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ON BOUNDARY VALUES OF SOLUTIONS
OF A QUASI-LINEAR PARTIAL DIFFERENTIAL EQUATION OF
ELLIPTIC TYPE

J. CHABROWSKI

Introduction. In this article we study traces of generalized solutions of
quasi-linear elliptic equations. We obtain a sufficient condition for a
solution in WL2(Q) to have an L2-trace on the boundary. The results are
then applied to establish an existence theorem for the Dirichlet problem.
The arguments which we give here are based partially on the references
[2] and [4].

The outline of this paper is as follows. §1 contains preliminary work.
§2 deals with the problem of traces for solutions in W}L2(Q). The main
result here is Theorem 1, which justifies the approach to the Dirichlet
problem adopted in §4. In §3 we derive an energy estimate for solutions
of the Dirichlet problem with L2-boundary data.

1. Preliminaries. Consider the quasi-linear elliptic equation of the form

(1) — 32 Dya;;(x, WyDu) + b(x, u, Du) = 0
i, 7=1
in a bounded domain Q = R, with the boundary 9Q of the class C2,
Dy = (Dyu, ..., Du), D;u = ou/ox;.
Throughout this paper we make the following assumptions.
(A) There is a positive constant y such that

rUER = .;laif(x, wé&; = rlél?,
for all £ € R, and (x, u)e Q x (—o0, c0); moreover, a,i{(x, u) are
uniformly continuous on @ x (— o0, 00) and, for every u € (— o0, o),
a;i(-, e CYQ) (i, j =1,.. ., n), and there exists a positive constant K
such that |D.a;(x, u)| £ K, for all (x, u) € Q@ x (-, ®), a;; = aj;;
(,j=1,.., n).

(B) The function b(x, u, s) is defined for (x, u, )€ Q X R,41, s =
(s, . . ., 8,), and satisfies the Carathéodory condition:

(i) for a.e. xe Q, b(x, -, -) is a continuous function on R,,;; and
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(i) for every fixed (u, s) € R,41, b(-, u, s) is a measurable function on
Q. Moreover we assume that

Ib(x, u, s)| < f(x) + L(lul + |s0),

for all (x, u, s) € Q@ x R,.;, where L is a positive constant and fis a non-
negative measurable function on Q such that

50 S(x)2r(x)Pdx < o0,

where 2 £ 0 < 3, r(x) = dist(x, 90).

It is well-known that under assumption (B), b(x, u(x), s(x)) is a measur-
able function of x € Q, where (u(x), s(x)) is a measurable vector function
on Q and

b(X, s ) L}oc(Qyl+1 - L}OC(Q)

is continuous.

In this paper we use the notion of a weak (generalized) solution of
(1) involving Sobolev spaces WL2(Q), W22(Q) and W12(Q) (for the
definition of these spaces see [6] or [7]).

A function u(x) is said to be a weak solution of the equation (1) if
ue WEXHQ) and u satisfies

2) J‘Q< i a;{(x, yDuD;v + b(x, u, Du)v>a'x =0,
i 7=1
for every v e W1.2(Q) with compact support in Q.
It follows from the regularity of the boundary 9Q that there exists
a number §y > 0 such that, for § € (0, dy], the domain

0:; =0 N {x; miaré lx — y| > 0} with the boundary 9Q;,
y<

possesses the property that to each x, € 9Q there is a unique point x;5(xg)
€ 9 Q; such that x5(xp) = xo — 0v(x,), where v(xp) is the outward normal
to 9Q at x;. The inverse mapping to x, — x;(xg) is given by the formula
Xy = X5 + 0v(x5), where ys(x;) is the outward normal to 9Q; at x;.

Let x; denote an arbitrary point of 9Q;. For fixed ¢ € [0, o)

A, =00; N {x:|x — x| < e},
B, = {x; x = X5 + 0vs(%5), )—65€A5},
and

dS,; — h lAel
ds, 09 = lim -5




BOUNDARY VALUES OF SOLUTIONS 225

where |A4| denotes the n — 1 dimensional Hausdorff measure of a set A.
Mikhailov [10] proved that there is a positive number 7, such that

ds;

—2 2
3) 70° = a5, = 76
and

. dSy _
@ im 75, = !

uniformly with respect to x, € 9Q.

