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CLOSED MAPS AND SPACES WITH 
ZERO-DIMENSIONAL REMAINDERS 

BEVERLY DIAMOND 

ABSTRACT. A O-space is a completely regular Hausdorff space pos
sessing a compactification with zero-dimensional remainder. It is 
well known that any O-space X possesses a maximum compacti
fication F0X having this property. The following question is con
sidered : if f: X -> Y is a closed map, and X, Y are O-spaces, 
under what conditions on X, Y and/or / will / extend to g e C 
(F0X, F0 Y)l It is proved that if Y is rimcompact, then it is (neces
sary and) sufficient that for any distinct pair of points y, z e Y, 
C/FoXf~(y) H CSFdXf~(z) = 0 . This result is used to show that if i) 
X is a realcompact or metacompact O-space and Y is a rimcompact 
space in which the set of q-points has discrete complement, or if ii) 
X is a metacompact O-space or a locally compact realcompact 
space, and y is a rimcompact k-space, then any closed map from X 
into Y extends to a map from F0X into F0 Y. 

1. Introduction and known results. A O-space is a completely regular 
Hausdorff space possessing a compactification with zero-dimensional 
remainder. Such a compactification will be called zero-dimensional at 
infinity (denoted by O.I.). Any O-space X possesses a maximum O.I. 
compactification ([11]) which we denote by F0X. (A discussion of the stan
dard partial ordering on the compactifications of X appears below.) 

Various researchers have considered the following question. If X, Y 
are O-spaces, and / : X -> Y is a closed map, under what conditions on 
X, Y and/or / will / extend to g G C(F0X, F0Y)1 Recall that a space is 
rimcompact if it has a basis of open sets with compact boundaries ([9]). 
Any rimcompact space is a O-space; the converse is not true ([17]). In 
Lemma 1 of [5] it is shown that if X is rimcompact, fe C(X, [0, 1]), and 
the set {ye [0, l]:/*~(j>) contains a compact set K such that X\K can be 
written as U U ^ where U, V are 7r-open in X and U e /"[0, y]9 while 
V cf-[y9 1]} is dense in [0, 1], then/extends to g e C[FQX, [0, 1]). An 
argument in the proof of Theorem 3 of [15] shows that if / : X -> Y is 
closed, X and Y are rimcompact and bdx f*~(y) is compact for each yeY, 
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then/extends to g e C(F0X, F0Y). This result is used to prove Theorem 5 
of [14] which states that if / : X -* Y is a closed map, and if X and Y 
are locally compact and paracompact, then/extends to g e C(F0X9 F0F). 
In Theorem 4 of [16], it is shown that the paracompactness of X and Y can 
be weakened to metacompactness. The method of proof depends heavily 
on the local compactness of X. 

We show in § 2 that if A" is a 0-space and Fis rimcompact, then a closed 
m a p / : X -• Y entends to g e C(F0X, F0Y) if and only if for any distinct 
pair of points y, z e Y, C/FoXf~(y) f] C/FoXf~(z) = 0 . In §3, we apply 
a corollary of this result to several classes of spaces. In particular, we show 
that if X is a metacompact 0-space, Y is a. rimcompact quotient space of a 
locally compact space, and / : X -* Y is a closed map, t h e n / extends to 
g e C(F0X, FQY). Thus we remove the requirement of Theorem 4 of [16] 
that X be locally compact; in fact X need not even be rimcompact. Note 
that since the closed image of a metacompact space is metacompact, Y 
is necessarily metacompact.) 

In the remainder of this section, we present our notation and termino
logy and some known results. All spaces are assumed to be completely 
regular and Hausdorff. The notions used from set theory are standard. 
The symbol o)a is used to denote the a'th infinite cardinal. For any set 
X, \X\ denotes the cardinality of X. A map is a continuous surjection. A 
function/: X -> Fis closed if whenever Fis a closed subset of X9 f[F] is a 
closed subset of F. A closed function/: X -• Fis perfect if for each y e F, 
/"(>') is compact. If A c X, then the boundary of A in X, denoted by 
bdxA, is defined to be the set C/XA f] C/X(X/A). Following the termino
logy of [13] and [17], we say that an open set U of X is 7r-open in X if 
bd^(7is compact. The intersection and union of finitely many 7r-open sets 
are ?r-open, as is the complement of the closure of a 7r-open set. A space 
is zero-dimensional (written O-dimensional) if it has a basis of closed-
and-open (denoted clopen) sets. 

