MAPPINGS INTO SETS OF MEASURE ZERO

F.S. CATER

Abstract

Let f and g be functions of bounded variation on [0,1] and let λ denote Lebesgue outer measure. We give a necessary and sufficient condition that $\lambda g S=0$ implies $\lambda f S=0$, for all subsets $S \subset[0,1]$. This condition is $\lambda f X=0$, where X is a particular set depending on f and g.

In this paper, f and g are real valued functions of bounded variation on $[0,1]$ and λ denotes Lebesgue outer measure. F and G are their total variation functions, $F(x)=V_{0}^{x}(f)$ and $G(x)=V_{0}^{x}(g)$ for $0 \leqq x \leqq 1$. We will give a necessary and sufficient condition that $\lambda g S=0$ implies $\lambda f S=0$, for any set $S \subset[0,1]$. This condition is disclosed by the status of just one set determined by f and g. Our work will generalize and unify a number of more or less known corollaries concerning functions satisfying property N, absolutely continuous functions, saltus functions, and finite Borel measures on $[0,1]$.

Define the set

$$
\begin{gathered}
X=\left\{x \in(0,1): \text { either } \lim _{h \rightarrow \infty}|(f(x+h)-f(x)) /(g(x+h)-g(x))|\right. \\
\left.=\infty \text { or } x \text { lies in the interior of the set } g^{-1} g(x)\right\} .
\end{gathered}
$$

(Here we omit those h for which $g(x+h)=g(x)$.) We offer
Theorem 1. A necessary and sufficient condition that

$$
\begin{equation*}
\lambda f X>0 \tag{*}
\end{equation*}
$$

holds is that there exists some set $S \subset[0,1]$ such that $\lambda g S=0<\lambda f S$. Moreover, $\lambda \mathrm{g} X=0$ whether (*) holds or not.

In other words, the question whether $\lambda g S=0$ implies $\lambda f S=0$, for all sets $S \subset[0,1]$, is settled by the status of the one set, $f X$. Before developing a proof of Theorem 1 , let us discuss some of its consequences. A

Received by the editors on November 2, 1983.
Subject classification: 26A45, 26A24, 26A30, 26A46.
Key words and phrases: total variation, functions of bounded variation, absolutely continuous functions, saltus functions, Lebesgue outer measure.

Copyright (C) 1986 Rocky Mountain Mathematics Consortium 163
function is said to satisfy property N (or be an N-function) if it maps sets of measure 0 to sets of measure 0 . From Theorem 1, follows

Corollary 1. In Theorem 1 let g be an N-function. Then f is also an N-function if (*) dies not hold. In particular, f is absolutely continuous if f is continuous and (*) does not hold.

It follows from [1, pp. 125,100] that $\lambda P=\lambda F P=\lambda f P=0$, where P is the set of all points where f is not finitely or infinitely differentiable. We set $g(x)=x$ to obtain

Corollary 2. In Theorem 1, let $X_{+}=\left\{x: f^{\prime}(x)=\infty\right\}$ and $X_{-}=\{x$: $\left.f^{\prime}(x)=-\infty\right\}$. Then f is an N-function if and only if $\lambda f\left(X_{+} \cup X_{-}\right)=0$. When f is continuous, f is absolutely continuous if and only if $\lambda f\left(X_{+} \cup X_{-}\right)=0$.

Corollaries 1 and 2 can also be obtained from [1, p.127]. The fact that $\lambda\left(X_{+} \cup X_{-}\right)=0$ can be regarded as a special case of the last statement in Theorem 1.
corollary 3. In Theorem 1, let $\lambda g[0,1]=0$. Then $\lambda f[0,1]=0$ if and only if (*) does not hold.

Note that $\lambda f P=0$ if $f^{\prime}=0$ on the set $P[1, \mathrm{p} .271]$. We set $g(x)=x$ to obtain

Corollary 4. In Theorem 1 , let $X_{+}=\left\{x: f^{\prime}(x)=\infty\right\}$ and $X_{-}=\{x$: $\left.f^{\prime}(x)=-\infty\right\}$. Let $f^{\prime}=0$ a.e. Then $\lambda f[0,1]=0$ if and only if $\lambda f\left(X_{+} \cup X_{-}\right)$ $=0$.