According to Lemma 1 in [5 p. 382], the distance r(x) belongs to
C%Q — Q,,) if d, is sufficiently small. Denote by p(x) the extension of the
function r(x) into Q satisfying the following properties: p(x) = r(x) for
x€ Q=05 p(x) Z (3/4)3g in Qy; 771 r(x) = p(x) < 71 r(x) in Q for some
positive constant 7;; 905 = {x; p(x) = 8} for § € (0, d]; and, finally,
20 = {x; p(x) = 0}.

We will use the surface integrals

@) = [ 5[ a0, 9sds Do DD sp(xo()S.
and
7 u (x)
N.5) =j' b3 IO a;/(x, $)sdsD;0(x)D 0(x)dS.,

9Qs ¢, 7=1
where u € WLAQ) and the values u(x;(x)) on 9Q and u(x) on 9Q; are
understood in the sense of traces (see [6, Chapter 6]). It follows from
Lemma 4 in [2] that M, (¢) and N,(9) are absolutely continuous in [§;,
do), for every 0 < 0; < 4.

LEMMA 1. Let u be a weak solution of (1) belonging to W2 (Q). Then
the following conditions are equivalent:
(i) N,(0) is u bounded function on (0, dy);
(i1) folDu(x)|2r(x)dx < co; and
(i) lim;_,y M ,(0) < co.
PROOF. Let 0 < 0 < gy and set

- u(x)(p(x) — 9), for x € Q;,
V) = {0, forxe Q — Q;.

Using v as a test function in (2), we obtain

n n
jo,i,,z=:1 a;;(x, yDsuDju(p — d)dx + .L,, i,;=1 a;;(x, wDsu-u- D pdx

(%)
+ j‘o b(x, u, Du)u(p — d)dx = 0.
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Let us denote the second and third integral in (5) by 7 and J respectively.
Using Green’s theorem, we obtain

I= 5 Z”; D‘.<r @ a; i(x, s)sds)D,-pdx - j f‘_‘ 5" @ D;a;i(x, s)sdsD ;pdx
Qsi,7=1 0 Qsi, =14 0

7 u (x) ” u (%)
- -‘-ao,, MZ__:I .“o a;/(x, s)sdsD;pD ;pdS — 506 -‘,;Z=:1 ".0 a;i(x, s)sdsD;;pdx

7 u (x)
- Lﬁ b3 IO Dya; (x, )sdsD jpdx.

It follows from (A) that there exists a positive constant C;, independent
of §, such that

(6) Il < C1<N,,(5) + jQJude).

By the Young and Holder inequalities, we have

o s T j%wuw(p — d)dx + Cz(j%uz(p — )dx
+ ja, (o — &)= dx + 5 o - 5)0dx),

where a« = § — 2 and C, is a positive constant independent of §. Com-
bining (5), (6) and (7), we obtain

_[ Do = 9)dx = Cy (N,,(a) + j o = Oy + j o o = Oedx

+ I utdx + _[ flo - 5)0dx>.
Q Qs
Now, if N,(0) is bounded on (0, dg], then, by Lemma 5 in [2], for every
0 £ p < 1, there exists a positive constant C such that

j () — O vdx < C,

for every d € (0, Jy/2]. Consequently, the implication (i) = (ii) follows
from the monotone convergence theorem.

To prove (ii) = (iii), note that

N(0)= 50 ‘Z‘ a;;(x, uyDuD ju(p — 9)dx — L} i :(x) a;i(x, 8)sdsD;;odx
54, =1 54,

4, 7=1

- J' i j‘uu) D;a; (x, s)sdsD ;pdx + j b(x, u, Duyu(p — d)dx.
i, j=1J0 @

Now, by Lemma 6 in [2], the condition (ii) implies that, for every 0 <
4 < 1, there exists a positive constant C, independent of g, such that
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[, 100 = Oyvax = ¢,

for g € (0, dy/2]. Thus, using the estimates from the step (i) = (ii), we con-
clude that lim;_,,N,(0) exists by the dominated and monotone convergence
theorem. On the other hand, let

v(x) = '2;1;‘:1 .‘-: ® a;;(x, s)sdsD;p(x)D ;o(x).

Then

N(3)— M 8)= j o, - Lov(xa(x))dS = j' an(xa(x))(Z—gﬁ = 1>dS0.

By (4), dS;/dSy — 0 uniformly as § — 0, and, consequently, lim;_,M ,(5)
exists.

Finally, (iii) = (i) follows from the proof of (ii) = (iii).

