y satisfies 

(py'Y + (q - *ow)y = Hf - ^yY 

Consequently 

y = u0\
Xüw(f - XQy)d£ +w0J tdQw(f- XQy)d$ + au0. 

There is no additional term ßü0 since Bu(y) = 0. Using the integral equa
tion for u as well, a tedious computation shows 

bu(y) = - (A - A0) J * u0w(f - k0y)d£ \ u0wud£ 

+ (A - A0) J u0w(f - kQy)d£ Jü0wyd$ 

+ J * uQw(f - A0)</£ - (A - A0) Çbu0wudÇ. 

As x -• b, all integrals remain finite, and the integrals from xto b vanish. 
The situation at a is similar. 
We summarize: 

THEOREM. Let u and ü be solutions of (py'Y 4- qy = Ao wy, u in L2(c, b; w), 
ü in L2(a, c; w). Let them be extended to all A, Im(A) # 0. If the limit circle 
case holds at b, or a, respectively, let u and ü continue to denote extensions 
even for real A. Let p(uu' — ü'ü) = 1. Then DL consists of those elements 
y in L2(a, b; w) satisfying: 
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1. /y = (l/w) ((py'y -f qy) exists a.e. and is in L2(a, b; w); 
2. If the limit circle case holds at b, then for any fixed XQ, 

Bu(y) = \imbu(y) = lim p(yu' - y'u) = 0; 
x-*b x-*b 

and 

3. If the limit circle case holds at a, then for any fixed XQ, 

Ba(y) = l i m ^ M = lim p(yü' - y'ü) = 0. 
x->a x-*a 

IfL is defined by setting Ly = /y for all y in DL, then L is self-adjoint. 

In the limit circle cases X$ = 0 is often a convenient choice. 

III.5.b. Extensions, I. If the limit circle case holds at a or b, or both, 
there are other self-adjoint operators in addition to those already found. 
Let us first consider what can happen if a is in the limit circle case and 
b is in the limit point case: 

LEMMA. Let b be in the limit point case, and let y, z be in DM. Then 

lim p(yzf — y'z) = 0. 
x-*b 

This implies no boundary condition is required at b. To see this, choose 
any boundary condition at a, Bü = 0. For y, z in DM, modify them so 
they are 0 in a neighborhood of a. Then Bü(y) = 0, Bü(z) = 0, so y and 
z are in DL. And L is self-adjoint. Therefore Green's formula shows 

0 = | (z(LMy) - (L^z)y)w dx = lim p(zyf - yz'\ 
J a x-*b 

Let us now examine Green's formula further. For y, z in DM, 

I (z(LMy) - (LMz)y)w dx = lim - (c-vbü - cüb$), 

where the terms on the right were defined in § III.4, the b s referring to 
y, the c's to z. The right side can be further expressed as 

- [Bü(z)> B&)] o r 
- 1 0 

Bü(y) 
ßv(y). 

Now let a, ß9 y, ô be complex numbers such that [« f] is non singular, 
and let its inverse be 

— £ * —37* ' 

Then 
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- 1 OJ ir öj = _-i oj 
ri o" 
Lo î. = " o r 

If this is inserted above, the right side of Green's formula becomes 

- (C*fi(z) + eB-v(z)Y(aBü{y) + ßB-v{y)) 

-(0Bü(z) + VBt(z))*(rBü(y) + ÔB-V{y)). 

If w, v are real solutions to the real differential equation (py')' + qy = 
Àowy, i.e., if A0 is real (It is often convenient to let Ao = 0), then Bü(y) and 
Bü(z), Bd(y) and 5^(z), respectively, represent the same boundary condi
tion as x -> a. We pause to state 

THEOREM. If a is in the limit circle case, b is in the limit point case, 
and if ü, v are real linearly independent solutions to the real differential 
equation 

(py'Y + qy = Aowy, (A0 real) 

with p{uv' — ü'v) = 1, //je« Green's formula is 

J (z(LMj>) - (LMz);/)w d* = 

- (Ç*fi(z) + e2Wz))*(a*fl(>0 + ßB-v(y)) 

- (6Bü(z) + VBd(z))*(rBü(y) + ÖB€(y)\ 

where Bü(y), B„(y), Bü(z), B„(z) are the four boundary values for y and z, 
respectively, which exist at x = a. 