The family JT(X) of (equivalence classes of) compactifications of X 
is partially ordered in the usual way: JX ^ KX if there is a map / : KX -> 
/A'such that/(jc) = x for all x e X; KXis equivalent to JXiffis a homeo-
morphism. For background information on compactifications the reader 
is referred to [3] or [7]. The maximum element of Jf(X), the Stone-Cech 
compactification of X, is denoted by ßX. In the sequel, if KXe J>T(X), 
the natural map from ßXinto .O'is denoted by Kf. If/: X -» Fis a map, 
then the natural map from /3 A'into ß Y extending /wil l be denoted by/0. 

A m a p / : X -+ Fis a WZ-mzp if C/ßxf~(y) = f^{y) for each y G F. 
Theorems 1.1, 1.2 and 1.3 of [10] show that a closed map is a JPZ-map, 
and that the converse is true if either A" is normal, or bdxf~{y) is compact 
for each y e Y. 

The following is an easy consequence of 3.2.1 of [6]. 
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PROPOSITION 1.1 (Taimanov's theorem) : Let KXand KY be compactifica-
tions of X and Y respectively, and let fbe a map from X into Y. There is a 
mapf : KX -> KY such that f'\x = f if and only if for A, B c Y, C/KY A f] 
C/KYB = 0 implies C/KXr\A\ [\ C/KXf-[B] = 0 . 

The next result follows from 1.5 of [8]. 

PROPOSITION 1.2 Let X, Y, KX, KY and fbe as in 1.1. If fis perfect, and 
iff exists, thenf [KX\X] = KY\Y. 

We often call KX\X the remainder of KX. For any space X, the residue 
of X (denoted by R{X)) is the set of points at which X is not locally com
pact. If KX\s any compactification of X, then C/KX(KX\X) = R(X) \J 
(KX\X). 

If U is an open subset of X, and KX e JT(X), then ExKXU is defined to 
be KX\C/KX(X\U). The set ExKXU is often called the extension of U in 
KX. It is an easy exercise to verify that if W is open in KX, then W c 
ExKX(W fi X). Hence if U is any open subset of X, then ExKXU is the 
largest open subset of KX whose intersection with JSTis the set U. The col
lection {ExKXU: U is an open subset of X} of open sets of KX is easily 
seen to be a basis for the topology of KX. 

A compactification KX of X is a perfect compactification of X if for 
each open subset U of X, C/KX(bdxU) = bdKX(LxKXU). According to 
the corollary to Lemma 1 of [17], ßX is a perfect compactification of X. 
If X is a 0-space, then FQX is the minimum perfect compactification of 
*([H]) . 

The equivalence of (i), (ii), (iii) and (iv) of the following proposition 
appears in Theorems 1 and 2 and Lemma 1 of [17]. 

PROPOSITION 1.3 Let KXe JT(X). The following are equivalent. 
(i) KXis a perfect compactification ofX. 

(ii) If U and V are disjoint open sets of X, then ExKX{U U V) = 
LxKXU U LxKXV. 

(iii) For eachp e KX, (Kf)*~{p) is a connected subset ofßX. 
(iv) If A and B are disjoint subsets of X, then C/KXA f] C/KXB = 0 

if and only if C/KXbdxA f] C/KXbdxB = 0. 

If X is rimcompact, then the maximum O.I. compactification of X is 
called the Freudenthal compactification of X, and is denoted by EX. 
If X is rimcompact, and A, B £ X, then C/FXA fl C/FXB = 0 if and 
only if A, B are contained in disjoint 7r-open subsets of X ([9]). If X is 
O-dimensional, then EX = ß0X, where ßo^is the maximum O-dimensional 
compactification of X. 

2. Extending maps into rimcompact spaces. Suppose that / : X -• Y 
is a map, and that KX, AT are compactifications of X and Y respectively. 
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According to 1.1, /extends to g e C(KX, KY) if and only if for C, D 
c Y, C/KYC fl C/KY D = 0 implies C / „ / Ì C ] fl C/M / - [ />] = 0 . 
suppose that y is rimcompact, that KX is a perfect compactification of 
^ and that f: X -> F is a PFZ-map. The following result states that to 
show that/extends to g e C(KX, FY), it suffices to show that C/KXf~(y) 
fl C/Kxf*~(z) = 0» where j and z are distinct points of Y. 

