EXAMPLES OF RP-MEASURES

JOHN N. MCDONALD

Abstract

We call a measure on the torus T^{2} an $R P$-measure if its Poisson integral is the real part of a holomorphic function. Let $R P_{1}$ denote the set of $R P$-measures which are non-negative and have total mass one. We construct an extreme element μ of $R P_{1}$ such that the closed support of μ is all of T^{2}. We also construct an $R P$-measure which is not an extreme point, but which belongs to a proper weak* closed face of $R P_{1}$, is absolutely continuous with respect to Haar measure, and satisfies a certain necessary condition on extreme elements of $R P_{1}$.

The well known theorem of Herglotz asserts that, if u is a positive harmonic function on the open unit disk D , then there is a unique positive Borel measure μ on the unit circle T such that

$$
\begin{equation*}
u(z)=\int_{T} P_{z}(x) d \mu(x), \tag{1}
\end{equation*}
$$

where $P_{z}(x)$ denotes the Poisson kernel $\operatorname{Re}(x+z) /(x-z)$. An equivalent way to state Herglotz's theorem is the following. Let f be holomorphic in D, have positive real part and satisfy $f(0)=1$. Then there is a unique probability measure μ_{f} on T such that

$$
\begin{equation*}
\operatorname{Re} f(z)=\int_{T} P_{z}(x) d \mu_{f}(x) \tag{2}
\end{equation*}
$$

It is clear from (2) that the correspondence $M_{1}(f)=\mu_{f}$ is a bijection between the convex sets $P(T)=$ Borel probability measures on T and

$$
\mathscr{P}_{1}=\{f \mid f \text { holomorphic in } D, \operatorname{Re} f>0, f(0)=1\} .
$$

Also, if \mathscr{P}_{1} and $P(T)$ are equipped with the topology of uniform convergence on compacta and the weak* topology respectively, then M_{1} is continuous. Moreover, M_{1} is affine, i.e., it preserves convex combinations. It follows that

$$
M_{1}\left(\mathrm{ex} \mathscr{P}_{1}\right)=\operatorname{ex} P(T)
$$

[^0]where ex \mathscr{P}_{1} denotes the set of extreme points of \mathscr{P}_{1}. Since the extreme points of $P(T)$ are exactly the measures supported by singletons, it follows that $f \in \operatorname{ex} \mathscr{P}_{1}$ if and only if
\[

$$
\begin{equation*}
\operatorname{Re} f(z)=\int_{T} P_{z}(x) d \delta_{y}(x) \tag{3}
\end{equation*}
$$

\]

for some $y \in T$, where δ_{y} denotes the unit point mass measure concentrated at y.

When the disk D is replaced by the bi-disk $D \times D$, there is an analogue of (1). Namely, if $u(z, w)$ is positive on $D \times D$ and harmonic in each variable, then there is a unique positive measure μ on the torus T^{2} such that

$$
u(z, w)=\int_{T^{2}} P_{z}(x) P_{z}(y) d \mu(x, y)
$$

Thus, as in the one-dimensional case, we have a mapping $M_{2}: \mathscr{P}_{2} \rightarrow$ $P\left(T^{2}\right)$, where

$$
\mathscr{P}_{2}=\{f \mid f \text { holomphic on } D \times D, \operatorname{Re} f>0 \text { and } f(0,0)=1\}
$$

and $M_{2}(f)$ is the unique probability measure μ_{f} which satisfies

$$
\operatorname{Re} f(z, w)=\int_{T^{2}} P_{z}(x) P_{w}(y) d \mu_{f}(x, y)
$$

Like M_{1}, the mapping M_{2} is affine, continuous, and one-to-one, but, in contrast to the one dimensional case, M_{2} is not onto. In fact, it is easy to show that $\mu \in M_{2}\left(\mathscr{P}_{2}\right)$ if and only if $\int_{T^{2}} x^{p} y^{q} d \mu(x, y)=0$ for all pairs of integers (p, q) with $p q<0$. The set $M_{2}\left(\mathscr{P}_{2}\right)$ will, from now on, be denoted by $R P_{1}$. Since $R P_{1}$ is weak* compact and convex, it must have extreme points, but the problem of describing the extreme points of $R P_{1}$ posed by Rudin in [6], does not have such an easy solution as the problem of describing the extreme points of $P(T)$. Note, in particular, that $P R_{1}$ cannot contain point masses.