2. Traces in L%(@Q). Our next objective is to prove that u has a trace
on 9Q in L%(9Q); that is, u(xs) converges in L%(9Q) as ¢ — 0. To do this
we first show that

u(x3) »n
J2 33 s, dsDiptx) Diptx)
=

converges strongly in L2(9Q) to some function {.

LeMMA 2. Let u € WL Q) be a solution of (1). Assume that one of condi-
tions (i), (ii) or (iii) holds. Then there is a function { € L%0Q) such that

u(xs) »n
limj 5 " 3% 4,005, $)dsD,p(x5) Do) (X)dS,
-0daedo 52

®
= j‘ LT (x)dS.,
2Q

Jor each ¥ € L2(3Q).

PrOOF. By assumption (A), the condition (iii) implies the boundedness
of

on (0, §y). Hence, there exists a sequence 9, — 0 and a function { such that

-“u(m')) i a;{(x5(+), s)dsD;p(x5(-))Djp(x5)(+)

0 ;',]:]

L2(0Q)

v—0

lim j . 50 o '2"31 a,(xs,, $)dsD;p(x3) D 0(xs ¥ (x)dS, = j' LTS,
6=

for each ¥ € L2(9Q). To prove (8) it suffices to show that the function G,
defined on (0, §y) by
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60 = [, [ 35 @i 9dsDip( Do ()

has a continuous extension to [0, d;], for each ¥ e C1(Q).
From (2), taking

_ [T (p(x) — 8), forxeQ;
¥ = {0, forxe Q — Q;

as a test function, we have

G(3) = j' 3 ax, u)D,.uD,.ar(p—a)dx—f 3" j 0 a;(x, $)dsD, ;o0 dx

Qs 4, 7=1 %5
[ 3 [fants dspappas— [ 31 (" Diausr, s o
.“Oﬁ;‘,jz_—zl Soaj(x 5) iP Qai,;——'l 0 1a;5(X, 5) ¥ ax

D - .
+ j ., b 1, DU (o = D)

The integrand on the right is dominated by
Const (|1Dul?p + u? + f20° + u?p=*{2+|D¢|?),

which belongs to L1(Q), where a = § — 2 and Const. is independent of
0. The result follows.

In order to prove the convergence in the norm we use the following
function.

For ¢ € (0, d,] we define the mapping x°: 0 — Q; by

X, for x € Q;

x"(x) = 1
Y5(x) + 5 (x —ya)(x)  forxeQ — 0,

where y;(x) denotes the closest point on 9Q; to x. Thus, x°(x) = x, for
each x € Q;, and x%(x) = x;,2(x), for x € 0. Moreover, p(x%) = §/2 and
x? is uniformly Lipschitz continuous. Note that if ue WL2(Q), then
u(x®) e Wi.2(Q).

Let ¥ € W12(Q). As in the proof of Lemma | we find that

Lag(x) U(x) dS,= — L § 1 5 “® 4%, 5) ds U(x) Dy jo(x) dx

0

- _[ » S “ 4.4(x, 5)ds D; U(x)D,0(x) dx
Q;,7=1J0

(9) n u (x)
‘j 0: 5 o Ditii(x,5)dsU(x) Djp(x) dx

7=1

+ j o 33 i) DD pdx+ j b DU px.
i =1
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LEMMA 3. Let u € WL2(Q) be a solution of (1) such that one of the condi-
tions (i), (i) or (iii) holds. Then there is a function { € L2(9Q) such that

u(xs) »n
57 35 aiiws, 9) ds Diptas) Doty

0 4=
converges to { in L¥9Q) as § — 0.
Proor. Using Lemma 2 and (9), we find that

[, co v as. = Fan,
for all ¥ € WL2(Q). Let
w(x) - j:(x)

As U(x%) € W1.2(Q), we have

2%

2”;1 a;;(x, s) ds D;p(x) D;o(x).

u(d) =n
LT [ 35 a(e, 5) ds Dip(x9)D o) s,
Q 7, 7=1

= j FA(x3(x))dx + j FU(x) dx,
Q—Qs (}]

since x%(x) = x, for every x € Q;. We show that

(10) nmj FW()dx = 0
00 J Q—Q5
and that
u(x0) =n 2
' =li (x® Do(x\D . 5>dS,
(a0 tim f F@Gdr=tim (" 33 0,00, 51ds Dp)D,0()
so that

u(x%) =n
j C2de=limf C(x)j %3 0, $)ds Dp(x*)D 0(x%) dS,
2Q 30 J 9Q 0S4

—lim j' U(x3(x))%dS,,
0—04J 0Q

as x%(x) = x;,5(x) on 9Q. The result will follow from the uniform con-
vexity of L2(aQ).
Setting
u(x) »n
© (4 %5 as(x, 9)ds Dip) Dyo(x)(o(x) = 9).  on s
VX) = 7

