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ON BOUNDARY VALUES OF SOLUTIONS 
OF A QUASI-LINEAR PARTIAL DIFFERENTIAL EQUATION OF 

ELLIPTIC TYPE 

J. CHABROWSKI 

Introduction. In this article we study traces of generalized solutions of 
quasi-linear elliptic equations. We obtain a sufficient condition for a 
solution in Wfc*{Q) to have an L2-trace on the boundary. The results are 
then applied to establish an existence theorem for the Dirichlet problem. 
The arguments which we giwt here are based partially on the references 
[2] and [4]. 

The outline of this paper is as follows. §1 contains preliminary work. 
§2 deals with the problem of traces for solutions in Wfe?(Q). The main 
result here is Theorem 1, which justifies the approach to the Dirichlet 
problem adopted in §4. In §3 we derive an energy estimate for solutions 
of the Dirichlet problem with L2-boundary data. 

1. Preliminaries. Consider the quasi-linear elliptic equation of the form 

(1) - 2 Di(<*ij(x> u)DjU) + b(x, u, Du) = 0 

in a bounded domain Q a Rn with the boundary dQ of the class C2, 
Du = (Dxu, . . ., Dnu), DjU = du/dxt: 

Throughout this paper we make the following assumptions. 
(A) There is a positive constant y such that 

i,J=l 

for all £ e Rn and (x, u) e Q x (— oo, oo); moreover, a{j(x, u) are 
uniformly continuous on Q x (— oo, oo) and, for every ue( — oo, oo), 
a,-/«, u) e Cl(Q) (/, j = 1,. . ., n), and there exists a positive constant K 
such that \Diuijix, u)\ ̂  K, for all (x, u) e Q x ( - oo, oo), a{j = aH 

(ij = 1,. . ., n). 
(B) The function b(x, u, s) is defined for (x, u, s) e Q x Rn+Ï, s = 

(si, . . ., sn), and satisfies the Carathéodory condition: 
(i) for a.e. x e g , b(x, -, •) is a continuous function on Rn+i; and 
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(ii) for every fixed (u, s) G 7?M+i, b(-, w, 5) is a measurable function on 
Q. Moreover we assume that 

\b(x,u,s)\ èf(x) + L(\u\ + |j|), 

for all (x, w, s)e Q x Rn+i, where L is a positive constant and fis a non-
negative measurable function on Q such that 

1 f(x)2r(x)edx < 00, 

where 2 ^ 0 < 3, r(x) = dist(x, 9 0 . 
It is well-known that under assumption (B), b(x, u(x), s(x)) is a measur­

able function of x e <2, where (w(x), s(x)) is a measurable vector function 
on Q and 

6(x, -, •): LUC)"*-+IUQ) 

is continuous. 
In this paper we use the notion of a weak (generalized) solution of 

(1) involving Sobolev spaces W^{Q\ W2>2(Q) and WX\Q) (for the 
definition of these spaces see [6] or [7]). 

A function u(x) is said to be a weak solution of the equation (1) if 
u G Wfc?(Q) and u satisfies 

(2) f ( f ] ai;(x, u)DiuDjV + b(x, u9 Du)v)dx = 0, 
J Q\i, y=i / 

for every v e W12(Q) with compact support in Q. 
It follows from the regularity of the boundary dQ that there exists 

a number ÖQ > 0 such that, for 5 e (0, <5o], the domain 

Qs = g fi {x; min |x — j>| > 5} with the boundary 9ß«5> 

possesses the property that to each x0 G dQ there is a unique point x5(x0) 
G 9 gô such that x^(x0) = JC0 — <?v(*o)> w n e r e v(*o) *s t n e outward normal 
to dQ at JC0. The inverse mapping to x0 -> x5(x0) is given by the formula 
x0 = x§ 4- <M*sX where V5(JC5) is the outward normal to dQd at x5. 