In this paper we present two examples. In our first example we show that if g is an appropriately chosen inner function, then

$$
G(z, w)=\frac{(1-i g(w))(1+i z)}{1-z g(w)}+i g(0)
$$

is an extreme element of \mathscr{P}_{2} having the property that $\mu_{G}=M_{2}(G)$ is an extreme $R P_{1}$ measure whose closed support is all of T^{2}. (Note the contrast with (3).) Our second example is a member of \mathscr{P}_{2} of the form

$$
F_{0}(z, w)=\frac{\left.1+z^{n} f_{0} w / z\right)}{\left.1-z^{n} f_{0} w / z\right)}
$$

where f_{0} is a certain polynomial of degree $n \geqq 2$. We show that F_{0} satisfies a necessary condition on the extreme points of \mathscr{P}_{2}, given by Forelli in [1], that $\mu_{F_{0}}=M_{2}\left(F_{0}\right)$ is absolutely continuous with respect to the usual Lebesgue measure on T^{2}, and that $\mu_{F_{0}}$ belongs to a proper weak* closed face of $R P_{1}$. Unfortunately, the example F_{0} happens not to be an extreme element of \mathscr{P}_{2}. Nevertheless, it suggests a conjecture which relates to another question raised by Rudin in [6], namely, does there exist an extreme element of $R P_{1}$ which is absolutely continuous with respect to Lebesgue measure on T^{2} ? In constructing our examples we will develop some results which are, perhaps, of some independent interest.

Example A. This example is derived from the following
Theorem 1. Let g be an inner function on D such that $g(0)$ is real. Then

$$
\begin{equation*}
G(z, w)=\frac{(1-i g(w))(1+i z)}{1-z g(w)}+i g(0) \tag{4}
\end{equation*}
$$

is an extreme element of \mathscr{P}_{2}. (See [2] for a discussion of inner functions.)
Before giving a proof of Theorem 1 we will show how it leads to our example. We choose g such that it has no analytic continuation across any sub-arc of T. (For example, we could take g to be the Blaschke product

$$
g(w)=\prod_{n=1}^{\infty} \prod_{k=0}^{n-1} \lambda_{n}^{k}\left(\frac{\left.1-2^{-n}\right) \lambda_{n}^{k}-w}{1-\left(1-2^{-n}\right) \lambda_{n}^{k} w}\right)
$$

where $\lambda_{n}=\exp (2 \pi i / n)$. Of course, the crucial property possessed by this g is that its zeros accumulate at every point of T.) It is easy to show that if W is an open subset of T^{2}, then G cannot have an analytic continuation across W. It follows from a result due to Rudin [5, p. 23], that $\mu_{G}(W)>$ 0 . Thus, the closed support of μ_{G} is all of T^{2}.

Proof of Theorem 1. Define a measure ν_{0} on T^{2} via

$$
\int_{T^{2}} h(x, y) d \nu_{0}(x, y)=\int_{T} h(\overline{g(y)}, y)|d y|
$$

for $h \in C\left(T^{2}\right)$. Here, $C\left(T^{2}\right)$ denotes the space of continuous complex valued functions on T^{2} and $|d y|$ denotes the element of arc-length on T normalized so that $\int_{T}|d y|=1$. We remark that the Poisson integral of ν_{0} is

$$
\operatorname{Re}\left(\frac{1+z g(w)}{1-z g(w)}\right)
$$

Note that $\nu_{0} \in R P_{1}$, for, if $n, m>0$, then

$$
\int_{T^{2}} x^{-n} y^{m} d \nu_{0}(x, y)=\int_{T}(g(y))^{n} y^{m}|d y|=0
$$

Consider
$\mathscr{F}\left(\nu_{0}\right)=\left\{\nu \in R P_{1} \mid \nu\right.$ is absolutely continuous with respect to $\left.\nu_{0}\right\}$.
It is evident that ex $\mathscr{F}\left(\nu_{0}\right) \subseteq \operatorname{ex} R P_{1}$. The previous statement tells us nothing, however, unless we know that ex $\mathscr{F}\left(\nu_{0}\right) \neq \varnothing$. Since $\mathscr{F}\left(\nu_{0}\right)$ is not necessarily weak* closed, we cannot assert the existence of extreme elements of $\mathscr{F}\left(\nu_{0}\right)$ via the Krein-Milman theorem. Nevertheless, we will show that μ_{G}, where G is given by (4), is an extreme element of $\mathscr{F}\left(\nu_{0}\right)$.