When $\lambda f[0,1]=0, f$ is called a saltus function or a generalized step function. We will have more to say about saltus functions later.

Now, let μ_{1} and μ_{2} be finite nonatomic Borel measures on $[0,1]$. Let

$$
\begin{aligned}
Y= & \left\{x: \text { either } \lim _{\lambda I \rightarrow 0} \mu_{1} I / \mu_{2} I=\infty \text { where } I\right. \text { is an interval } \\
& \text { containing } \left.x, \text { or } \mu_{2} \text { vanishes on some interval containing } x\right\} .
\end{aligned}
$$

Corollary 5. μ_{1} is absolutely continuous with respect to μ_{2} if and only if $\mu_{1} Y=0$.

Proof. Let $f(x)=\mu_{1}[0, x]$ and $g(x)=\mu_{2}[0, x]$, for $0 \leqq x \leqq 1$. Then f and g are continuous nondecreasing functions on $[0,1]$, and in Theorem $1, X=Y$. By [1, p. 100], we have $\mu_{1} Y=\lambda f Y=\lambda f X$. Now, $\mu_{2} S=\lambda g S$ $=0$ implies $\mu_{1} S=\lambda f S=0$ for all Borel sets S if and only if μ_{1} is absolutely continuous with respect to μ_{2}. The rest follows from Theorem 1 .

Corollary 5 can also be obtained from the Radon-Nikodym Theorem.
We say that a nondecreasing continuous function f on $[0,1]$ is singular if $f^{\prime}=0$ a.e. on $[0,1]$. We will see that this is equivalent to the existence
of a set $E \subset[0,1]$, satisfying $\lambda([0,1] \backslash E)=\lambda f(E)=0$. (Consult the comments before Lemma 3.) From Theorem 1 follows

Corollary 6. Let f and g be continuous nondecreasing functions in Theorem 1 and let g be singular. Then f is also singular if (*) does not hold.

Corollary 7. Let g_{1} be a singular function and g_{2} be an N-function of bounded variation. Let f be of bounded variation. Let (*) not hold for f and g_{1}, and not hold for f and g_{2}. Then f is a saltus function.

Proof. Corollaries 1 and 6.
Here is our only lemma that does not require bounded variation.
Lemma 1. Let w be a real valued function on the interval $[a, b]$ such that the left limit $w(x-)$ exists for $a<x \leqq b$ and the right $w(x+)$ limit exists for $a \leqq x<b$. Then

$$
\begin{aligned}
\sup w[a, b]-\inf w[a, b] \leqq \lambda w[a, b] & +\sum_{a<x \leq b}|w(x-)-w(x)| \\
& +\sum_{a \leq x<b}|w(x+)-w(x)|
\end{aligned}
$$

Moreover, if w is monotone on $[a, b]$, then equality holds.
Proof. Of course w has at most countably many points of discontinuity, so each sum has at most countably many summands. Let (I_{n}) denote the sequence of all nondegenerate intervals of the form $(w(x+), w(x))$, or $(w(x), w(x+))$, or $(w(x-), w(x))$, or $(w(x), w(x-))$. Now, let $y \notin w[a, b]$, and $\inf w[a, b]<y<\sup w[a, b]$. Without loss of generality, we let $w(b)>y$ for definiteness. Let x_{0} be the sup of the set $\{x: a \leqq x<b$ and $w(x)<y\}$. It follows that w is discontinuous at x_{0} and $y \in \bar{I}_{n}$, for some n. Thus

$$
(\inf w[a, b], \sup w[a, b]) \subset w[a, b] \cup \bigcup_{n} \bar{I}_{n}
$$

and the inequality follows, Finally, if w is nondecreasing on $[a, b]$, then the intervals I_{n} are mutually disjoint and disjoint from $w[a, b]$, so equality holds.