DEFINITION. We denote by D# those elements y in L\a, b\ w) satisfying: 
1. /y = (\/w) {{py')' + qy) exists a.e. and is in L\a, b; w); and 
2. For fixed A0, with ü and v real solutions of {pu')' + qu = XQWU, 

aBü(y) + ßBi(y) = 0. 

DEFINITION. We define the operator & by setting 

£y = /y 

for all y in D&. 

THEOREM. The domain of&*, D#*, consists of those elements z satisfying, 
for all z in D<^, <£*z = / z : 

1. / z = (1/w) (pz'Y + qz) exists a.e. and is in L2(a, b; w); and 
2. 0Bü(z) + 7]B-V{z) = 0. 

The proof is elementary. Since if* <= LM, the form of <g* is already 
known. In Green's formula, since aBü(y) + ßBd{y) = 0, and yBü(y) + 
dBz(y) is arbitrary, it follows that 0Bü(z) 4- 7jB9(z) must also vanish. This 
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shows that S£* is a restriction of the operator with domain D#* described 
above. The converse is trivial. 

COROLLARY. S£ is self-adjoint if and only if /3a:* = aß*. 

PROOF. If [a
rl] and [£•*"£] are mulitplied together, then -ar)* + /30* 

= 0. Further, if j£? is self-adjoint, there must be a nonzero k such that 
0 = ka, 7] = &/3. Inserting these shows that /3a* = aß*. 

Conversely, if ßa* = aß*9 we find when comparing it to ßd* = a??*, 
that there is a nonzero number k such that a = kd, ß = /:??. Hence 
0 £Ä(z) + ^ ( z ) = 0 is equivalent to aBü(z) + ßB5(z) = 0. Thus D<?> = 
Dg. Since if and if* have the same form, if is self-adjoint. 

Of course one might point out that aBü{y) + ßB$(y) = Baä+ß$(y), so all 
that has really been accomplished is to choose a new ü. This is true, but 
by varying a and ß, the full range of self-adjoint operators is transparent. 

Further, since a can be chosen real, the corollary states that S^ is self-
adjoint if and only if ß can be made real as well. 

Finally, we note that if a is limit point, b is limit circle, the situation 
is virtually the same. Replacement of x by — x is all that is required. 

III.5.C. Extensions, II. If both endpoints a and b are limit circle, then 
boundary conditions at both ends are required. In fact the situation is 
more like the regular case than anything else. Since the limits in Green's 
formula exhibited at the end of § III.4 all individually exist, we have 

THEOREM. If both a and b are in the limit circle case, ifü, v are real lin
early independent solutions to the real differential equation 

(py'Y + qy = tovy, (Ao real) 

with p(uv' — u'v) = I, if u, v are real linearly independent solutions to the 
real differential equation 

(py'Y + qy = hwy, (h real) 

with p(uV — u'v) = 1, and if, as in §111.3, A and B are m x 2 matrices, 
C and D are (4 — m) x 2 matrices such that [$ %] is non singular, with 
inverse [$ %**], then Green's formula is 

t \z(LMy) - (LMz))wdx = ( i j ( z ) + B@(z))*(A3(y) + B3Hy)) 

+ (CÖ(z) + DaS(z))*(Cä(y) + D@(y% 

where 

(z) = Ba(z) 
Bdz). \ **>-[*$} ^Htw! â(y)= Bu(y) 



466 L. L. LITTLEJOHN AND A. M. KRALL 

PROOF. From § III.4, the right side of Green's formula is 

[J(z)*, ^(z)*] -JO' 
0 / 

~£(y)' 

where / = [_J J]. If this is expanded as in § III.3, the formula immediately 
follows. 