Let x$ denote an arbitrary point of dQô. For fixed ö G [0, ö0] 

Ä£ = dQs fi {*; I* - x8\ < e}9 

B£ = {x; x = xd + ôv§(xô), xô G A£], 

and 

dSMxs) = um J4L 
rfS0

 v *' ^0 \B,\ ' 
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where \A\ denotes the n — 1 dimensional Hausdorff measure of a set A. 
Mikhailov [10] proved that there is a positive number J-Q such that 

(3) rö2 è^éfo 

and 

(4) l i m ^ = » 
§-+0 UÒQ 

uniformly with respect to x0 e dQ. 
According to Lemma 1 in [5 p. 382], the distance r(x) belongs to 

C2(Q — QÔQ) if ô is sufficiently small. Denote by p(x) the extension of the 
function r(x) into Q satisfying the following properties: p(x) = r(x) for 
x e Q- QÔQ; p(x) ^ (3/4)<50 in QÔQ; 771 r(x) ^ p(x) g ri r(x)in Q f o r s o m e 

positive constant r\\ dQe = {*; p(x) = ö} for ô e (0, <?0]; and, finally, 
dQ = {x; p(x) = 0}. 

We will use the surface integrals 

r n Çu (x$ (x) ) 
Mu(S) = I 2 J 0

 aiÀxfa)> s)sdsDip{xô(x))Djp(xô{x))dSx 

and 
C n fu(x) 

Nu(d) = £ I a„{x, s)sdsDip{x)Djp{x)dSx, 

where w 6 W^Cß) and the values u(xd(x)) on 9ß and u(x) on 9ß5 are 
understood in the sense of traces (see [6, Chapter 6]). It follows from 
Lemma 4 in [2] that Mu (d) and Nu(d) are absolutely continuous in [dÌ9 

<?0], for every 0 < ^ < JO-
LEMMA 1. Let u be a weak solution of (I) belonging to Wfó? (ß). Then 

the following conditions are equivalent: 
(i) NJjS) is u bounded function on (0, d0] ; 

(ii) $Q\Du(x)\2r(x)dx < 00 ; and 
(iii) lim^o MU(S) < 00. 

PROOF. Let 0 < ö < ö0 and set 

(u(x)(p(x) - <?), for x G QÔ9 
V(X) 10, for xeQ-Qô. 

Using v as a test function in (2), we obtain 

I J\ affa, u)DiuDjU(p - S)dx 4- I T. a0{x, ^DiU-u-Djpdx 

+ I b(x9 w, Du)u(p - S)dx = 0. 
JQÖ 
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Let us denote the second and third integral in (5) by / and / respectively. 
Using Green's theorem, we obtain 

/ = I 2 Di\ l aiAx> S)S^S )Djpdx - I 2] 1 Aö*y(*> s)sdsDjpdx 
J Qs i, j=\ \ J 0 / J Q§ i, j=i J 0 

-""l S aij{x,s)sdsDipDjpdS-\ £ I a{j{x, s)sdsD{jpdx 
J BQ5 i, j=l JO J Qs iy j=\ J 0 
r n ru(x) 

- I ZI I DtaiAx> s)sdsDjpdx. 
jQôi,j=lJ0 

It follows from (A) that there exists a positive constant C\, independent 
of 5, such that 

(6) |/| S C^NJLÖ) + f uHx\. 

By the Young and Holder inequalities, we have 

| / | £ - Ç - f |Z)fi|2(p - S)dx + cJ( u\p - S)dx 
(1) 2 JQ5 \JQÖ 

+ f u\p - ô)~a dx + f /(p - <?)W), 

where a — 6 — 2 and C2 is a positive constant independent of 5. Com­
bining (5), (6) and (7), we obtain 

f \Du\2(p - d)dx ^ CJNU(Ô) + f u\p - 3)rfx + f u*(p - J)-«<& 

+ f u2dx + f /(p - d)edx\ 

Now, if #„(<?) is bounded on (0, <50], then, by Lemma 5 in [2], for every 
0 S f* < 1, there exists a positive constant C such that 

f \u(x)\\p{x) - 8)-»dx ^ C, 
JQÔ 

for every ö e (0, do/2]. Consequently, the implication (i) => (ii) follows 
from the monotone convergence theorem. 