Our next lemma states much more than we actually need, but it may be of some intrinsic interest. Note that if $E \subset[0,1]$, then $\lambda g E \leqq \lambda G E$. This follows from the fact that, for any interval $I, \lambda g\left(G^{-1} I\right) \leqq \lambda I$. In particular, $\lambda g E=0$ if $\lambda G E=0$. Lemma 2 will tell us, among other things, that the converse is also true, i.e., $\lambda G E=0$ if $\lambda g E=0$.

Lemma 2. For integers i and $m, 0<i \leqq 2^{m}$, let $J_{i m}=\left[(i-1) 2^{-m}, i 2^{-m}\right]$. Let E be any subset of $[0,1]$. Then

$$
\lambda G E=\lim _{m \rightarrow \infty} \sum_{i=1}^{2^{m}} \lambda g\left(J_{i m} \cap E\right)
$$

In particular, $\lambda G E=0$ if $\lambda g E=0$.
Proof. For any set S, let $M(g, S)$ denote $\lim _{m \rightarrow \infty} \sum_{i=1}^{2^{m}} \lambda g\left(J_{i m} \cap S\right)$. We first prove the lemma when E is a closed interval $[r, s]=I$. By Lemma 1,

$$
\begin{aligned}
& \sum_{i=1}^{2^{m}}\left(\sup g\left(J_{i m} \cap I\right)-\inf g\left(J_{i m} \cap I\right)\right) \\
& \quad \leqq \sum_{i=1}^{2^{m}} \lambda g\left(J_{i m} \cap I\right)+\sum_{r<x \leq s}|g(x-)-g(x)|+\sum_{r \leq x<s}|g(x+)-g(x)|
\end{aligned}
$$

It follows that

$$
\begin{equation*}
V_{r}^{s}(g) \leqq M(g, I)+\sum_{r<x \leq s}|g(x-)-g(x)|+\sum_{r \leq x<s}|g(x+)-g(x)|, \tag{1}
\end{equation*}
$$

where V denotes total variation. Likewise

$$
\begin{equation*}
V_{r}^{s}(G)=\lambda G I+\sum_{r<x \leq s}|G(x-)-G(x)|+\sum_{r \leq x<s}|G(x+)-G(x)| \tag{2}
\end{equation*}
$$

But $V_{r}^{s}(G)=V_{r}^{s}(g), G(x)-G(x-)=|g(x-)-g(x)|$, and $G(x+)-G(x)$ $=|g(x+)-g(x)|$. It follows from (1) and (2) that $\lambda G I \leqq M(g, I)$. But the inequality $\lambda G\left(J_{i m} \cap I\right) \geqq \lambda g\left(J_{i m} \cap I\right)$ is clear, so, in fact, $\lambda G I \geqq M(g, I)$. Hence $M(g, I)=\lambda G I$.

The conclusion must hold when E is an open interval, or the union of mutually disjoint open intervals. (Here an obvious convergence argument is used.) So the conclusion must hold when E is any open subset of $[0,1]$.

Now let E be an arbitrary subset of $[0,1]$. Let W be an open set containing $g\left(J_{i m} \cap E\right)$ such that $\lambda W \leqq \lambda g\left(J_{i m} \cap E\right)+2^{-2 m}$. Since g is continuous at all but at most countably many points, there is an open set $U \subset J_{i m}$ such that $\left(J_{i m} \cap E\right) \backslash U$ is countable and $g U \subset W$. Thus there is an open set $U_{m} \subset[0,1]$ such that $E \backslash U_{m}$ is countable and

$$
\begin{equation*}
\sum_{i=1}^{2 m} \lambda g\left(J_{i m} \cap U_{m}\right) \leqq \sum_{i=1}^{2 m} \lambda g\left(J_{i m} \cap E\right)+2^{-m} \tag{3}
\end{equation*}
$$