DEFINITION. We denote by Dm those elements y in L2(a, b; w) satisfying: 
1. /y = (1/vv) {{py'y 4- qy) exists a.e. and is in L2(a, b;w); and 
2. Aà{y) + £^(>>) = 0. 

DEFINITION. We define the operator ™ by setting 

"*y = sy 

for all y in Dm. 

THEOREM. The domain of»**, Dm*9 consists of those elements z satisfying: 
1. /z = (1/vv) {{pz'y + qz) exists a.e. and is in L2(a, b; w); and 
2. C®(z) + D@(z) = 0. 

For Û// z m Z)w*, ***z = /z. 

The proof is similar to those given before. 

COROLLARY. The operator ™ is self adjoint if and only if A and B are 
2 x 2 matrices and 

AJ-iA* = BJ-lB*. 

There are parametric forms for the boundary conditions here too. They 
are almost the same as in the regular case. The terms Y(a), Y(b), Z(a)9 

Z(b) are replaced by §Hy\ @(y), J(z), #(z). 
We note in closing this section that regular ends may be thought of as 

limit circle cases. If a is a regular point, the boundary functional y(a) may 
be generated by choosing ü so that it satisfies the initial conditions u(a) = 
0, ü'(a) = \/p(a). Then 

Bü(y) = lim p(yü' - y'ü) = y{a). 
x-*a 

If v is chosen so that v(a) = - 1, v'(a) = 0, then 

B-V(y) = lim p(yvf - y'v) = p{a)y'(a). 
x-+d 

Since p(a) ^ 0, in the regular case B„(y)lp(a) = y\a). 
Likewise if b is a regular point, the boundary functional y(b) may be 

generated by choosing u so that it satisfies u(b) = 0, u'(b) = \jpib). Then 

file:///jpib
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Bu(y) = lim p(yiï - y'ü) = y(b). 
x-^b 

If v is chosen so that v(b) = — 1, v'(b) = 0, then 

Bv(y) = Hm p(yv' - y'v) = p(b)v'{b). 
x-*b 

Since p(b) ^ 0 in the regular case Bv(y)lp(b) = y'(b). 

III.5.d. Other boundary constraints. It is possible to use functions other 
than solutions to 

(py'Y + qy = toy 

to generate boundary conditions at singular ends, but nothing new is 
found. Let us consider the singular end at b9 with r a fixed element in DM. 
Let y be any other element in DM. Then 

R(y) = lim p(yr' - y'f) 
x-+b 

exists by Green's formula. 

THEOREM. If the limit point case holds at b, then R(y) = 0. 

PROOF. Let boundary constraints be imposed at a so the operator L is 
self-adjoint, and let y and r be modified so they are in DL. Then Green's 
formula shows 

0 = \\f{Ly) - (Lr)y)wdx = R(y). 

THEOREM. If the limit circle case holds at b, then there exist constants 
a and ß such that 

R(y) = aBu(y) + ßBv(y). 

PROOF. Let /r = / . Then 

r = w üwfdC 4- ü I uwfd£ + C\ü 4- c2u 

(see § III.5.a), where c2 = 0 if a is limit point. Then 

p(yr' - y'r) = p(yu' - y'u) J * üwfdC 

4- p(yü' - y'ü) I uwfdÇ + cxp(yü' — y'ü) 4- c2p(yuf — y'u). 

Asx -+ b, all the term have finite limits and 

R(y) = Bu(y) VuwfdÇ + cx lim p(yü' - / f i) + c2Bu(y). 
J a x-*b 
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Since ü = c3w + c4v, 

R{y) = Bu(y)^ûwfdÇ + clCs + c2) + Bv{y){clC,\ 

Letting a and ß represent the terms in the brackets completes the proof. 
At a the situation is similar. 