THEOREM 2.1 Suppose that Y is rimcompact, and that f is a WZ-map 
from a space X into Y. If KX is a perfect compactification of X, then the 
following are equivalent. 

(i) f extends to g e C(KX, FY). 
(ii) For any distinct pair of points y, z e Y, C/KXf~(y) Ç] C/KXf~(z) = 

0-
PROOF. Clearly, (i) implies (ii). 
(ii) implies (i). We wish to show that if C, D <= Y and C/FYC fl 

C/FYD = 0 , then C/KXf~[C] f] C/KXf~[D] = 0 . Recall that if Y is 
rimcompact, then C/FYC fl C/FYD = 0 if and only if C and D are 
contained in 7r-open sets of Y whose closures in Y are disjoint. It then 
suffices to show that if C and D are disjoint closed subsets of Y with 
compact boundaries in Y, then C/KXf~[C] f] C/KXf^[D] = 0 . 

We claim that (ii) implies the following statement: if C is a closed 
subset of Y with compact boundary, and y e Y\C, then C/KXf*~{y) fl 
C/Kxf~[C] = 0 - If y e Y\C9 then y $ bdYC. Hence if z e bdYC, i) 
implies that C/KXf*~(y) f| C/KXf*~(z) = 0 . Then there is an open 
set U(z) of A' such that C/KXf~(z) cz ExKXU(z), while C/KXU(z) f] 
C/Kxf~(y) = 0 . As (Kfr[ExKXU(z)] c ExßxU(z), it follows that 
C/ßXf~(z) <= ExßXU(z). Since/is a ^Z-map, C/ßxf-(z) = (fß)~(z). The 
map/0 is closed, hence there is an open set K(z) of ß Y such that (fP)~(z) cz 
(PT[V{z)} cz ExßxU(z). Let W(z)=V(z) (] Y.Thtn f~(z) cz f-[W(z)] cz 
U(z), and so/^[bd rC] c U { /1^(z ) ] : ze bd rC}. It follows that bd rC c 
U{^(z): z ebd F C}. As bd rC is compact, there is a finite subset {zl5 

z2, . . ., z j cz bd rC such that bdYC cz {}{W{zt): \ i% i S n}. Then 
f~[bdYC] cz U { / [ ^ ( ^ ) J : l S i en} cz [J {U(z): ì èi è n}. Since 

c/KXr(y) n c/M^fe) = 0, c/KXr(y) n c/M(u { w : i ^ / ^ 
/i}) = 0 . As bd x / - [C] cz/-[bd rC], C W C F ) fi C/KXbdxnC] = 0 . 
It then follows from 1.3 that C/KXf~(y) fl C/KXf~[C] = 0 , and the 
claim is proved. 

Suppose then that C and D are disjoint closed subsets of Y whose 
boundaries are compact. If p e bdYD, then p $ C, hence C/KXf~(p) fi 
C'tfAr/^tCI = 0 - Then there is an open set Ui(p) of X such that C/KXf*~ 
(p) cz ExKXUi(p), and f~[C] fl C/KXUi(p) = 0 . From an argument 
essentially identical to that in the preceding paragraph, where f~(y) is 
replaced by /^[C], it follows that C/^bdx/*-[/)] fl C / ^ / - [ C ] = 0 . 
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Thus by 1.3, C/KXf~[D] Ç) C/KXf~*[C] = 0 , and the theorem is 
proved. 

Example 4.4 of [4] illustrates that in 2.1 X, 7 and/can be chosen so that 
X is not rimcompact, Y is rimcompact, and / is perfect (and therefore 
extends to g e C(F0Xy FY)). 

DEFINITION 2.2 Let <% = {Ua: a e A} be a collection of open sets of 
X. A subset F of X is ^-compact if there exists a finite subset A' oî A 
such that F c \J{Ua:cceA'}. 

THEOREM 2.3 Let f: X -+ Y be a WZ-map, where X is 0-space and Y 
is rimcompact. Suppose that for any open cover °U of X, Y(fll) is a discrete 
subspace of Y, where Y(fU) = {y e Y: bdx f*~(y) is not ^-compact}. If 
either fis closed, or X is rimcompact, then f extends to g e C(F0X, FY). 