Likewise, there is an open set V_{m} such that $E \backslash V_{m}$ is countable and

$$
\begin{equation*}
\lambda G V_{m} \leqq \lambda G E+2^{-m} \tag{4}
\end{equation*}
$$

Put $P=\bigcap_{m=1}^{\infty}\left(U_{m} \cap V_{m}\right)$. Then $E \backslash P$ is countable and

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \lambda G\left(U_{m} \cap V_{m}\right)=\lambda G E \tag{5}
\end{equation*}
$$

From (3) and $P \subset U_{m} \cap V_{m}$, it follows that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sum_{i=1}^{2 m} \lambda g\left(J_{i m} \cap\left(U_{m} \cap V_{m}\right)\right)=M(g, E)=M(g, P) \tag{6}
\end{equation*}
$$

But $\left.\lambda G\left(U_{m} \cap V_{m}\right)=M\left(g, U_{m} \cap V_{m}\right)\right)$. In view of (5) and (6) it suffices to prove that $\lim _{m \rightarrow \infty} M\left(g, U_{m} \cap V_{m}\right)=M(g, P)$.

For each y and set A, let $s(A, y)=$ power of the set $A \cap g^{-1}(y)$. Suppose that $g\left(J_{i m} \cap A\right)$ is measurable for all $J_{i m}$. It is clear that

$$
\lim _{m \rightarrow \infty} \sum_{i=1}^{2^{m}} \chi_{g\left(J_{i m} \cap A\right)}(y)=s(A, y) \text { a.e. }
$$

and $s(A, y)$ is measurable. In particular, when $A=[0,1]$, we see that $s([0,1], y)$ is measurable and, by Beppo Levi's theorem,

$$
M(g,[0,1])=\int s([0,1], y) d y \leqq V(g)<\infty
$$

But $\sum_{i=1}^{2 m} \chi_{g\left(J_{i m} \cap A\right)}(y) \leqq s(A, y)$ a.e. and

$$
\lim _{m \rightarrow \infty} \sum_{i=1}^{2^{m}} \chi_{g\left(J_{i m} \cap A\right)}(y)=s(A, y) \text { a.e. }
$$

By the Lebesgue dominated convergence theorem,

$$
\lim _{m \rightarrow \infty} \sum_{i=1}^{2^{m}} \lambda_{\bar{g}}\left(J_{i m} \cap A\right)=\int s(A, y) d y=M(g, A)
$$

We may further assume that $U_{m+1} \subset U_{m}$ and $V_{m+1} \subset V_{m}$ for all m. Just replace U_{m} with $U_{1} \cap U_{2} \cap \cdots \cap U_{m}$ and V_{m} with $V_{1} \cap V_{2} \cap$ $\cdots \cap V_{m}$.

But g satisfies the property $T_{1}\left[1\right.$, p. 277] because $\int s([0,1], y) d y<\infty$. This implies that

$$
\lim _{m \rightarrow \infty} s\left(U_{m} \cap V_{m}, y\right)=s(P, y) \text { a.e. }
$$

Moreover, $\lim _{m \rightarrow \infty} \chi_{g\left(J \cap U_{m} \cap V_{m}\right)}=\chi_{g(J \cap P)}$ a.e., so $g(J \cap P)$ is measurable for any interval J. By the preceding paragraph, $s(P, y)$ is measurable and $M(g, P)=\int s(P, y) d y$. But $s\left(U_{m} \cap V_{m}, y\right) \leqq s([0,1], y)$, so, by the Lebesgue dominated convergence theorem,

$$
\begin{aligned}
\lim _{m \rightarrow \infty} M\left(g, U_{m} \cap V_{m}\right) & =\lim _{m \rightarrow \infty} \int s\left(U_{m} \cap V_{m}, y\right) d y \\
& =\int s(P, y) d y=M(g, P)
\end{aligned}
$$