To prove (ii) => (iii), note that 

Nu(S) = l S 0*y(*> u)Dt-uDju(p - d)<&: - I 2] I fl*-y(*> s)sdsDiJpdx 

— I X] 1 Diaij(x> s)sdsDjpdx -f I &(.x, w, Du)u{p — S)dx. 
jQöijiiJo JQÔ 

Now, by Lemma 6 in [2], the condition (ii) implies that, for every 0 ^ 
Id < 1, there exists a positive constant C, independent of 5, such that 
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f u(x)2(p(x) - 8)-"dx ^ C, 
JQS IQ8 

for d e (0, <50/2]. Thus, using the estimates from the step (i) => (ii), we con­
clude that \imd^0Nu(ö) exists by the dominated and monotone convergence 
theorem. On the other hand, let 

v(*) = S I a0(x,s)sdsDip(x)DJp(x). 

Then 

Nu(ô)-Mu(ô)=t v(x)dSd-{ v(x§(x))dS={ v ( ^ ) ) ( f - l k 

By (4), dS$/dS0 -> 0 uniformly as 5 -» 0, and, consequently, lim§_>0Mu(d) 
exists. 

Finally, (iii) => (i) follows from the proof of (ii) => (iii). 

2. Traces in L2(dQ). Our next objective is to prove that u has a trace 
on dQ in L2(dQ); that is, u(x8) converges in L2(dQ) as <5 -• 0. To do this 
we first show that 

i Ô S M**» s)dsDip(xô)Dip(xd) 
JO i,j=l 

converges strongly in L2(dQ) to some function £. 

LEMMA 2. Le/ w e J^7óc2(0 be a solution of (I). Assume that one of condì-
tions (i), (ii) or (iii) holds. Then there is a function £ e L2(dQ) such that 

(8) 

lim I I 2 fli7(** s)dsDip(xô)Djp{xô)W(x)dSx 
ö->0JdQj0 i,j±i 

/or each ¥ e L2(3ß). 

PROOF. By assumption (A), the condition (iii) implies the boundedness 
of 

Iß(dQ) 

Il r«W')) n I 
S M**( ' X s)dsDiP(xô(• ))DJP(X8){ • ) 

II Jo ,-,7=i I 

on (0, d0]. Hence, there exists a sequence <?v -> 0 and a function £ such that 

lim J 0,7(^, s)dsDip(xôv)DJp(xô)W{x)dSx^ C(*)ÏX*>K„ 

for each $* e L2(dQ). To prove (8) it suffices to show that the function G, 
defined on (0, <50] by 
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0(8) = f [U(X) t <hfa s)dsDiP(x)Djp(x)W(x)dSd 

has a continuous extension to [0, <50], for each W e C1(ß). 
From (2), taking 

VW 10, for xeQ-Qô 

as a test function, we have 

G(ô)= f J al7(x, uiDiuDfilp-Sjdx-i 2 [U a{j(x, s)dsDijPWdx 

- f S r ^ # A W y ^ - f é [UDt-a0ix9s)dsDj(^dx 
J Qs i, y=i JO J Oa,-, y=i J 0 

+ f Z>(JC, «, Z)n)JF(p - <?)*/*. 
Jo* 

The integrand on the right is dominated by 

Const (\Du\2p + u2 +f2pd + w V ^ + l ^ l 2 ) » 

which belongs to L\Q), where a = 0 — 2 and Const, is independent of 
ö. The result follows. 

In order to prove the convergence in the norm we use the following 
function. 