Let $\nu \in \mathscr{F}\left(\nu_{0}\right)$. Define a measure ρ_{ν} on T via

$$
\int_{T} f(y) d \rho_{\nu}(y)=\int_{T^{2}} f(y) d \nu(x, y)
$$

where $f \in C(T)$. It is claimed that ρ_{ν} is absolutely continuous with respect to Lebesgue measure on T. Let $K \subseteq T$ be closed and have Lebesgue measure 0 . Let $f \in C(T)$ be chosen such that $f_{0}(y)=1$ for $y \in K$ and $\left|f_{0}(y)\right|$ <1 for $y \in T \backslash K$. Let $\varepsilon>0$ be given. Choose $H_{0} \in C\left(T^{2}\right)$ such that

$$
\begin{equation*}
\int_{T^{2}}\left|\frac{d \nu}{d \nu_{0}}-H_{0}\right| d \nu_{0}<\varepsilon \tag{5}
\end{equation*}
$$

Then, for $n=1,2, \ldots$, we have

$$
\begin{aligned}
\left|\int_{T}\left(f_{0}(y)\right)^{n} d \rho_{\nu}(y)\right| & =\left|\int_{T^{2}}\left(f_{0}(y)\right)^{n} d \nu(x, y)\right| \\
& \leqq\left|\int_{T^{2}}\left(f_{0}(y)\right)^{n} H_{0}(x, y) d \nu_{0}(x, y)\right|+\varepsilon \\
& \left.\leqq \mid \int_{T}\left(f_{0}(y)\right)^{n} H_{0}(\overline{g(y}), y\right)|d y| \mid+\varepsilon
\end{aligned}
$$

Letting $n \rightarrow \infty$, we obtain $\rho_{\nu}(K) \leqq \varepsilon$. Since ε was chosen arbitrarily from $(0, \infty)$, it follows that $\rho_{\nu}(K)=0$. Thus, the measure ρ_{ν} is absolutely continuous with respect to arc-length measure on T.

Now define a measure $\bar{\nu}$ via

$$
\left.\int_{T^{2}} h(x, y) d \tilde{\nu}(x, y)=\int_{T} h(\overline{g(y}), y\right) d \rho_{\nu}(y), \quad h \in C\left(T^{2}\right)
$$

We will show that $\bar{\nu}=\nu$ by showing that

$$
\int_{T^{2}} k(x, y) d \tilde{\nu}(x, y)=\int_{T^{2}} k(x, y) d \nu(x, y)
$$

for every $k \in C(D \times D)$ such that $|k| \leqq 1$. Let $\varepsilon>0$ be given. Choose H_{0} as in the previous paragraph. Choose $r \in(0,1)$ such that

$$
\begin{equation*}
\left.\mid \int_{T} k(\overline{g(r y}), y\right) H_{0}(\overline{g(y)}, y)|d y|-\int_{T} k \overline{(\overline{g(y}), y)} H_{0}(\overline{g(y)}, y)|d y| \mid<\varepsilon \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\mid \int_{T} k(\overline{g(r y}), y\right) d \rho_{\nu}(y)-\int_{T} k(\overline{\operatorname{g}(y)}, y) d \rho_{\nu}(y) \mid<\varepsilon . \tag{7}
\end{equation*}
$$

From (5) and the definition of ν_{0}, we have

$$
\begin{equation*}
\left.\mid \int_{T^{2}} k(x, y) d \nu(x, y)-\int_{T} k(\overline{g(y)}, y) H_{0}(\overline{g(y}), y\right)|d y| \mid<\varepsilon . \tag{8}
\end{equation*}
$$

From (6) and (8), we have

$$
\left.\left.\mid \int_{T^{2}} k(x, y) d \nu(x, y)-\int_{T} k(\overline{g(r y}), y\right) H_{0}(\overline{g(y}), y\right)|d y| \mid<2 \varepsilon .
$$

From the definition of ν_{0} and from the continuity of $y \rightarrow g(r y)$, it follows that

$$
\left.\mid \int_{T^{2}} k(x, y) d \nu(x, y)-\int_{T} k(\overline{g(r y}), y\right) H_{0}(x, y) d \nu_{0}(x, y) \mid<2 \varepsilon .
$$