Note that E need not be measurable in Lemma 2. In the proof we saw that

$$
\begin{align*}
V(F) & =\lambda F[0,1]+\sum_{0<x \leq 1}(F(x)-F(x-))+\sum_{0 \leq x<1}(F(x+)-F(x)) \tag{1}\\
& =\lambda F[0,1]+\sum_{0<x \leq 1}|f(x)-f(x-)|+\sum_{0 \leq x<1}|f(x+)-f(x)|=V(f) .
\end{align*}
$$

We usually call a function f of bounded variation a saltus function if

$$
\begin{equation*}
V(f)=\sum_{0<x \leq 1}|f(x)-f(x-)|+\sum_{0 \leq x<1}|f(x+)-f(x)| \tag{2}
\end{equation*}
$$

In view of Lemma 2 and equations (1) and (2), we see that f is a saltus function if and only if $\lambda f[0,1]=0$ if and only if F is a saltus function. Since f has at most countably many discontinuities, the set $f \overline{[0,1]} \backslash f[0,1]$ is at most countable. But $\overline{f[0,1]}$ is compact, so $f[0,1]$ has Jordan content 0 if $\lambda f[0,1]=0$. Thus, f is a saltus function if and only if $f[0,1]$ has Jordan content 0 .

It follows from [1, p. 127], for example, that when F is finitely differentiable on set P, then $\lambda F P=0$ if and only if $F^{\prime}=0$ a.e. on P. In view of Corollary 4, it follows that f is a saltus function if and only if $f^{\prime}=0$ a.e. on $[0,1]$ and $\lambda f\left(X_{+} \cup X_{-}\right)=0$.

The significance of saltus functions is that any function of bounded variation is the sum of a continuous function of bounded variation and a saltus function [1, p. 99]. This decomposition is unique within an additive constant.

From [1, p. 127] it follows that $F^{\prime}=0$ a.e. on $[0,1]$ if and only if there is a set $E \subset[0,1]$ satisfying $\lambda([0,1] \backslash E)=\lambda F E=0$. Thus, a continuous nondecreasing function f is singular if and only if, for some set $E \subset[0,1]$ we have $\lambda([0,1] \backslash E)=\lambda f E=0$.

The proof of Theorem 1 will emerge from the next two lemmas.
Lemma 3. $\lambda g X=0$.
Proof. Suppose, to the contrary, that $\lambda g X>0$. Fix any $k>0$. Let

$$
\begin{aligned}
Z=\{x \in & X: g \text { is continuous at } x \text { and } g \text { is not } \\
& \text { constant on any interval containing } x\} .
\end{aligned}
$$

So $g(X \backslash Z)$ is countable and $\lambda g Z>0$. Let $T=\left\{0=t_{0}<t_{1}<\cdots<t_{n}\right.$ $=1\}$ be a partition of $[0,1]$ such that

$$
\begin{equation*}
\sum_{i}\left|g\left(t_{i}\right)-g\left(t_{i-1}\right)\right| \geqq \sum_{i} V_{t_{i-1}}^{t_{i}}(g)-\frac{1}{2} \lambda g Z \tag{i}
\end{equation*}
$$

Also, (i) holds when T is replaced by any refinement of T. Now, each $x \in Z$ lies in an interval $[a, b]$ such that $|f(b)-f(a)| \geqq k|g(b)-g(a)|$ and $(a, b) \cap T=\varnothing$. Moreover, $b-a$ and $\sup g[a, b]-\inf g[a, b]$ can be made as small as we please. Thus, intervals of the form [inf $g[a, b]$, sup $g[a, b]]$ constitute a Vitali covering of $g Z$. By the Vitali covering theorem, there exist countably many pairwise disjoint intervals $\left[a_{i}, b_{i}\right.$] such that

$$
\begin{gather*}
\sum_{i}\left[\sup g\left[a_{i}, b_{i}\right]-\inf g\left[a_{i}, b_{i}\right]\right] \geqq \lambda g Z>0, \tag{1}\\
\sum_{i}\left|f\left(b_{i}\right)-f\left(a_{i}\right)\right| \geqq k \sum_{i}\left|g\left(b_{i}\right)-g\left(a_{i}\right)\right|, \tag{2}
\end{gather*}
$$

and, by (i),

$$
\begin{equation*}
\sum_{i}\left|g\left(b_{i}\right)-g\left(a_{i}\right)\right| \geqq \sum_{i}\left(\sup g\left[a_{i}, b_{i}\right]-\inf g\left[a_{i}, b_{i}\right]\right)-\frac{1}{2} \lambda g Z \tag{3}
\end{equation*}
$$