For ö e (0, 5Q] we define the mapping x0 : Q -» Q§ by 

[ x, for x e Qô 

**(*) = 1 
[ t t t o + y ( * - yaXx) ïorxeQ- Q5, 

where j^(x) denotes the closest point on dQ§ to x. Thus, ^(x) = x, for 
each x e g5, and **(*) = x8/2{x), for x e 3g. Moreover, p{xs) ^ 5/2 and 
x0 is uniformly Lipschitz continuous. Note that if u e Wfe?(Q)9 then 
w(**) e FFi.2(ß). 

Let We W12(Q). As in the proof of Lemma 1 we find that 

f ax)¥(x)dSx=-[ 2 [U(x)a0(x,s)ds¥(x)D0p(x)dx 
J 90 JO i, j=\ J 0 

J Qifj±l JO 
(9) 

- f Ê rWA^^)^rfWi)ypW^ 
J o ,-,7=i J o 

+ f 2 aif(x9u)DiuDJWpdx+[ b(x,u,Du)Wpdx. 
jQi,j=l JO 
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LEMMA 3. Let u e W^(Q)be a solution of (I) such that one of the condi­
tions (i), (ii) or (iii) holds. Then there is a function £ e L2(dQ) such that 

Pu (x$) n 
I S «,•/(**, s) ds DiP(x5) DiP(xô) 

J o *-,7̂ i 

converges to £ in L2(dQ) as ö -> 0. 

PROOF. Using Lemma 2 and (9), we find that 

f Z(x)9r(x)dSx = F(V)9 
JdQ 

for all We W^\Q). Let 

V(x) = [U(X) t ad*> s) ds Di9(x) DjP(x). 

As Wix8) e W12(Q), we have 

C fu (x5) n 

C(*) S M**. ') * DipWDjpM dSx 
JdQ JO ,',7=i 

= f F(W(xS{x))dx + f F(r(jc)) rfxr, 
J 0->Ö5 J 0* 

since x5(X) = x, for every x 6 Qô. We show that 

(10) lim f F(W(xô))dx = 0 
<5->0 J 0-0, 

-0a 

and that 

(11) lim I F(W(x))dx = lim I ( I f ] fll7(x*, j)rfs DïP(xô)Djp(xd) dS, 
d->oJQö 5->oJao\Jo ,-,7=i / 

so that 

/» /* fu(xô) n 
Ç2 </S, = lim £(*) 2 fl,/**, 5 ) * DiP(x*)Djp(x?) dSx 

JdQ «5-0 J 90 Jo «f7==i 

= lim f W(x?{x))2dSx 
d-*0 J dQ 

as X5(JC) = ^5/2W on 3 ß . The result will follow from the uniform con­
vexity of L'KdQ). 

Setting 

(
fu(x) n 

V aa(x, s)ds DiP(x)DjP(x)(P(x) - Ö), on Qd, 

0, on Q - Qs 

in equation (2), we obtain 



230 J. CHABROWSKI 

f 2 a,7(.x, u)DiU DÌ f "{X) J a/k(x, s)ds D/p Dkp)(p - Ö) dx 
JQdi,j=l WO /,k=l / 

+ I b(x, w, Du) Y\ I #4(x, .y) ds(p — S)dx 

= - 1 ZI aoix> u)Diu I L <*/k(x9 s) ds D,p Dkp Djp dx. 
jQdi,j=l JO /tk=i 

Hence, 

lim f F(W(x))dx 
3 JQs <5-K)< 

= l i m ( - l 2] 1 ^7(x, 5-)^ 2] 1 a/,k(x,s)dsD/pDkp)DiJpdx 
o-*0\ J QÔ i, J=i J 0 V, k-\ JO / 

- I H i Diaij(x,s)ds 2 1 «,*(*, 5) <fc Z>,p i V £>yp rfx 
JQdi,j=lJO /,Ar=iJO 

" I S L aij(x, s)ds DA 2 I a/k(x, s)ds D/P Dkp)Djp dx 
J Q§ i, j=\ J 0 V, £=1 JO / 