0 4 7=1

0, on Q — Qs

in equation (2), we obtain
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” ulx) n
I Z a;j(x,u)D;u D <j' a,k(x, s)ds Do ka> (p — 0) dx
5!9
+ j b(x, u, D ““ tlx, s) ds(p — 8)d
e "),,élso ad(x, ) ds(p — d)dx

” u(x
= — f >3 a;i(x, u)D,-uj : i a,(x, s) ds D,p Dyo D jp dx.
i, j=1 0 JF=
Hence,

lim I F(U(x))dx

u(x) n
—11m< I j a;i(x, s)ds( 3, j a, (x, s)dsD,p ka>D,-,-p dx
Qsi, 1—1 /7, k=1J 0

>

n

_j Q,,,.JZ_I 50 D;a;i(x,s)ds ] fo a,(x, s) ds D,p Dy Djp dx

/, k=1

n u (x) .
- I Q”]Z:l j 0 a;i(x, s)ds D < jo a,(x, s)ds D ,p ka> Djp dx
S L ux)
+ j ‘“'/Z':=1 a;j(x, u) Du D,-</§1 0 a,(x, s)ds D,p ka> (o — 0) dx

+ _" b(x, u, Du) 3] j ;(’”a,k(x, s) ds D,0 Dyo(p — ) dx)

7, k=1

=lim<— L, 3 f a;x, s)ds( 3“7 ,ux, 5)ds D, ka>D,-jp dx
51, 7=1 /,

-0 k=1

- j . j Diay(x, s) ds( 53 [ autx, 5)ds D, Dip) Do dx
61,1—1 /.

s k=1

j j a;i(x, s) ds D; ( Z j a,(x, s)ds D, ka> jp ds
i, ;-1

j Z a;/(x,u) D u<j0 v Zn: a(x, s)ds D,p ka> Do dx>

Qs 4, 7=1 /5 k=1

. n u (%) n u(x)
~tim - D,-(S @l ) ds Dip 33 L a,4(%, s)D,pka>dS

6-0J2Q; =1

. n u(x 2
=lim < . 5 ( )a,-j(x, s)ds D,p D,-p) ds.
Q5 \i,7=1J 0

0—0
Now it remains to prove (10). Note that
[F@ ()| = Const (|u(x)|[u(x*)] + |u(x)||Du(x*)] + | Du()l|Du(x?)|o(x)
+ [Du()||u(x)]o(x) + f(x)u(x?)|o(x)).

By an argument similar to that used in the proof of Theorem 5 in [3] (see
also the proof of Theorem 4 in [2]), one can easily show (11).
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Now we are in a position to formulate our main result of this section.

THEOREM 1. Let u€ WLAQ) be a solution of (1) such that one of the
conditions (i), (ii) or (iii) holds. Then there exists a function ¢ € L% (9Q)
such that

limu(x) = ¢ in L2 (3Q).

PrOOF. By Lemma 3, there exists { € L2 (9Q) such that

% (x3)

lim 32 a,/(x5 8) ds Dyp(xs) Djp(xs) = L in L2 (3Q),

0—0 i 7=1

Now, note that

u(xs) n 172
{05 35 i) ds Dipte) Do) - € s}
6=
IN(
L,
j‘ (j'u(xa)
{ 9 0 i,

(.45

a\Jo 4

This inequality combined with the uniform continuity of a;; and D,p
Djp yields that

IIA

2 172
(@i(x, 5) = a;i(xs, 5)) ds Dyo(x) D,-p(x)> ds,}

-

+

2 172
ai/(xs, 5) ds (Dip() D,0(x) — Dyp(xs)Djp(xs)) ) dS.

1

+

D4 ﬁM= b

i1 (x5, 9) ds Dip(xs) Dyp(xs) = L)) dS..

=1

< |

u (%35)

lim ST a;(x, 5) ds Dyp(x) Djp(x) = C

0—0J 0 i 7=1

in L%9Q). Finally, let 0 < §; < J; < §,. It follows, from (A), that

r#lutes) = uGe)l < (77 35 ase, 9 ds Do) Djoco)

Jj=1

- j‘u(m) i} a;;(x, s) ds D;o(x) D,p(x)) ds,.

i, 7=1

and, consequently, {u(x;)} 0 < § < §, is a Cauchy sequence in L%?2Q)
and the proof of Theorem 1 is thus completed.