We combine (1), (2) and (3) to obtain

$$
\begin{equation*}
\sum_{i}\left|f\left(b_{i}\right)-f\left(a_{i}\right)\right| \geqq \frac{1}{2} k \lambda g Z>0 \tag{4}
\end{equation*}
$$

But k can be made arbitrarily large, so (4) implies that $V(f)=\infty$.
Lemma 4. Let $S \subset[0,1] \backslash X$ and $\lambda g S=0$. Then $\lambda f S=0$.
Proof. Suppose, to the contrary, that $\lambda f S>0$. Now, $S=\bigcup_{n} S_{n}$ where $S_{n}=\left\{x \in S: \lim \inf _{h \rightarrow 0}|(f(x+h)-f(x)) /(g(x+h)-g(x))|<n\right\}$. For some $N, \lambda f S_{N}>0$. Then $\lambda f W>0$, where

$$
W=\left\{x \in S_{N}: f \text { and } G \text { are continuous at } x \text { and } f\right.
$$

is not constant on any interval containing $x\}$.
Let $T=\left\{0=t_{0}<t_{1}<\cdots<t_{m}=1\right\}$ be a partition of [0, 1] such that

$$
\begin{equation*}
\sum_{i}\left|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right| \geqq \sum_{i} V_{t_{i-1}}^{t_{i}}(f)-\frac{1}{2} \lambda f W \tag{i}
\end{equation*}
$$

Also, (i) holds when T is replaced by any refinement of T.
Choose any $c>0$. By Lemma $2, \lambda G W=0$ and there exists an open set $U \supset G W$ with $\lambda U<c$. Each $x \in W$ lies in an interval $[a, b]$ such that $G(b)-G(a) \geqq N^{-1}|f(b)-f(a)|$ and $G[a, b] \subset U$ and $(a, b) \cap T=\varnothing$. Moreover, $b-a$ and $\sup f[a, b]-\inf f[a, b]$ can be made as small as we please. The intervals of the form $[\inf f[a, b], \sup f[a, b]]$ constitute a Vitali covering of the set $f W$. By the Vitali covering theorem, there exist countably many mutually disjoint intervals $\left[a_{i}, b_{i}\right]$ such that

$$
\begin{align*}
& \sum_{i}\left(\sup f\left[a_{i}, b_{i}\right]-\inf f\left[a_{i}, b_{i}\right]\right) \geqq \lambda f W>0 \tag{1}\\
& \sum_{i}\left[G\left(b_{i}\right)-G\left(a_{i}\right)\right] \geqq N^{-1} \sum_{i}\left|f\left(b_{i}\right)-f\left(a_{i}\right)\right| \tag{2}
\end{align*}
$$

and, by (i),
(3) $\quad \sum_{i}\left|f\left(b_{i}\right)-f\left(a_{i}\right)\right| \geqq \sum_{i}\left(\sup f\left[a_{i}, b_{i}\right]-\inf f\left[a_{i}, b_{i}\right]\right)-\frac{1}{2} \lambda f W$.

We combine (1), (2) and (3) to obtain

$$
\begin{equation*}
\sum_{i}\left[G\left(b_{i}\right)-G\left(a_{i}\right)\right] \geqq \frac{1}{2} N^{-1} \lambda f W>0 \tag{4}
\end{equation*}
$$

But $\bigcup_{i} G\left[a_{i}, b_{i}\right] \subset U$, and

$$
\begin{equation*}
c>\lambda u \geqq \sum_{i}\left[G\left(b_{i}\right)-G\left(a_{i}\right)\right] \geqq \frac{1}{2} N^{-1} \lambda f W \tag{5}
\end{equation*}
$$

Since c can be made arbitrarily small, it follows that $\lambda f W=0$. But $\lambda f W$ >0.