+ 2 M * . ") Aw A 2 I «,*(*, J) & A40 A P (P - «) dx 
jQôi,j=l \/,k=lJO / 

+ I b(x, u, Du) 2 1 a,k(x, s) ds D,pDkp(p - 5) dx) 
J Qd / , k=i J 0 / 

= H - L 2 L a,j(X,s)ds(2 n a/k(x,s)dsD/PDkp)D0pdx 
o-*0\ J Q5 i, j=i J 0 V, £=i JO / 

- I L L A^/C*, *) M 2 <*/*(*, J) * D/P Dkp Djp dx 
J QÔ i, j=i J o V, k=i Jo / 

- | L L <*o(x, s) ds DA 2 I fl,*(x, J) * Ai» Dkp Djp ds 
J ^ t,j=l JO V, *=l J 0 / 

- I 2 *«•/(*> ") A w ( | * S */*(*> •*) * A p Dkp)DJP dx) 
JQöi,j=l WO /,*=i / / 

= hml - 2 A- 1 al7(x, *) dy Dyp 2 1 a/k(x,s)D/pDkp)dS 

= lim 1 2 1 *i/(*» 5) * A-P A p ^5'-
Ö-+0 J dQô\ij±i J 0 J 

Now it remains to prove (10). Note that 

\F(V(x?))\ g Const (|M(JC)||I/(JCOI + |w(x)||ZM**)| + |/>w(x)||/)w(x5)|p(x) 

+ \Du(x)\\u(x*)\p(x) + f(x)\u(x?)\p(x)). 

By an argument similar to that used in the proof of Theorem 5 in [3] (see 
also the proof of Theorem 4 in [2]), one can easily show (11). 
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Now we are in a position to formulate our main result of this section. 

THEOREM 1. Let u e Wfc2(Q) be a solution of (1) such that one of the 
conditions (i), (ii) or (iii) holds. Then there exists a function <fie L2 (dQ) 
such that 

lim u(x8) = (j) in L2 (dQ). 
<?->o 

PROOF. By Lemma 3, there exists £ e L2 (dQ) such that 

lim J Xd 2 a0ix8, s) ds DiP(xò) DjP(xô) = Ç in L2 (dQ), 

Now, note that 
(C / fu(xs) » \2 ì 1/2 

{J 3ö(J 0 Ä J"(*' S) dS DiP(X) DjP(X) ~ V dSx\ 
(Ç / Çuixg) n \2 U/2 

(C /f»(*a) n \2 U/2 
+ {J a Jj 0 . % M** s) ds ( A p t o DAX) ~ DiP(xô)DjP(xô))) dSx^ 

+ {Jag(£(*5) £ a°(Xh s) ds Dip{xô) Djp(xô) ~ îw)2^}' 
This inequality combined with the uniform continuity of a{j and Dip 

Djo yields that 

lim | f] aa(x, s) ds DiP(x) DjP(x) = Ç 

in L2(dQ). Finally, let 0 < dx < ö2 < ô0. Ft follows, from (A), that 

r2\\u(x52) - u(xh)\\h é \ I ] a0{x, s) ds DiP(x) DjP(x) 
J dQ\J 0 i, j — \ 

and, consequently, {u(x3)} 0 < ö ^ <5o is a Cauchy sequence in L2(dQ) 
and the proof of Theorem 1 is thus completed. 

3. The energy estimate. Consider the elliptic equation of the form 

i\x) - f\ #/(«,•/(*, w)A-w) + Kx, u, Du) + Àu = 0 

in g, where A is a real parameter. 
Theorem 1 suggests the following approach to the Dirichlet problem. 

Let <fi G L2(dQ). A weak solution u G W^2(Q) of (l^)is a solution of the 
Dirichlet problem with the boundary condition 



232 J. CHABROWSKI 

(12) u(x) = <f>(x) on 9ß, 

if \ïm0^0idQ(u(xô(x)) - <j>(x))2 dSx = 0. 
We now establish the following energy estimate. 