Again, using (5), we have

$$
\left.\mid \int_{T^{2}} k(x, y) d \nu(x, y)-\int_{T^{2}} k(\overline{g(r y}), y\right) d \nu(x, y) \mid<3 \varepsilon
$$

From the definition of ρ_{ν}, it follows that

$$
\left.\mid \int_{T^{2}} k(x, y) d \nu(x, y)-\int_{T} k(\overline{g(r y}), y\right) d \rho_{\nu}(y) \mid<3 \varepsilon
$$

Using (7), we have

$$
\left|\int_{T^{2}} k(x, y) d \nu(x, y)-\int_{T} k(\overline{g(y)}, y) d \rho_{\nu}(y)\right|<4 \varepsilon .
$$

Finally, by the definition of $\tilde{\nu}$, we have

$$
\left|\int_{T^{2}} k(x, y) d \nu(x, y)-\int_{T^{2}} k(x, y) d \tilde{\nu}(x, y)\right|<4 \varepsilon
$$

Since ε is an arbitrary positive number, it follows that $\int k d \nu=\int k d \tilde{\nu}$. Thus, $\nu=\tilde{\nu}$.

The argument above shows that

$$
\left.\int_{T^{2}} h(x, y) d \nu(x, y)=\int_{T} h(\overline{g(y}), y\right) D_{\nu}(y)|d y|
$$

for every $h \in C\left(T^{2}\right)$, where $D_{\nu}=\left(d \rho_{\nu}\right) /|d y|$. Taking $h(x, y)=x^{-1} y^{n}$, where n is a positive integer, and using the fact that $\nu \in R P_{1}$, we have

$$
\int_{T} y^{n} g(y) D_{\nu}(y)|d y|=0
$$

It follows that $F_{\nu}=f D_{\nu}$ belongs to the Hardy space H_{1}. (See [2, Chapt. 4] for a discussion of H_{1}, the F. and M. Riesz Theorem, and related topics.) It is now clear that the mapping $\nu \rightarrow F_{\nu}$ is an affine bijection between $\mathscr{F}\left(\nu_{0}\right)$ and a convex subset of

$$
R_{g}=\left\{F \in H_{1} \mid F \bar{g} \geqq 0 \text { and } \int_{T} F(y) \overline{g(y)}|d y|=1\right\} .
$$

In fact, it is easy to show that each $F \in R_{g}$ is of the form F_{ν} for some $\nu \in \mathscr{F}\left(\nu_{0}\right)$. It follows that ν is an extreme element of $\mathscr{F}\left(\nu_{0}\right)$ if and only if F_{ν} is an extreme element of R_{g}. In [3, example 3] we showed that the extreme elements of R_{g} are exactly the outer functions which lie in R_{g}. (See [2] for a discussion of outer functions.) An example of an outer function in R_{g} is $F_{1}=(2 i)^{-1}(g+i)^{2}$. (Note the fact that $F_{1} \in R_{g}$ depends on $g(0)$ being real.) The measure ν_{1} such that $F_{1}=F_{\nu_{1}}$ is given by

$$
\left.\int_{T^{2}} h(x, y) d \nu_{1}(x, y)=\int_{T} h(\overline{g(y}), y\right)(1+\operatorname{Im} g(y))|d y| .
$$

We will now calculate the Poisson integral of ν_{1}. Let $z, w \in D$. Then

$$
\begin{aligned}
\int_{T^{2}} P_{z}(x) P_{w}(y) d \nu_{1}(x, y) & =\sum_{n=1}^{\infty} z^{-n} \int_{T^{2}} x^{n} P_{w}(y) d \nu_{1}(x, y) \\
& +\sum_{n=0}^{\infty} z^{n} \int_{T^{2}} x^{-n} P_{w}(y) d \nu_{1}(x, y)
\end{aligned}
$$

For $n>0$, we have

$$
\begin{aligned}
\int_{T^{2}} x^{n} P_{w}(y) d \nu_{1}(x, y) & \left.=\int_{T} \overline{g(y}\right)^{n} P_{w}(y)(1+\operatorname{Im}(g(y))|d y| \\
& \left.\left.=\overline{g(w})^{n}+(2 i)^{-1}(\overline{g(w})^{n-1}-\overline{g(w}\right)^{n+1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{T^{2}} x^{-n} P_{w}(y) d \nu_{1}(x, y) & =\int_{T} g(y)^{n} P_{w}(y)(1+\operatorname{Im}(g(y))|d y| \\
& =g(w)^{n}+(2 i)^{-1}\left(g(w)^{n+1}-g(w)^{n-1}\right)
\end{aligned}
$$