III.6. Examples. By far the best examples of singular boundary prob
lems, indeed one of the main reasons for considering singular boundary 
value problems, are the problems involving the classic orthogonal poly
nomials. These, together with the Bessel function problems, are the main 
reason for the study of singular boundary value problems. We give eight 
examples: 

(a) The Jacobi polynomials, with their special cases the Legendre and 
TchebychefT polynomials ; 

(b) The ordinary and generalized Laguerre polynomials; 
(c) The Hermite polynomials ; and 
(d) Bessel functions. 
The Bessel polynomials are not included because a suitable classical 

weight function and interval has not been found. While it is known that 
one exists on [0, oo) as a measure of bounded variation, it cannot be a 
positive measure. The resulting problem, therefore, is indefinite. 

III.7.a. The Jacobi boundary value problem. The Jacobi differential 
operator is 

Ly = (1 - x)-"(\ + x)-ß((l - x)1+«(\ + x)1+ßy')', 

set in L2( — 1, 1; (1 - ;c)a(l + x)ß). 1 is in the limit circle case when 
- 1 < a < 1. It is limit point when 1 ^ a. - 1 is in the limit circle case 
when - 1 < ß < 1. It is limit circle case when 1 ^ ß. Two solutions to 
Ly = 0 are u — ü — 1 and v = v = Qo*'ß) (x). Boundary conditions, 
therefore are given by 

Bu(y) = - l im (1 - x)1+«(l + x)1+ßy'(x) 
* - > i 

Bv(y) = lim (1 - x)i+«(l + x ) 1 + W n * M * ) - Ô ^ W W ) 

Bü(y) = - l im (1 - *)1+«(1 + x)1+ßy'(x) 
x-*-l 

Bd(y) = lim (1 - Xy+«(\ + x)^ß{Qtß)\x)y{x) - Q^ß\x)y\x)) 
x—-1 

when they are needed. 
Boundary value problems involving the Jacobi differential operator 

which are self-adjoint fall into the category discussed in §III.5.c. The 
boundary value problem with the Jacobi polynomials as eigenfunctions is 
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Ly = ( l-x)-«(l+x)-^(l-Jc)1 +«(l+Jc)1 +^y) '=-Ai(/ i +a + ß+l)y, 

Bu(y) = - l im (1 - x)1+«(l + x)1+ß/(x) = 0, - 1 < a < 1, 

£Xy) = -lim (1 - x)1+«(l + ^)1+V(x) = 0, - 1 < ß < 1. 
X-+-1 

III.7.b. The Legendre boundary value problem. In the Jacob! problem, 
if a = ß = 0, we find immediately the Legendre boundary value problem. 
The Legendre operator is 

Ly = ((1 - x2)yj 

in L2(— 1, 1;1). Both —1 and 1 are in the limit circle. Two independent 
solutions to ((1 — x2)y')' = 0 are u = ü = 1 and v = v = 1/2 In ((1 + x)j 
(1 - x)). Both are in L2(- 1, 1 ;1). 

Boundary conditions are 

Bu(y)= - l i m ( l - x 2 ) / W 

£„(>>) = Hm(l - x2)((l - x*yiy(x) - ^ l n ( j - ± - * ) / ( x ) 

5 , ( 7 ) = - l i m ( l - x 2 ) / ( x ) 

^ ( y ) - UmO - *2)((1 - ^ - ^ W - i - l n ( | ^ ) / ( x ) 

The boundary value problem which has the Legendre polynomials as 
eigenfunctions is 

Ly = ((l - x*)y')' = - / i ( « + I)>», 

5„(j) = - l im (1 - x*)y'(x) = 0, 

Ä„O0 = - l im (1 - x*)y'(x) = 0. 
x->-l 

There are other self-adjoint problems involving L with mixed boundary 
conditions, such as those described in § III.5.C 

III.7.C. The Tchebycheff problem of the first kind. In the Jacobi problem, 
if a — ß = — 1/2, we find the first Tchebycheff boundary value problem. 
Set in L2(—1, 1; (1 — x2)~1/2) the Tchebycheff differential operator is 

Ly = (1 - x2)l/2((l - x2)1/2yj. 