THEOREM 2. Let u e W&?(Q) be a solution of the Dirichlet problem (lx), 
(12). Then there exist positive constants d, XQ and C, independent of w, 
such that 

f \Du(x)\2 r(x)dx + sup f u(x§)2 dSx + A f u(x)2 dx 
J Q (Xd^d JdQ jQs 

- c{LQ
<f>(x)2dSx + J/WM*)W), 

/or A è A0. 

PROOF. Let v be the test function introduced in the proof of Lemma 1. 
Thus, we have 

f S \Uaij{x,s)sdsDiPDjpdSx 

= i ZI I atj(x> s) sds DijO dx — I I J] D^Ax, s) sds Djp dx 

+ f L fltf(*> ") A ' " A " (P - 5) tì?X + f £(*> W, Z>w) U(p - 5) <fct 
JQôi,j=i JQÔ 

+ f Aw2(p - 5) dx = 0 

As in the proof of Lemma 1 we find that there exists positive constants 
Ci and C2 independent of ô such that 

(13) 

and 

(14) 

f u(x)2dSx^ cl{ u2dx+[ u2p-adx + x{ u2{p-ô)dx 
JdQô \JQ5 JQÔ JQö 

+ f \Du\2 (p -8)dx+ [ f2pd dx\ 

f \Du\2(p -8)dx + x[ u\p - Ö) dx 

JQô JQÔ 
^ cl f u2 dSx + f w2 p-" dx + f u2 dx + f f2 pe dx). 

\JdQs JQÔ JQÔ JQ / By the boundary condition (12), jdQô u2 dx is bounded on (0, <50] and, 
consequently, $Qô u2 p~a dx is bounded independently of ö [2, Lemma 5] 
Letting <? -• 0 and using (12) and (4), we deduce from (14) that 

file:///JdQs
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I \Du\2 pdx + X I u2 pdx 
(15) J e J° 

g C ^ d S , + l+dx + l^rdx + lffidx) 

It follows from (13) and (15) that 

sup I u2 dSô 
XÔ^d J dQô 

where C3 is a positive constant. Note that 

(17) f u2o-v-dx è f-^~ sup f i/2rfS, + —lx^ f w2 /M**, 

where mrf = införf p. Taking X sufficiently large and d sufficiently small, 
the result follows from (15), (16) and (17). 

4. Application to the Dirichlet problem. In this section, we will apply 
some of the results of previous sections to establish an existence theorem 
of the Dirichlet problem for the quasilinear elliptic equation 

(18) - f\ Diidijix, u)Dju) + c(x, u)u + lu = f(x) in ß , 
f \ j r= l 

(19) u(x) = <f>(x) on 9ß, 

where (f>eL2(dQ) and (19) is understood in the sense of the /^-con­
vergence (see (12)). The eigenvalue problem for (18) has been recently 
investigated by Boccardo [1]. 

In this section we adopt the assumption (A) and, moreover, we assume 
that the function c(x, u) is bounded o n ß x i ? and satisfies the Cara-
théodory conditions. Finally, we assume that fe L2

oc(Q) and J0 f{x)2 

r(x)ddx < 00, where 2 g d < 3. 

THEOREM 3. Let (f> e L2(3ß). There exists a positive constant X0 such 
that, for every X §; X0, the Dirichlet problem admits a unique solution in 
w&KQ). 

PROOF. The proof is similar to that of Theorem 3 in [4]. Let {<j>m} be 
a sequence of functions in Cl(Q) converging to <f> in L2(dQ). Define 

f ( ) = l ^ 9 f0r X e Gl/m' Jm{X) JO, f o r x e ß - ß 1 / w , 

for m such that ì/m ^ <50, and consider the Dirichlet problem 
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(18m) - 2 Di(ßij{x, u)DjU) + c(x9 u)u + lu = /„(*) in Q, 