Also,

$$
\int_{T^{2}} P_{w}(y) d \nu_{1}(x, y)=1+(2 i)^{-1}(g(w)-\overline{g(w)}) .
$$

A straightforward calculation now shows that

$$
\int_{T^{2}} P_{z}(x) P_{w}(y) d \nu_{1}(x, y)=\operatorname{Re}\left(\frac{1-i g(w)(1+i z)}{1-z g(w)}\right)
$$

Since ν_{1} is an extreme element of $R P_{1}$, it follows that

$$
G(z, w)=\frac{(1-i g(w))(1+i z)}{1-z g(w)}+i g(0)
$$

is an extreme element of \mathscr{P}_{2}.
Example B. Consider a function $F \in \mathscr{P}_{2}$. For $\lambda, z \in D$, we have the expansion

$$
\begin{equation*}
F(z, \lambda z)=1+2 \sum_{n=1}^{\infty} F_{n}(\lambda) z^{n} \tag{9}
\end{equation*}
$$

where $F_{n}(\lambda)$ is a polynomial in λ of degree $\leqq n$, which satisfies sup $\lambda_{\in D}\left|F_{n}(\lambda)\right|$ $\leqq 1$. Let \mathscr{U}_{n} denote the set of polynomials of degree $\leqq n$ which are bounded in absolute value by 1 on D. Of course \mathscr{U}_{n} is a compact convex set of (complex) dimension $n+1$. Let $f \in \operatorname{ex} \mathscr{U}_{n}$, where $n>1$. Consider the set

$$
\mathscr{F}(f, n)=\left\{F \in \mathscr{P}_{2} \mid F_{n}(\lambda)=f(\lambda)\right\} .
$$

It is easy to see that $\mathscr{F}(f, n)$ is a proper face of \mathscr{P}_{2} which is closed in the topology of uniform convergence on compact subsets of $D \times D$. Furthermore, we have the following

Theorem 2. For $n>1$ and $f \in \operatorname{ex} \mathscr{U}_{n}, \mathscr{F}(f, n)$ contains an extreme element of \mathscr{P}_{2}.

Proof. Since $\mathscr{F}(f, n)$ is a compact convex set, by the Krein-Milman theorem it suffices to show that $\mathscr{F}(f, n)$ is non-empty. Thus, the observation that

$$
F(z, w)=\frac{1+z^{n} f(w / z)}{1-z^{n} f(w / z)}
$$

belongs to $\mathscr{F}(f, n)$ completes the proof.
The interested reader can check that Theorem 2 is simply a re-phrasing of Example 4 of [3]. Also, Examples 1 and 2 of [3] correspond to the cases in which $f(\lambda)=\lambda$ and $f(\lambda)=\lambda^{m}$ respectively. A natural idea, then, is to study the case in which f is an extreme element of \mathscr{U}_{n} which is not of the form $c \lambda^{k}$. It requires a little work, however, to show that such extreme elements of \mathscr{U}_{n} exist. We will show below that, for $n \geqq 2$, there is a polynomial $f_{0} \in \mathscr{U}_{n}$ having the following properties:

$$
\begin{equation*}
f_{0}^{-1}(T) \backslash D=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\} \tag{10}
\end{equation*}
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are distinct points of T; and

$$
\begin{equation*}
f_{0} \in \operatorname{ex} \mathscr{U}_{n} . \tag{11}
\end{equation*}
$$

Let $x_{1}, x_{2}, \ldots, x_{n}$ be distinct points of T. And let $K^{-1}=\sup \prod_{j=1}^{n} \mid x-$ $\left.x_{j}\right|^{2}$. Since $1-K \prod_{j=1}^{n}\left|e^{i t}-x_{j}\right|^{2}$ is a non-negative trigonometric polyno-
mial, it follows from a well known result of Fejer and Riesz [4, p. 259] that there is a polynomial $h \in \mathscr{U}$ of degree n such that

$$
\left.h\left(e^{i t}\right)\right|^{2}=1-K \prod_{j=1}^{n}\left|e^{i t}-x_{j}\right|^{2}
$$