Proof of Theorem 1. Assume that (*) holds. By Lemma 3, $\lambda \mathrm{g} X=0$, so we need only put $S=X$ in the conclusion. Now, assume that (*) does not hold. Then $\lambda f X=0$, and, for any set S, $\lambda f S \leqq \lambda f(S \backslash X)+$ $\lambda f(S \cap X)=\lambda f(S \backslash X)$. If $\lambda g S=0$, then $\lambda g(S \backslash X)=0$ and, by Lemma 4, $\lambda f(S \backslash X)=0=\lambda f S$. The last statement of Theorem 1 is just Lemma 3 again.

Let

$$
\begin{aligned}
& Y=\left\{x: \text { the (finite or infinite) limit } \lim _{h \rightarrow 0} \mid(f(x+h)\right. \\
& -f(x)) /(g(x+h)-g(x)) \mid \text { does not exist and } \\
& \left.\quad x \text { is not in the interior of } g^{-1} g(x)\right\}, \\
& U=\left\{x: \text { the (finite or infinite) limit } \lim _{h \rightarrow 0}(f(x+h)\right. \\
& -f(x)) /(g(x+h)-g(x)) \text { does not exist and } \\
& x
\end{aligned} \begin{array}{r}
\text { is not in the interior of } \left.g^{-1} g(x)\right\} .
\end{array}
$$

In conclusion we show that the sets Y and U are "small" in a sense.
Theorem 2. Let Y and U be as described before. Then
(i) $\lambda f Y=\lambda g Y=0$,
(ii) $\lambda f U=\lambda g U=0$ if g is nondecreasing on $[0,1]$.

Proof. (i). First assume that f and g are nondecreasing, i.e., $f=F$, $g=G$. Then $Y=\bigcup_{p q} Y_{p q}$, where p and q are positive rational, and

$$
\begin{aligned}
Y_{p q}= & \left\{x \in U: \liminf _{h \rightarrow 0}(F(x+h)-F(x)) /(G(x+h)-G(x))\right. \\
& \left.<p<q<\lim \sup _{h \rightarrow 0}(F(x+h)-F(x)) /(G(x+h)-G(x))\right\} .
\end{aligned}
$$

For some $p<q$, let W denote the set of points in $Y_{p q}$ where F and G are continuous. Let P be an open set containing $G W$. By the V itali covering theorem, there exist countably many mitually disjoint intervals (a_{n}, b_{n}) $\subset(0,1)$ such that, for each $n,\left(G\left(a_{n}\right), G\left(b_{n}\right)\right) \subset P, F\left(b_{n}\right)-F\left(a_{n}\right)<$ $p\left(G\left(b_{n}\right)-G\left(a_{n}\right)\right)$, and $\sum_{n}\left(F\left(b_{n}\right)-F\left(a_{n}\right)\right) \geqq \lambda F W$. But $\lambda F W \leqq \Sigma_{n}\left(F\left(b_{n}\right)\right.$ $\left.-F\left(a_{n}\right)\right) \leqq p \sum_{n}\left(G\left(b_{n}\right)-G\left(a_{n}\right)\right) \leqq p \lambda P$. Since P is arbitrary, we obtain $\lambda F W \leqq p \lambda G W$. By an analogous argument, $\lambda F W \geqq q \lambda G W$. Then $\lambda G W$ $=0$; otherwise $\lambda F W \leqq p \lambda G W<q \lambda G W \leqq \lambda F W$, which is impossible. Hence, $\lambda G W=0=\lambda F W$. Since p and q are arbitrary, $\lambda F Y=0=\lambda G Y$.