(19m) u(x) = (j>m{x) on dQ 

in Wl>2(Q). It is easy to see that the Dirichlet form on Wl\Q) x Wl\Q), 
defined by 

a{u, v) = I ( 2 J #,•/#, w)Z),-w Z)yv 4- c(x, w)wv -f Àuvjdx, 

is coercive, that is 

l i m «('.y) = 0 0 ) 

provided A is sufficiently large, say /I ^ 1 [8, Theorem 2.8 p. 183]. Hence, 
for every m the Dirichlet problem (18w), (19m) admits a solution ww 

in Wl>2(Q)9 provided À ^ À. Here the boundary condition means that 
um — <j)me W12(Q) which of course implies the boundary condition in the 
sense of the L2-convergence. Let Ài = max(^, Ào), where ÀQ denotes the 
constant from Theorem 2. By Theorem 2, for every À ^ Ài, we have 

J \Dum\2 p dx + À I ul pdx + sup 1 u2, dx 
Q JQ 0<ö<dJdQo 

for m = 1, . . . . Let ÌV1'2(Q) be a Sobolev space defined by 

^1.2(0 = L G W^2 ( 0 ; f \Du(x)\2 r(x) dx + f w(x)2 Jx < 

equipped with the norm 

INI*™ = ( f |/>w(x)|2 r(*) *c + f u(x)2dx 

00 

1/2 

By Theorem 4.11 in [9], Wl>2(Q) is compactly embedded in L2(dQ). Con­
sequently, we may assume that um converges to a function u in L2(Q) and 
a.e. in Q. On the other hand we may also assume that um converges weakly 
to u in Wl>2(Q). It is easy to check that u is a solution of (18) in Wl>2{Q). 
By Theorem 1, there exists a function £ e L2(dQ) such that lim^0«(^) = 
Ç in L 2 (30 . To complete the proof we must check that <f> = £ a.e. on 3g. 
Since, by (A), 

I S I a0(x, s)ds Dtp(x)Djp(x)- £ I a0-(x9 s)ds Dt-p(x)Djp(x)) 
J dQ\i, j=\ J 0 i, y=i J O / 

dszf\\u(xs(-))-a-)\\vm, 
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we have 

lim I 2 aa{Xy s) ds D{p{x) Djp(x) 

fÇ(x) n 

= I J ] aiAx' s) ds Dtp(x) Djp(x) 

in L2(dQ). Let r e Cl(Q). As in the proof of Lemma 2 we find that 

J 90 ,-,7=1 J0 

= " I Z3 1 au(x> s) ds DoP & dx 
J Q ,-,7=i J 0 

- f s r a«v(^j) * °i w DJP dx 
J Q i, j=i J 0 

- f È [U DiaiJ(x,s)ds Dj-pWdx 
J Q i, j=z\ J 0 

+ f Z3 û.7(*> W)A« A ^ P dx + f c(x, u)uW pdx - [ fW p dx. 

J 0 », j=i J Q J Q 

Similarly, we have 

f n C$m 

I £ I aij{x,s)dsDipDjpWdS 
= - I H ßi;(^> -y) öfa zx-.-p îP" </x 

C n Cum 

- S aij{xis)dxDiW DjP 

- I S i A-fli/te -0 * A*p ^ rf* 
J 0 ,-, y=i J 0 

+ ( S «,•/(*, um) DiUm DjWpdx + I c(x, w j um¥pdx-\ f Wpdx. 

JQi,j=\ JQ JQ 

By the previous part of the proof we obtain 

f n (Vm 

lim I 2 aa(x, s) ds D{p Djp W dx 
m-+oo J dQt,j=i J 0 

= f È fC "ote J) * A P Djp W dx, 

for any W e C1(ß). Since limm_>oo 0W = ^ in L\dQ) we deduce from the 
last relation that 
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f S ^aij{x,s)dsDi9DjpWdx 
J 30 ,,7=1 J 0 

= f È fC ai Ax, s) ds DiP Djp ¥ dx, 
J dQ i, j — \ J 0 

for all W e Cl(Q) and, consequently, £ = 0 a.e. on 3(?. 
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