Note that $\left|h\left(x_{j}\right)\right|=1$, for $j=1,2, \ldots, n$, and that h is not of the form $c z^{n}$. Consider

$$
E=\left\{g \in U_{n} \mid g\left(x_{i}\right)=h\left(x_{i}\right), i=1,2, \ldots, n\right\}
$$

It is easy to see that E is a proper face of \mathscr{U}_{n} and can contain $c z^{n}$, for at most one value of c. Note also that $h \in E$. It follows from the Krein-Milman theorem that E has an extreme point f_{0} which is not of the form $c z^{n}$. It is claimed that $f_{0}(x) \notin T$ for $x \neq x_{i}, i=1,2, \ldots, n$. The set $T \cap$ $f_{0}^{-1}(T)$ contains $x_{1}, x_{2}, \ldots x_{n}$. Suppose $x_{0} \in T \cap f_{0}^{-1}(T)$ where $x_{0} \neq x_{i}$, $i=1,2, \ldots, n$. Then the trigonometric polynomial

$$
g_{0}\left(e^{i t}\right)=1-\left|f_{0}\left(e^{i t}\right)\right|^{2}
$$

has degree $\leqq n$ and vanishes at more than n points. It follows from the result of Fejer and Riesz mentioned above that $g\left(e^{i t}\right)=0$, for all $t \in$ $[0,2 \pi)$. Thus, $\left|f_{0}(x)\right|=1$ for every $x \in T$. By Schwarz reflection it must follow that f_{0} is of the form $c z^{n}$. This contradiction shows that f_{0} satisfies (10). That f_{0} also satisfies (11) follows from the fact that f_{0} is an extreme element of the face E.
(The author is indebted to the referee for this proof of the existence of an $f_{0} \in U_{n}$ satisfying (10) and (11). The original proof submitted was much longer.)

Given f_{0}, we define an element F_{0} of $\mathscr{F}\left(f_{0}, n\right)$ by

$$
F_{0}(z, w)=\frac{1+z^{n} f_{0}(w / z)}{1-z^{n} f_{0}(w / z)}
$$

We will show below that F_{0} is not an extreme element of \mathscr{P}_{2}. However, F_{0} is in some sense close to being extreme, for, besides belonging to a proper closed face of \mathscr{P}_{2}, namely, $\mathscr{F}\left(f_{0}, n\right)$, it possesses another property in common with the extreme elements of \mathscr{P}_{2}. We are referring to a necessary condition on members of ex \mathscr{P}_{2} given by Forelli in [1]. Forelli's condition may be described in our context as follows. Each $F \in \mathscr{P}_{2}$ may be written uniquely in the form

$$
F(z, w)=\frac{1+f(z, w)}{1-f(z, w)}
$$

where f is analytic on $D \times D, f(0,0)=0$, and

$$
\begin{equation*}
\sup _{z, w \in D}|f(z, w)| \leqq 1 \tag{12}
\end{equation*}
$$

The function of f is said to be irreducible if, whenever $f=f_{1} f_{2}$, where f_{1} and f_{2} are analytic on $D \times D$ and satisfy (12), then either f_{1} or f_{2} is a constant of modulus 1 . Forelli proved that, if $F \in \operatorname{ex} \mathscr{P}_{2}$, then f is irreducible. We will show that

$$
\tilde{f}_{0}(z, w)=z^{n} f_{0}(w / z)
$$

is irreducible. Suppose that $\tilde{f}_{0}(z, w)=f_{1}(z, w) f_{2}(z, w)$, where f_{1} and f_{2} are analytic in $D \times D$ and satisfy (12). Letting $w=\lambda z$, we have

$$
z^{n} f_{0}(\lambda)=f_{1}(z, \lambda z) f_{2}(z, \lambda z)=\left(\sum_{k=0}^{\infty} f_{1, k}(\lambda) z^{k}\right)\left(\sum_{k=0}^{\infty} f_{2, k}(\lambda) z^{k}\right)
$$

where $f_{i, k}(\lambda)$ is a polynomial of degree $\leqq k$ satisfying $\sup _{\lambda \in D}\left|f_{i, k}(\lambda)\right| \leqq 1$ for $i=1,2$ and $k=0,1,2 \ldots$ Let p and q be, respectively, the first integers such that $f_{1, p}(\lambda) \neq 0$ and $f_{2, q}(\lambda) \neq 0$. Then we may write