3. The energy estimate. Consider the elliptic equation of the form

(1) — 3 Dia;(x, wyDu) + b(x, u, Du) + Au = 0
£, 7=1
in Q, where A is a real parameter.
Theorem | suggests the following approach to the Dirichlet problem.
Let ¢ € L%(9Q). A weak solution u € WLAQ) of (1;)is a solution of the
Dirichlet problem with the boundary condition



232 J. CHABROWSKI
12) u(x) = ¢(x) on 00,

if 1limj_g fag (u(xs(x)) — $(X))? dS, = 0.
We now establish the following energy estimate.

THEOREM 2. Let u € WL Q) be a solution of the Dirichlet problem (1;),

(12). Then there exist positive constants d, Ay and C, independent of u,
such that

2 2 2
Io | Du(x)|2 r(x)dx + o?sgd Iao u(x;)2 dS, + lj% u(x)? dx

< o(f, sooras, + §_fuorrconas),
for A Z Ag.

PROOF. Let v be the test function introduced in the proof of Lemma 1.
Thus, we have

j "y 50 a,/x, 5) sds D;o D, dS,
=— an ,',;Z=:1 j‘o a;i(x, s) sds D;;p dx — So,jo z',;Z=1 D.a;i(x, s) sds D;p dx
+ j . 37 a(x, ) Du Du (o — 0) dx + j'o b(x, u, Du) u(p — 5) dx
5 4, 7=1 5
+j' Ao — 3) dx = 0
Q

As in the proof of Lemma 1 we find that there exists positive constants
C; and C, independent of § such that

2 < 2 2,-a 2(p—
j 6u(x) ds, = C1<j.06u dx + deu 0 dx+ljoau (0—0) dx

(13)
+{ 10w = oy dx + [0 ax)
and
j \Dul(p — 8) dx + Aj u¥p — 0) dx
(14) Qs

§C2<jaou2d5 +j up “dx+j uzdx+jf2 ”dx)

By the boundary condition (12), [39, 42 dx is bounded on (0, do] and,
consequently, fo, % p~¢ dx is bounded independently of ¢ [2, Lemma 5]
Letting 6 — 0 and using (12) and (4), we deduce from (14) that
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Dul? pd f 2 od
jo' ul? pdx + 2 ¥ pdx
< 2 2 2, - 2 0
= C2<LQ¢ das, + jou dx + jou o~ dx + jof 0 dx).
It follows from (13) and (15) that
sup j u? dS;
0<s=d J 2Q;
< 2 2 2 p—a 2 nf
< 03<LQ¢ ds, + _"Qu dx + Lu o dx + jof ¢ dx),

where Cj is a positive constant. Note that

(15)

(16)

di-¢ 1
2 < 2 2
(17) j.ou p Fdx £ sup jao;u as; + T j@u pdx,

I — po<s=a
where m, = infy, p. Taking A sufficiently large and d sufficiently small,
the result follows from (15), (16) and (17).

4. Application to the Dirichlet problem. In this section, we will apply
some of the results of previous sections to establish an existence theorem
of the Dirichlet problem for the quasilinear elliptic equation

(18) = 3 Diay(x, WD) + c(x, wu + Au = f(x)  inQ,

7, 7=1

(19) u(x) = (x)  on dQ,

where ¢ € LA(9Q) and (19) is understood in the sense of the L2-con-
vergence (see (12)). The eigenvalue problem for (18) has been recently
investigated by Boccardo [1].

In this section we adopt the assumption (A) and, moreover, we assume
that the function c(x, u) is bounded on Q x R and satisfies the Cara-
théodory conditions. Finally, we assume that fe L} (Q) and {, f(x)?
r(x)dx < oo, where 2 £ 0 < 3.