Both — 1 and 1 are limit circle. Two independent solutions to ((1 — x2Yl/2y')' 
= 0 are u = ü = 1 and v = v = sin_1x Both are in L2( — 1, 1, (1 — Jt2)~1/2). 

Boundary conditions are 
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BJLy) = - l i m ( l - JC2)1/2/(X) 
x-*l 

Bv{y) = lim(l - *2)1/2((1 - x2)~l/2 y(x) - (sin-1*)/^)) 
x-*l 

Bü{y)= - l i m ( l - * 2 ) 1 / 2 / ( x ) 
x - » - 1 

B-V{y) = lim (1 - JC2)1/2((1 - JC2)"1/2 y(x) - (sin-^)/(jc)). 

The boundary value problem which has the Tchebycheff polynomials 
of the first kind as eigenfunctions is 

Ly = (1 - JC2)1/2((1 - x2)1/2yj = -n2y, 

Bu(y) = - l i m ( l - x2)l/2y\x) = 0, 

Bü{y) = - l i m ( l - x2)1/2v'(x) = 0. 

Again there are other self-adjoint problems involving the first Tcheby
cheff operator. 

III.7.d. The Tchebycheff problem of the second kind. In the Jacobi prob
lem, if a = ß = 1/2, we find the second Tchebycheff boundary value 
problem. The Tchebycheff differential operator is 

Ly = (1 - x2)-1/2((l - x 2 ) 3 / 2 / ) \ 

Both — 1 and 1 are limit circle. Two independent solutions to ((1 — x2)3/2 

/ ) ' = 0 are u = ü = 1 and v = v = (JC/(1 - JC2)1/2). Both are in L 2 ( - 1, 
1;(1 - JC2)1/2). 

Boundary conditions are 

Bu(y) = lim(l - x2f/2y\x) 
x^l 

Bv(y) = lim(l - x2)3/2((l - x2)-*/2y(x) - (x/(l - x2)1/2)y'(x)) 
x-*l 

Bü(y) = -l im(l-jc2)3 / 2 j /(x) 
X-+-1 

B-V{y) = Hm(l - x2)3/2((l - x2YV2y(x) - (x/(l - x2)l/2)y\x)). 

The boundary value problem which has the Tchebycheff polynomials 
of the second kind as eigenfunctions is 

Ly = (1 - x2)"1/2((l - x2)3/2y')' = -n(n + 2)y 

Bu(y) = - l i m ( l - x2f/2y\x) = 0 
X-+1 

Bü(y)= - l i m ( l - x2r2y\x) = 0. 
x-*—1 
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Again there are other self-adjoint problems involving the second 
Tchebycheff operator. 

III.8.a. The generalized Laguerre boundary value problem. The gen
eralized Laguerre differential operator is 

Ly = x-aex(xa+le-xyy, 

set in L2(0, oo ; xae~x). The point 0 is in the limit circle case if — 1 < a < 1 
and it is limit point if 1 ^ a, while the point oo is always limit point. 

The boundary conditions at 0, — 1 < a < 1 are given by choosing 
ü = 1 and 

as independent solutions to Ly = 0. Then 

Bü(y) = -Hm xa+1e-*y'(x) 
x->0 

Bd(y) = l i m ^ e ^ - ^ C * ) - £ -^ #/(*)). 

Self-adjoint boundary value problems fall into the category discussed in 
§III.5.b. The boundary condition satisfied by the Laguerre polynomials 
is Bü(y) = 0. Hence the boundary value problem with the generalized 
Laguerre polynomial as eigenfunctions is 

Ly = x~aex(xa+le~xy'y = —ny, 
ßü(y) = -\imxa+1e-xy'(x) = 0, (required when - 1 < a < 1). 

x-*Q 

III.8.b. The ordinary Laguerre boundary value problem. The ordinary 
Laguerre differential operator is 

Ly = ex(xe~xy')\ 

set in L2(0, oo ; e~x). 0 is the limit circle case; oo is in the limit point case. 
The boundary conditions at 0 are given by choosing ü = 1 and 

as independent solutions to Ly = 0. Then 

Bü(y) = -\imxe-xy'(x) 