$$
f_{0}(\lambda)=f_{1, p}(\lambda) f_{2, q}(\lambda)
$$

and assert that $p+q=n$. It is claimed that either $p=0$ or $q=0$. Suppose $p>0$ and $q>0$. Then $f_{1, p}$ and $f_{2, q}$ both have degree $<n$. Also, since $\left|f_{1, p}\left(\lambda_{i}\right)\right|,\left|f_{2, q}\left(\lambda_{i}\right)\right| \leqq 1$ and since

$$
\left|f_{1, p}\left(\lambda_{i}\right)\right|\left|f_{2, q}\left(\lambda_{i}\right)\right|=\left|f_{0}\left(\lambda_{i}\right)\right|=1
$$

it follows that

$$
\left|f_{1, p}\left(\lambda_{i}\right)\right|=\left|f_{2, q}\left(\lambda_{i}\right)\right|=1,
$$

for $i=1,2, \ldots n$. Thus, $1-\left|f_{p}\left(e^{i t}\right)\right|^{2}$ is a non-negative trigonometric polynomial of degree $p<n$ having n zeros. It follows from the result of Fejer and Riesz that $\left|f_{1, p}\left(e^{i t}\right)\right|=1$. Similarly, $\mid f_{2, q}\left(e^{i t} \mid\right)=1$. It follows that $\left|f_{0}(\lambda)\right|=1$ for $\lambda \in T$. But f_{0} has the property that $\left|f_{0}(\lambda)\right|<1$, for $\lambda \in T \backslash\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$. Thus, one of p, q, say p, must be 0 . It has now been shown that

$$
f_{0}(\lambda)=f_{1,0} f_{2, n}(\lambda)
$$

Since $\left|f_{0}\left(\lambda_{1}\right)\right|=1$, it follows that $\left|f_{1,0}\right|=1$. From

$$
\left|f_{1}(z, \lambda z)\right| \leqq 1, \quad z, \lambda \in D
$$

$f(0,0)=f_{1,0}$, and the maximum modulus principle, it follows that $f_{1}(z, \lambda z) \equiv f_{1,0}$. Hence, $f_{1}(z, w) \equiv f_{1,0}$.

Next, we show that $M_{2}\left(F_{0}\right)$ is absolutely continuous with respect to Lebesgue measure on T^{2}. Define a measure σ on T^{2} via

$$
\begin{equation*}
d \sigma=\operatorname{Re}\left(\frac{1+x^{n} f_{0}(y \bar{x})}{1-x^{n} f_{0}(y \bar{x})}\right)|d y||d x| . \tag{13}
\end{equation*}
$$

Note that

$$
\int_{T} \operatorname{Re}\left(\frac{1+x^{n} f_{0}(y)}{1-x^{n} f_{0}(y)}\right)|d x|=1
$$

for $y \in T \backslash\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$. Thus,

$$
\begin{aligned}
\sigma\left(T^{2}\right) & =\int_{T} \int_{T} \operatorname{Re}\left(\frac{1+x^{n} f_{0}(y \bar{x})}{1-x^{n} f_{0}(y \bar{x})}\right)|d y||d x| \\
& =\int_{T} \int_{T} \operatorname{Re}\left(\frac{1+x^{n} f_{0}(y)}{1-x^{n} f_{0}(y)}\right)|d y||d x| \\
& =\int_{T} 1|d y| \\
& =1 .
\end{aligned}
$$

It follows that $\sigma\left(T^{2}\right)$ is a finite measure. We will show that the Poisson integral of σ is $\operatorname{Re} F_{0}$ and, hence, that $\sigma=M_{2}\left(F_{0}\right)$. We have

$$
\begin{aligned}
\int_{T^{2}} P_{z}(x) P_{w}(y) d \sigma(x, y) & =\int_{T} \int_{T} P_{z}(x) P_{w}(y) \operatorname{Re}\left(\frac{1+x^{n} f_{0}(y \bar{x})}{1-x^{n} f_{0}(y \bar{x})}\right)|d y||d x| \\
& \left.=\int_{T} \int_{T} P_{z} x\right) P_{w \bar{x}}(y) \operatorname{Re}\left(\frac{1+x^{n} f_{0}(y)}{1-x^{n} f_{0}(y)}\right)|d y||d x|
\end{aligned}
$$