More generally, we drop the hypothesis that f and g are nondecreasing. For convenience, let (f, g) denote the quotient $(f(x+h)-f(x)) /(g(x+h)$ $-g(x))$. Let V_{1} be a set such that $\lambda(F+G) V_{1}=0$ and, for $x \notin V_{1}$, all the limits

$$
\lim _{h \rightarrow 0}(F, F+G), \lim _{h \rightarrow 0}(F+f, F+G), \lim _{h \rightarrow 0}(G, F+G), \lim _{h \rightarrow 0}(G+g, F+G)
$$

exist, and, hence, the limits $\lim _{h \rightarrow 0}(f, F+G)$ and $\lim _{h \rightarrow 0}(g, F+G)$ also exist. Now, $(F+G)-F$ and $(F+G)-G$ are nondecreasing, so, in fact, $\lambda F V_{1}=\lambda G V_{1}=0$. By Lemma 3, there is a set V_{2} such that $\lambda g V_{2}=0$ and for $x \notin V_{2}, \lim _{h \rightarrow 0}|(F+G, g)| \neq \infty$. But $|(F+G, g)| \geqq 1$, so, for $x \notin V_{1} \cup V_{2}$,

$$
\lim _{h \rightarrow 0}|(f, g)|=\lim _{h \rightarrow 0}|(F+G, g)| \lim _{h \rightarrow 0}|(f, F+G)|
$$

Hence $Y \subset V_{1} \cup V_{2}$ and $\lambda g Y=0$. By Lemma 4, $\lambda f Y=0$ also. This proves (i). (It is well to note here that if $g(x+h) \neq g(x)$, then $(F+G)$ $(x+h) \neq(F+G)(x)$.
(ii). For $x \notin V_{1}$, the limit $\lim _{h \rightarrow 0}(F+G, G)$ exists. By Lemma 3, there is a set V_{3} such that $\lambda f V_{3}=0$, and for $x \notin V_{3}, \lim _{h \rightarrow 0}|(F+G, f)| \neq \infty$ and $\lim _{h \rightarrow 0}(f, F+G) \neq 0$. Again, by Lemma 3, there is a set V_{4} such that $\lambda G V_{4}=0$ and for $x \notin V_{4}, \lim _{h \rightarrow 0}(F+G, G) \neq \infty$. It follows that, for $x \notin\left(V_{1} \cup V_{3}\right) \cap\left(V_{1} \cup V_{4}\right)$,

$$
\lim _{h \rightarrow 0}(f, G)=\lim _{h \rightarrow 0}(f, F+G) \lim _{h \rightarrow 0}(F+G, G)
$$

Then $U \subset\left(V_{1} \cup V_{3}\right) \cap\left(V_{1} \cup V_{4}\right)$ and $\lambda f U=\lambda g U=0$.
Part (ii) reduces to [1, p. 125, Theorem (9.1)] essentially when $g(x)=x$ for all x. Absolute value is essential in part (i). Consider $f(x)=x$ for all $x, g(x)=0$ for all irrational x, and $g(n / m)=2^{-m}$ for rational numbers n / m in lowest terms. The limit does not exist without the absolute value at irrational points.

Finally, we observe that $\lambda g U=0$ in Theorem 2 whether g is nondecreasing or not. Note first that $\lambda g X=0$ in Lemma 3 even when lim $\sup _{h \rightarrow 0}|(f, g)|$ replaces $\lim _{h \rightarrow 0}|(f, g)|$ in the definition of X. (This is clear from the proof.) Thus, if $\lambda g U>0$, then there is a number $k>0$ such that $\lambda g U_{k}>0$, where

$$
U_{k}=\left\{x \in U: 0<\lim \sup _{h \rightarrow 0}(f, g)=-\lim \inf _{h \rightarrow 0}(f, g)<k \text { at } x\right\}
$$

Now, $\lim _{h \rightarrow 0}|(f+k g, g)|$ does not exist at any $x \in U_{k}$. By Theorem 2(i), $\lambda g U_{k}=0$. But $\lambda g U_{k}>0$.

Reference

1. S. Saks, Theory of the Integral, second revised edition, Dover 1964.

Portland State University, Portland, OR 97207