Self-adjoint boundary value problems fall into the category discussed in 
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§ III.5.b. The boundary condition satisfied by the Laguerre polynomials 
is Bü(y) = 0. Hence the boundary value problem with the ordinary La
guerre polynomials as eigenfunctions is 

Ly = ex(xe~xy')' = —ny 

Bü(y) = ~ n m xe~xy'{x) = 0. 
*->o 

III.9. The Hermite boundary value problem. The Hermite differential 
operator is 

Ly = ex\e~xly')\ 

set in L2( — oo, oo ; e~x2). Both — oo and oo are in the limit point case, and 
so no boundary conditions are required. The conditions lim^+oo e~x2y\x) 
= 0 are automatically satisfied. Consequently the boundary value prob
lem with the Hermite polynomials as eigenfunctions is 

Ly = ex2(e~x2y')' = ny, — oo < x < oo. 

III. 10. Bessel functions. Although they are not polynomials, we include 
a brief discussion of the Bessel boundary value problems because of their 
importance. There are four different problems encountered. They differ 
over the intervals involved. 

(1) If the interval is [a, 6], 0 < a < b < oo, the problem is regular. 
The problem is like that discussed in §111.3. 

(2) If the interval is [0, b], 0 < b < oo, the problem is singular at 0, 
regular at b. The problem is like those discussed in §III.5.b or §III.5.c. 
if the regular end at b is treated as a limit circle case. 

(3) If the interval is [a, oo), 0 < a < oo, the problem is regular at a, 
limit point at oo. If the regular end is treated as a limit circle case, the 
problem falls into the category treated in § III.5.C 

(4) If the interval is [0, oo), the problem is singular at both ends. It 
falls into either the category of §III.5.a or III.5.b, depending upon what 
happens at 0. 

The Bessel differential operator is 

Ly = x'KixyJ - (n*/x)y) 

set In L2(a, b; x). Two convenient solutions of Ly = 0 for finite a and/ 
or b are u = ü = xn and v = v = x~n, n ^ 0, and u = ü = 1, v = v = 
log* if n = 0. 

If a = 0, it is easy to see that the endpoint 0 is in the limit circle case 
only if \n\ < 1, while the limit point case holds when \n\ ^ 1. Assuming 
\n\ < 1 the boundary conditions at 0 are 
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Bü(y) = lim x(nxn-1y(x) - xny'{x)) 

B$(y) = lim x(-nx-n~ly{x) - x-ly'{x)) 
X-+0 

Ifn = 0, 

Bü(y) = -Hm xy\x) 
X-+0 

Bd(y) = lim x{x~ly(x) - log xy\x)). 
X-+0 

The boundary condition traditionally associated with Bessel functions 
of the first kind is 

when n ^ 0, or 

Bu(y) = l i m x(nxn'ly(x) - xny\x)) 
X-+0 

Bü(y) = lim xy'ix) = 0, 

when n — 0. 
At a regular point, the conditions involving y(a) and /(a) or y(b) and 

y\b) are preferred. 
At oo the limit point case always holds, and so no boundary condition 

is required. 

IV.l. Indefinite problems. The astute reader might have noticed some 
gaps in what has been described so far. The Jacobi boundary value prob
lem was discussed only when et, ß > — 1. The generalized Laguerre 
boundary value problem assumed that a > — 1. These are artificial 
constraints which have existed for over 100 years. 

Furthermore there was no discussion of the Bessel polynomial opera
tor's boundary value problem. 

There are several questions which arise. First, what happens to the 
polynomials in the Jacobi case when a and/or ß < — 1? Second, what 
is the singular Sturm-Liouville problem like in these circumstances? Third, 
is there a relation between them? (See [27].) 

The same questions may be asked of the generalized Laguerre poly
nomials. First, what happens to the polynomials when a < — 1? Second, 
what is the singular Sturm-Liouville problem like? Third, is there a rela
tion between them? (See [16], [17]). 