For all but finitely many values of $x \in T$, we have $x^{-n} \notin f_{0}(T)$. Consequently, we have

$$
\int_{T} P_{w \bar{x}}(y) \operatorname{Re}\left(\frac{1+x^{n} f_{0}(y)}{1-x^{n} f_{0}(y)}\right)|d y|=\operatorname{Re}\left(\frac{1+x^{n} f_{0}(w \bar{x})}{1-x^{n} f_{0}(w \bar{x})}\right) .
$$

It follows that

$$
\begin{aligned}
\int_{T^{2}} P_{z}(x) P_{w}(y) d \sigma(x, y) & =\int_{T} P_{z}(x) \operatorname{Re}\left(\frac{1+x^{n} f_{0}(w \bar{x})}{1-x^{n} f_{0}(w \bar{x})}\right)|d x| \\
& =\operatorname{Re}\left(\frac{1+z^{n} f_{0}(w / z)}{1-z^{n} f_{0}(w / z)}\right) \\
& =\operatorname{Re} F_{0}(z . w)
\end{aligned}
$$

Unfortunately, F_{0} is not an extreme point of \mathscr{P}_{2}, as the following argument shows. By the result of Fejer and Riesz, there is an analytic polynomial g of degree $\leqq n$ such that

$$
1-\left|f_{0}\left(e^{i t}\right)\right|^{2}=\left|g\left(e^{i t}\right)\right|^{2}
$$

We will show that

$$
\begin{equation*}
\operatorname{Re}\left(F_{0}(z, w) \pm \frac{1}{2} \frac{\left(z^{n} g(w / z)\right)^{2}}{\left.1-z^{n} f_{0}(w / z)\right)}>0\right. \tag{14}
\end{equation*}
$$

for $|z|,|w|<1$. To prove (14) we observe first that the left hand side of that inequality can be re-written in the form

$$
\begin{equation*}
\frac{1-\left|z^{n} f_{0}(w / z)\right|^{2} \pm 2^{-1} \operatorname{Re}\left(\left(z^{n} g(w / z)\right)^{2}+z^{n}|z|^{2 n} f_{0}(\overline{w / z})(g(w / z))^{2}\right)}{\left|1-z^{n} f_{0}(w / z)\right|^{2}} \tag{15}
\end{equation*}
$$

Thus, (14) will follow, if we can show that the numerator of (15) is nonnegative when $|z|=|w|=1$. Clearly, it suffices to show that the expression

$$
\begin{equation*}
1-\left|f_{0}\left(e^{i t}\right)\right|^{2} \pm 2^{-1} \operatorname{Re}\left(z^{n}\left(\left(g\left(e^{i t}\right)\right)^{2}+f_{0}\left(e^{i t}\right)\left(g\left(e^{i t}\right)\right)^{2}\right)\right) \tag{16}
\end{equation*}
$$

is non-negative, for $|z|=1$ and $t \in[0,2 \pi$). But (16) is non-negative because the \pm term is dominated by the expression $1-\left|f_{0}\left(e^{i t}\right)\right|^{2}$. It follows that (14) holds and, hence that $F_{0} \in$ ex \mathscr{P}_{2}.

While F_{0} is not an extreme element of $\mathscr{F}\left(f_{0}, n\right)$, it suggests the following
Question. Does $\mathscr{F}\left(f_{0} ; n\right)$ have an extreme element F_{1} such that $M_{2}\left(F_{1}\right)$ is absolutely continuous with respect to Lebesgue measure on T^{2} ?

References

1. F. Forelli, A necessary condition on the extreme points of class of holomorphic functions, P. J. M. 92 (1981), 277-281.
2. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N. J., 1962.
3. J. N. McDonald, Measures on the torus, which are real parts of holomorphic functions, Michigan Math. J. 29 (1982), 259-265.
4. G. Polya and G. Szego, Problems and theorems in analysis, Vol. II, Springer, Berlin, 1976.
5. W. Rudin, Lectures on the edge-of-the-wedge theorem, CBMS conference series, No. 6.
6. - Harmonic analysis in polydiscs, Actes du Congrès, Int. des Mathématiciens (Nice 1970) Tome 2, Gauthier-Villars, Paris, 1971, 489-493.
Arizona State University, Tempe, AZ 85287

[^0]: Received by the editors on March 21, 1984 and in revised form on September 18, 1984.

 Copyright © 1986 Rocky Mountain Mathematics Consortium