PROOF. According to 2.1, it suffices to show that if y and z are distinct 
points of Y then C/Foxf~(y) fl C/F^xf*~{z) — 0 . Choose y, z e Y such 
that y ^ z. Let V be an open sebset of Y such that j e F , while z <£ C/Y V. 
Then/*~(j>) c f"[V], and f*~(z) fl f^[C^YV]= 0 . We define an open cover 
% of X'm the following way. If xef*~[C/YV], then x $ C/FoXf^(z), so there 
is an open set U(x) of A" such that x e U(x), and C/FoXf*~(z) f] C/FoXU(x) 
= 0 . If x G X\f~[C/YV], then x$ C/FoXf*~(y),so there is an open set V(x) 
of X such that x e V(x) and C/FoXf^(y) fl C/FQXV(X) = 0 . We define 
# = {£/(*): xef~[C/YV]} U {^(x): JC * f^[C/YV]}, which is an open 
cover of X Note that f~(y) f] [\J{V(x): x t r[C/YV}}} = 0 = / - (z ) 
n [ U { ^ W : x G / - [ C / r K ] } ] . 

Let r ( ^ ) = {w e F: bdxf^{w) is not ^-compact}. If y $ Y(fy), then 
bdjf/*"(j>) c U {^(X): 1 ^ i è n} for some finite set {xl5 x2, • • •> ^»} <= 
/ - [C / r K] . Since C/FoJr/-(z) fl C/F^[}{U(Xi): 1 ^ / ^ n}) = 0 , it 
follows from 1.3 that C/FoAr/*~0) fi C/FoXf"(z) = 0» a n d t n e theorem 
is proved. Now suppose that y e Y{%). 

By assumption Y(^l) is a discrete subset of 7, hence there is a 7r-open 
set PFof Y such that j / e ^ c K, and C/YW fl W = {>>}. If/? e b d r ^ , 
then /? <£ 7(^0 so there is an open set U\p) of X which is a finite union of 
elements of <% such that b d ^ O ) c £/'(/>) and C/FoXU'(p) fl C/FoXf-(z) 
= 0 . It follows from 1.3, the choice of °U and the fact that F§X\s a perfect 
compactification of A", that there is an open set W(p) of X such that /*"(/?) 
c ^(p) and C/^JfT/?) fl C/FoXr-(z) = 0 . If * is rimcompact, J^(/?) 
can be chosen to be a ;r-open subset of X. 

We claim that there is an open set W(p) of Y such that f*~(p) <= 
/"[^(Z 7)] ^ W(p). This is obvious if / i s a closed map. Suppose that X 
is rimcompact, and that W(p) is 7r-open in X. Since / is a J^Z-map, an 
easy computation shows that (fß)"(p) = C/ßXf"(p) <= ExßXW(p). Since 
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ft is a closed map, we can again find the desired open set W'(p) of Y, 
and the claim is true. 

Then f^[bdYW] c \}{f~[W'(p)]: pebdYW}, so bdYW c \J{W'(p): 
p e bdrW}. Since bd rWis compact, there is a finite set {pÌ9 p2, . . ., p„} <= 
bdYW such that b d r ^ c U { ^ ' ( A ) : 1 ^ ^ «}. Then / - [ b d ^ ] c 
U { / Ì »"(A-)]: l ^ / ^ } c U{W(P<): 1 ^ ^ " } . As C/FoJr/-(z) f) 
C'FQX W(pt) = 0 , and bdxr[W] <^r[bdYW] it follows that C/FoXf~(z) Ç] 
C/FoXbdxf-[W]=0. Thus by 1.3 C/FoXf-(z) (] C/FoXf-[W] = 0 . 
Since .TOO < = / 1 » a C/Fo*T(z) fi C/FoXf-(y) = 0 and the theorem is 
proved. 

The next result is a special case of 2.3. 

Corollary. 2.4 Suppose that f: X -+ Y is a closed map, where X is a 
0-space and Y is rimcompact. Let Y0 = {y e Y: bdxf*~(y) is not compact}. 
If YQ is a discrete sub space of Y, then f extends to g e C(FQX, FY). 

As mentioned in our summary of known results, it is shown in [15] 
that if X is rimcompact and the set Y0 defined in 2.4 is empty, then the 
conclusions of 2.4 hold. 

3. Applications to several classes of spaces. We now apply the results of 
the previous section to several classes of spaces. 