For the Bessel polynomials we would like to know if there is any 
boundary value problem for which they are eigenfunctions? Second, what 
does the Sturm-Liouville problem look like over [0, b], [a, oo), [0, oo)? 
Is there any relation between them? (See [27].) 

Frankly, little is known. The Jacobi polynomials have only been glanced 
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at with very incomplete results. The orthogonahzing functional w is 
known, but little else. 

More is known about the generalized Laguerre polynomials. Their 
boundary value problem lies in an indefinite inner product space. There 
are still some gaps in the theory. Nothing is known about the Laguerre 
Sturm-Liouville value problem on [0, oo), a < — 1. This has been held 
for a graduate student's dissertation for several years. There are no results 
yet. There has obviously been no connection made. 

For the Bessel polynomials nothing is known. Only the 5-function 
expansion of the orthogonahzing weight function and a closely related 
formula for it have been found. Because of the alternating signs in the 
moments, any boundary value problem concerning the polynomials must 
be indefinite. 

We shall try to describe what we do know. 

IV.2. The indefinite Jacobi problem. When either a or ß < — 1, the 
Jacobi weight function 

w = (1 - jt)«(i + x)ß, - 1 ^ je g 1 

= 0, , otherwise 

is no longer integrable. As a consequence the moments {/i„}£Lo u s e ^ to 
define the Jacobi polynomials do not satisfy 

/•oo 

l*n = i x"w dx, n = 0, 1, . . . . 
J —oo 

They must be found by means of the recurrence relation exhibited in 
§II.2.a, and there are immediate problems if a = — 1, — 2, . . . or ß = — 1, 
— 2 , . . . , or if a + ß = — 2, — 3 , . . . . Nonetheless, if these values of 
a, ß, a + ß are avoided, the polynomials are well defined and are ortho
gonal with respect to the complicated regularization of the classical weight 
function, which is exhibited in § II.2.a. The inner product 

(f,g) = <w,fg> 

generates an indefinite inner product space [5] which has not yet been 
seriously studied to date. 

Likewise the singular boundary value problem associated with 

Ly = (1 - x)-«(l + x)-ß((l - x)1+«(l + x)1+ßyj 

set in L2(—1, 1; (1 — x)a(\ + x)P) has not been studied either when a 
and/or ß < -I. 

IV.3. The indefinite Laguerre problem. If a < — 1, the orthogonahzing 
functional for the generalized Laguerre polynomials is 
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where — j — 1 < a < — j . This can be expressed as 

(/' «> = TWTT) J ; ^ ï / W ^ - g<«~/D"(0)-£>, 
or, if integration by parts is performed, 

If/ = 0, this reduces to the classic formula. 
If F = (f9 / ' , . . . , /<>T, G = (g, g', . . . , g(>'T and ^ = (a/w), where 

a/m zzjU-iY+n/U-Z-m + 2 ) ! ( / - l ) ! ( m - 1)!, / + m ^ y + 2 

= 0, / + m > j + 2, 

then, 

Setting/and g in //^([O, 00); x 0 ^ - * ) , we find that 

Poo y 

Jo ^b 

where {•, •} denotes the norm in H(^([0, 00); xa+h~x). Thus, for ele
ments in H{J\ the expression ( / , / ) is finite. The expression {•, •} is called 
a Hilbert majorant for (•, •). The matrix A is the Gram operator of (•, •) 
with respect to {•, •} [5; pp. 77, 89]. Hence (•, •) generates an indefinite 
inner product space H whose elements are precisely those elements in 
//^([O, 00); x«+h-*). 

It can be shown that H can be decomposed into 

H = H+ 0 H-, 

where H+ is the linear space spanned by the Laguerre polynomials satisfy
ing (/, f) > 0, and H~ is the linear space spanned by the Laguerre poly
nomials satisfying ( / , / ) < 0. Further every element/in / /can be expanded 
in terms of the Laguerre polynomials, 

where (a + l)n = (a + 1). . . (a + n). 
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Green's formula exists, but is more complicated. Let /be given by 

/y = -xy" + (1 + a - x)y' = -(xa+1e-xyJlxae-x. 