THEOREM 3. Let ¢ € LX0Q). There exists a positive constant Ay such
that, for every A Z Ay, the Dirichlet problem admits a unique solution in

Wl%)’cz(Q)'
ProOF. The proof is similar to that of Theorem 3 in [4]. Let {¢,,} be
a sequence of functions in CY(Q) converging to ¢ in L%©9Q). Define

f(X), for X € Ql/m;
0, forxeQ — Qi/m

for m such that 1/m £ §,, and consider the Dirichlet problem

) = {
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(18m) — 3} Dya;(x, u)Du) + c(x, wu + Au = f,(x)  in Q,

5 7=1

(19m) u(x) = @(x)  onaQ

in W1.2(Q). It is easy to see that the Dirichlet form on W1.2(Q) x W1.2(Q),
defined by

a(u, v) = jo (Z”] a;;(x, yyDu Dy + c(x, uyuv + Xuv)dx,

4, =1
is coercive, that is

a(v, v)
liplip 17 2—c0 ||Vf|W1>2(Q)

provided 2 is sufficiently large, say A = A [8, Theorem 2.8 p. 183]. Hence,
for every m the Dirichlet problem (18,), (19,,) admits a solution u,
in W12(Q), provided A2 = A. Here the boundary condition means that
U, — ¢, € lez(Q) which of course implies the boundary condition in the
sense of the L2-convergence. Let A; = max(4, 4g), where 1, denotes the
constant from Theorem 2. By Theorem 2, for every A = A;, we have

IQ’D“MZ pdx + ljo ul pdx + sup u2 dx

0<6<d o 9Q;s
gc(_[ ,g,dx+j'f,2nrodx),
Q Q

form=1,.... Let WL2(Q) be a Sobolev space defined by

WLy Q)= {ue WE2(Q); j‘QIDu(x)IZ r(x) dx + j@ u(x)? dx < oo}
equipped with the norm

T —— ( j DU () dx + j Qu(x)zdx>l/2.

By Theorem 4.11 in [9], W1.2(Q) is compactly embedded in L%(3Q). Con-
sequently, we may assume that u,, converges to a function « in L%(Q) and
a.e. in Q. On the other hand we may also assume that u,, converges weakly
to u in WL.2(Q). It is easy to check that u is a solution of (18) in W1.2(Q).
By Theorem 1, there exists a function { € L%9Q) such that lim;_qu(x;) =
Cin L%9Q). To complete the proof we must check that ¢ = { a.e. on 9Q.
Since, by (A),

7 1€7)] n L (x) 2
Jol B0 aute, 9as DpCoD,p0 -~ 35 (e aix, 3ds Dip(oDs00))

»J=1

ds = 72 flu(xs(+)) — ()l 200 »
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we have
u(xs) n
l FACT) d D,- D;
i 1 55 a5 i) Dt
l(x) »
= _‘0 ,Zl a;/(x, 5) ds D;p(x) D;p(x)
i =

in L%(9Q). Let ¥ € CY(Q). As in the proof of Lemma 2 we find that

7 T (%)
j?Qi;l Io a;(x, 5) ds Dip Do ¥ dS,

= — \“Q i,jZ:l j.o a;-]-(x, S) dS D”p w‘ dx
- ‘[Qijiq j‘;a"j(x’ s)ds D; ¥ D;p dx
— 50 i’jzzl jo D,-a,-j(x, S) ds Djp U dx
¥ IQ i" a;j(x, u)Du D; U p dx +596(x, wul pdx — jofyfpdx.
4, j=1

Similarly, we have

j Z”: j:m a;i(x, 8) ds D;p Djp ¥ dS

9Q4,7=1

= —f i y:mai,-(x, §)ds D;jo U dx

Qi,7=1

_I i 5:"' a;;(x, s)dx D; ¥ Djp

Qi 7=1

_I f‘_' rm D.a;(x, s) ds D;p ¥ dx
Qs,7=14J0

S 5%, ty) Dty D, Upd j ,mmZ[fd—j.(lfd.
+J.Qi,§‘_:‘1a,(x U,) D, D;Wpdx + Qc(xu ) u,, Up dx Qf o dx
By the previous part of the proof we obtain

7 bm
lim hy j'o a;5(x, 5) ds Do Do ¥ dx

m—co J 9Q 1,521
5 (L
= a;/{(x,s)ds D;pD;po U dx,
j.aot_,;:.l_fo A%, 8) o Djp

for any ¥ € CY(Q). Since lim,, . ¢,, = ¢ in L2(3Q) we deduce from the
last relation that
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_f by j“ a;,(x, 5) ds Dyp Do U dx
Qs 7=140

5 (T
- j‘ 3 _f a;(x, s) ds Dyp D,p ¥ dx,
Qs 7=140
for all ¥ € C1(Q) and, consequently, { = ¢ a.e. on 9Q.
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