A space X is a &-space if a subset F of X is closed if and only F fi K 
is compact for each compact subset K of X. It is well known that a space 
A' is a &-space if and only if X is the quotient of a locally compact space, 
and that any first countable space is a A>space. 

The following are 1.3 of [1] and 7.2 (d) of [10] respectively. 

PROPOSITION. 3.1 Suppose that Y is a k-space, and that fis a closed map 
from a space X into Y.If<% is any point-finite open cover ofX, and Yi^U) = 
{ye Y:f*~(y)is not ^-compact}, then Y($l) is a closed discrete sub space of 
Y. 

PROPOSITION. 3.2 Suppose that X is locally compact and realcompact 
and that fis a closed map from X into a space Y. If Y0 = {ye Y: f"(y) is 
not compact}, then Y0 is a closed discrete subspace of Y. 

We point out that although the normality of X is included as a hypo
thesis in 7.2 of [10], it is not required in the proof of 7.2 (d). 

The following shows that the requirement that X be locally compact 
in Theorem 4 of [16] is not necessary. 

THEOREM. 3.3 Suppose that Y is a rimcompact k-space, and that X is 
either (i) locally compact and realcompact, or (ii) a metacompact O-space. 
Iff: X -• Y is a closed map, then f extends to g e C(F0X, FY). 
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PROOF. In the case where X is realcompact and locally compact, the 
theorem follows immediately from 2.4 and 3.2. 

If X is a metacompact O-space, and °U is any open cover of X, choose 
ir to be a point-finite open refinement of %. Clearly Y(%) a Y("T), 
where Yitfl) and Y{yr) are as in 3.1. The theorem then follows from 2.4 
and 3.1. 

We now consider maps into ^-spaces. If x e X, then x is a #-point 
of X if there exists a sequence {N;}^^ of neighborhoods of x such that 
if XjEN;, for j ' eN, and / 7^7 implies that JC,- ^ xj, then the set {JC,: 
1 e N} has an accumulation point in X. A space X is a #-space if every 
point of X is a #-point of X. 

Clearly any first countable or locally countably compact space is a 
#-space. An example of a countably compact space which is not a k-
space is outlined in 1.10 of [2]. The following example shows that a k-
space need not be a #-space. 

EXAMPLE. 3.4 Let Xbe the quotient space R/{N}, where R and N denote 
the real and natural numbers respectively. Since X is the quotient of a 
locally compact space, X is a A>space. We show that {N} is not a q-
point of X. Let {f/„:«eN} bea sequence of open neighbourhoods of N 
in X. For each n e N, let Vn be an open interval of the form (n — rn, 
n 4- rn) which is countained in Un and 0 < rn < 1. If sn = (n + rn)/2, 
for each «, then sn e Un9 and sn ^ sm if « # m, but {.yw: « e N} has no 
accumulation point in X. 

A subset F f a space A" is relatively pseudocompact in X if for each 
/ e C(X), / is bounded on F. Following the terminology of [10], we say 
that a subset F of X has property (*) if inf {f(x) : x e F} > 0 for each 
fe C(X) which is positive on F. It is pointed out in [10] that a pseudo-
compact subset of X has property (*), and that a subset with property 
(*) is relatively pseudocompact. 

DEFINITION. 3.5 A subset F of a space X has property (**) if for any 
point-finite collection °U = {Ua:aeA} of open sets of X covering F, 
there is a finite subset A' of A such that F a [} {CSxUa: a e A'}. 

LEMMA. 3.6 If a subset F of a space X is pseudocompact, then F has 
property (**). If F has property (**) then F has property (*). 

PROOF. The proof of the first statement follows from 9.3 of [7]. Now 
suppose that F has property (**). L e t / e C(X) such that fis positive on 
F. If g = / A 1, then g is positive on F, and inf{g(x): x e F} ^ inf{f(x): 
xeF}. For « e N let U(n) = ^[(l/(/i + 2), I//1)]. Then {J7(/i); « e N } 
is a point-finite collection of open sets of X which covers F Since F has 
property (**), there is a finite subset {/il9 «2, • • .» «m} of N such that F c= 



90 B. DIAMOND 

U{C/xU(ni): 1 ^ *'^ *w}. If m' = max{«!, n2, . . ., nm}9 then F a 
g~[[\l(m' + 2), 1]], hence inf{/(jc): x e F} ^ inf{g(x): x e F} > 0. Thus 
F has property (*). 