Then 

(/y, z) - (y, /z) = -\im(x«+i+l(e-*W)W\ 
x->0 

where W = y'z — yzf. In order for a differential operator generated by 
/ to be self-adjoint, the right side of Green's formula must be made to 
vanish by imposing boundary conditions in a symmetric manner. Set 

Bi(y) = lim xa+J+1(e-*W(y, L&\y>\ 
X-+0 

and define @ by 

DEFINITION. We denote by 9) those elements y in H satisfying B{(y) = 0, 
i = 1, . . . , m, where m = (j + 2)/2 if j is even, m = (j 4- l)/2 if j is odd. 

DEFINITION. We denote by if the operator defined by setting ££y = /y 
for all ^ in <3. 

The following theorem can then be proved [16, 17]. 

THEOREM. The operator if is self-adjoint. 

There is more work that needs to be done here, especially on the bound
ary conditions. 

IV.4. The indefinite Bessel polymonial problem. Almost nothing is known 
for the Bessel polynomial problem. Although R. Boas showed [3] that 
there is a function of bounded variation on [0, oo] which acts as a weight 
function, it has not been found. 

Perhaps the best we can say is that the « -̂function expansion does serve 
to make the polynomials orthogonal. The square of the norms generated 
by it alternate in sign, so the boundary value problem, whatever it is, is 
indefinite. 

There are two additional ways to orthogonalize the polynomials. The 
function za~2e~b/z over the unit circle in the complex plane is a complex 
weight function [23]. Related to it, the measure (p defined by 

o(ß) - Ma) = lim - ^- fß Im( - b/z)iFi ( 1, a, - b/z)dx, z = x + is, 
£-*0 Ja 

also renders the polynomials orthogonal (see [18]). As noted earlier, when 
a = b = 2, 
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When a = b = 1, 

<w-<m 
= 5? ̂  £ exp(ro) (FT? s i n ( r o ) + T O COS(TO))JX-
V. Remarks and acknowledgements. The theory of second order singular 

Sturm-Liouville problems and their application to orthogonal polynomials 
is now essentially complete. There remains only some needed polish on 
the spectral resolution of the self-adjoint operators in the limit-circle 
cases. In all the cases discussed, the classic orthogonal polynomials serve 
as excellent examples. 

What has been said for the second order problems can be extended to 
problems of higher order. Again various orthogonal polynomials sets 
serve as excellent examples. There are some new and fascinating examples 
of polynomials satisfying differential equations of fourth or sixth order, 
which are related to but not quite the same as those satisfying the differ
ential equations of second order. Indeed we plan to follow this survey 
with Part II, which will discuss those problems. 

Throughout the years we have discussed this work with many people. 
It is clear that they, too, know and have developed much of what is con
tained herein. It is impossible to separate out who did exactly what, and 
so we hope that mentioning their names will suffice. We thank them all, 
and we apologize to those whose names we have wrongfully omitted. 

We thank H. M. Al Zubaidi, R. A. Askey, F. V. Atkinson, J. V. Baxley, 
R. C. Brown, T. S. Chihara, R. H. Cole, E. A. Coddington, W. N. Everitt, 
C. T. Fulton, E. Grosswald, W. Hahn, D. B. Hinton, R. P. Kanwal, H. 
G. Kaper, R. M. Kauffman, R. R. D. Kemp, I. W. Knowles, T. H. Ko-
ornwinder, H. L. Krall, M. K. Kwong, S. J. Lee, R. T. Lewis, A. B. 
Mingarelli, R. D. Morton, H. D. Niessen, P. G. Nevai, T. Read, J. K. 
Shaw, S. D. Shore, A. Zettl, P. F. Zweifel. 

We encourage others who are interested to join in what remains to be 
done. 
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