It is shown in 2.1 of [12] that iff: X -+ Y is a closed map, and y e Y 
is appoint of Y, then bdxf~(y)is relatively pseudocompact. It follows 
from 3.6, and the remarks preceding 3.5, that the next result generalizes 
this fact. 

PROPOSITION 3.7 Suppose that f: X -> Y is a closed map. If y e Y is a 
q-point of Y, then bdx f~(y) has property (**). 

PROOF. Let °U = {Ua: a G A} be a point-finite collection of open sets of 
X covering bdxf(y). Since / is a closed map, and f~(y) <=• intxf"(y) U 
( U {Ua: a e A}), there is an open set Kof Y such that /^O) <= f*~[C/xV] <= 
intjr/tjO U (U{Ua: a e A}). Let {7Vj/(=N be a sequence of open neigh
bourhoods of y in Y witnessing the fact that y is a g-point of Y. If M,• = 
TV, fi K then {Aff-: / e N} witnesses the fact that y is a #-point of F. 
Suppose that for any finite subset A' of A, bdxf~(y) <£ (J{C/xAa: a e 
A'}. We will construct inductively a closed discrete set {x{: / G N} of X 
such that Xj G f~[Mt] for each /, and f(xt) = f(xj) implies that / = j . 
Let xx e bdxf^{y). Suppose we have chosen x,-, for / < n, such that xt- G 
/ - [ M J and f{xt) * f(Xj) if / # y. Let ^„ = {a G ^ : x, e <7a, 1 ^ i ^ n). 
Since f is a point-finite collection of subsets of X, \An\ < co. Hence 
bdxr(y) <£ U {C/xUa: a G An}. Let Vn = [/-[MJ n (X\[j{C/xUa: a G 
An})]\lf-lf(xd,Äxz),. . ., /(*„)]]. Since f{xt) # j if i > 1 by our inductive 
hypothesis, FMis a non-empty open subset of ^which intersects bdxf~(y). 
Hence there is a point xn G Vn\f~(y). Clearly/(xj # f{xt) for i < «. 

We claim that {*,: Z G N } is a closed discrete subspace of X. Since 
{*,},-eNc= C / x r [ H \ i n t x r W , C/x{Xi: i e N } c C / ^ K ] \ in t*r ( j )c= 
U { [ / a : a e 4 If x G C/x/^[K]\intx/^(j;), then x e Ua for some a e i 
If Xj G f/a, then a G AJ and xw <£ Ua for m > y. So, Ua f] {xz-: / e N} c 
{xi, x2 , . . ., Xy}, and the claim is proved. 

Since fis a closed map, every subset of/[{x,: / G N}] is a closed discrete 
subset of Y. This contradicts the fact that since f{xt) G Nh and f(xt) # 
f{Xj) if / # y, {/(xt) : i G N} has an accumulation point in Y. Thus bdxf~(y) a 
U {C^xUa:a G y4'} for some finite subset /I' of ^ , and so bdxf"(y) has 
property (**). 

We now have the following. 

THEOREM. 3.8 Suppose that Y is rimcompact, and that the set Y0 of non 
q-points of Y is discrete in Y. Iff: X -» Y is closed, where X is (i) a me
tacompact 0-space or ii) a realcompact 0-space, then f extends to g e 
C(F0X, FY). 

PROOF. If y $ Y0, then by 3.7, bdxf-(y) has property (**). If X is real-
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compact, then it follows from 3.6 and the remarks preceding 3.5 that 
bdxf^(y) is compact, since any relatively pseudocompact subset of a 
realcompact space is compact by 8E.1 of [7]. 

We show that if X is metacompact, and bdxf^(y) has property (**), 
then bdxf-(y) is compact. According to 17B.1,17K.2 and 17K.3 of [18], 
it suffices to show that if if = {Va: a e A} is a collection of open sets of 
X such that bdx f~(y) <= U {V<x'>oceA}, then there is a finite subcollection 
of V whose closures cover bdx f*~(y). Let if be such a collection. Then 
ir' = if U {intx/"(^), X\f~{y)\ is an open cover of X. Choose iff to be a 
point-finite open refinement of TT'. Then ^ = {w e if^: W fl bdxf"(y) ^ 
0 } is a point-finite refinement of if which covers bdx f*~{y). Since bdxf~(y) 
has property (**), there is a finite subcollection of ^ whose closures cover 
bdxf~(y). Since % refines TT, there is a finite subcollection of if whose 
closures cover bd xf*~(y). Thus bdxf*~(y) is compact. 

Then if Zis either realcompact or metacompact, andy$ Y0,bdxf^(y) 
is compact. It follows that if Yx = {ye Y:bdxf^(y) is not compact}, 
then Yi cz y0> hence Yx is a discrete subspace of X. Thus by 2 .4 / extends 
to g e C(F0X, FY). 

There are examples of maps of rimcompact spaces which do not extend 
to maps of the respective Freundenthal compactifications. The following 
is Example 1 of [16]. 

EXAMPLE. 3.9 Let X = wi x /, and let Y = /, where / denotes the 
unit interval. Then X is locally compact and Y is compact. L e t / b e the 
projection map from X onto Y. Then/is an open map. Since œ\ is count-
ably compact, / is also closed. However FX is the one-point compacti-
fication of o)i x I. Clearly/does not extend to g e C(FX, I). 

In fact, if X is any countably compact 0-space such that ßX\X is not 
O-dimensional, there exists fe C(X, [0, 1]) such that /does not extend to 
g e C(FX, [0, 1]). For any bounded continuous real-valued function on 
X is closed. Thus if X is not C*-embedded in F0X, (i.e., if F0X ^ ßX), 
there is a closed function from X into I which does not extend over F0X. 
This is not true if "countably compact" is weakened to "pseudocom
pact". 

A collection of infinite subsets of N is called almost disjoint if the 
intersection of two distinct members is finite. Zorn's lemma implies 
that there exists a maximal collection of almost disjoint infinite subsets 
of N. In the following ^ will denote a maximal such collection. The follow
ing topology on N U & is credited to Isbell in [7]. Each point of N is 
isolated, and X e <% has as an open base {{X) U (A\F): Fis a finite subset 
of N}. It is noted in 5/ of [7] that such spaces N U ^ are first countable, 
locally compact, O-dimensional and pseudocompact. 
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THEOREM. 3.10 Letf: N U (% -* Y be a closed map, where Y is any space. 
Then Y is 0-dimensional, and f extends to g e C{F{^ U 0t\FY). 

PROOF. First note that if y e Y\f[&], then f~*(y) is a closed subset of 
N U ^contained inN, hence f*~(y) is a finite subset of N U & contained 
in N. Then f~(y) is open in N \Jûê. Since/is a quotient map, y is isolated 
in Y, hence has a basis of clopen subsets of Y. 

Since @ is a closed discrete subset of N U ^ , and F is a closed map, 
fW\ is a closed discrete subset of Y. Suppose that y^fW\T\, where T 
is closed in Y. Then there is an open subset U of Y such that y e U, U f] 
T = 0 , and U fl fW\ = {j}. Choose V to be open in Y such that .y G 
V a C/YV a U. Then bd rK c r \ / [ ^ ] . Since each point of bd rK is 
isolated in Y, bd rK is open in Y, hence V = C/YV is clopen in Y. It 
follows that Y is 0-dimensional. Then / extends to g G C(/30(N U ^ ) , 
j80y). Since /30(N U ^ ) = ^(N U &) and /30r = FY, the theorem follows. 

DEFINITION 3.11 4̂ map f: X -> 7/5 monotone iff*~(y) is connected for 
each y e Y. 

The following is 4.7 of [4]. 

THEOREM 3.12 Let f: X -> Y be a monotone quotient map, and let KX, 
KY be perfect compactifications of X and Y respectively. Iff extends to 
g € C(KX, KY), then g is monotone. 

COROLLARY 3.13 Suppose that X is a 0-space and Y is rimcompact. If 
there is a perfect monotone map from X into Y, then FQX\Xis homeomorphic 
to FY\Y. 

PROOF. Let f: X -+ y be a perfect monotone map. Then / extends to 
g e C(F0X, FY) by 2.1. Since / is perfect, g~[FY\Y] = F0X\X. As / is 
monotone, it follows from 3.12 that g~(y) is connected for each y e FY\Y. 
Since F0X\X is 0-dimensional, and g*~(y) cz F0X\X, \g~(y)\ = 1. Thus 
gÌF0x\x:

 FQX\X -+ FY\Yis a closed continuous one-to-one map, hence g 
is a homeomorphism. 
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