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THE SPACE C0(p) OVER VALUED FIELDS 

R. BHASKARAN AND P. N. NATARAJAN* 

Introduction. Let K be a non-trivially (rank 1) valued complete field 
(if necessary we shall specify the nature of the valuation depending on the 
context). For a sequence p = {pk} of positive real numbers, we define the 
space 

C0(p) = {x = {xk}: xk e K, \xk\P> -> 0, k -> oo}, 

where |-| denotes the valuation on K. Clearly, C0(p) is a linear space if 
and only if/? is a bounded sequence and we shall assume henceforth that 
p is a bounded sequence without explicit mention. Define 

g(x) = sup {\xk\^
H}, H = max(l, sup pk). 

tei k^i 

Then g defines a paranorm on C0(p) and so d(x, y) = g(x — y) defines 
a metric on C0(p) with respect to which C0(p) is a complete metric linear 
space. On the other hand, we can also define seminorms 

<?n(x) = sup {\xk\n
l/P>}, n = 1,2 x e C0(p), 

so that the metric d is compatible with the locally convex (locally K-
convex) topology defined by these seminorms. In other words, C0(p) 
is a Frechet space. Furthermore, the dual C0(/?)* of C0(p) consists of 
functionals/given by: 

0 fix) = ET=i akXk, ake K such that 2 ^ \ak\ N~v^ < oo for some 
TV" > 1, when the valuation is archimedean (see [6]); 

ii) fix) = TiT=\ GkXk, akt K such that sup^x \ak\
pk < oo when the 

valuation is non-archimedean. 
Also, CQ(P)* is endowed with the topology of uniform convergence over 
bounded subsets of C0(/?). We write 

looOO = {{**}, xkeK, sup \xk\>* < oo). 

(*) The results obtained by the second author independently of the first, and now 
presented for publication jointly, were included in his thesis approved for Ph. D. by 
the University of Madras in March 1981. 
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In this paper, we study first the equivalence (Theorem 1.2) of weak 
and strong convergence in C0(p) and its normability (Theorem 1.3). We 
then discuss briefly the nuclearity of C0(p) when K = R or C and obtain 
necessary and sufficient conditions for CQ(p) to be a Schwartz space when 
A' is a spherically complete non-archimedean non-trivially valued field. 
Finally, we indicate the ideal structure in the metric linear algebra C0(p). 

1. Weak and strong convergence in C0(p) and normability of CQ(p). We 
start with the following lemma to establish the fact that weak and strong 
convergence coincide in C0(p). 

LEMMA 1.1. If A = (ank), ank e K, n, k = 1, 2, . . . is an infinite matrix 
over K, a non-archimedean valued field, then Ax = {2£=i ankxk) = {jVfG c& 
the space of all null sequences over K, for every x = {xk} e ÌJ^p) if and 
only if 

i) |flflik|» - 0, * - oo,/i = 1,2, . . . ; 
ii) sup^x \ank\ N

l/Pk -» 0, n -> oo, for every integer N > 1. 

PROOF. We shall prove that necessity as sufficiency of the conditions is 
easily checked. Suppose Ax e cQ for every x e 1 TO(/?). Then, clearly, i) 
holds. Suppose ii) does not hold when, for some integer N > 1, s u p ^ 
\ank\ N

l/P* -» 0, n -+ oo. Let % e K be such that 0 < \x\ = p < 1. Consider 
the sequence x = {JC* = 7raÄ}, where ock are integers satisfying pak+1 ^ 
#I/*A < p«*. Now, sup*èl | a j |7r|a* > s u p ^ |ûnJ N1^* •/» 0, so that the 
matrix B = {ankn

ak), does not transform bounded sequences to null 
sequences (see [11]). Thus, there exists a bounded sequence x = {xk} 
such that Bx $ c0. Now, y = {yk = Kak xk] e 1 «,(/?) and Ay $ c0; this is 
a contradiction. 

NOTE. The case K = R or C is discussed in [5]. 

We are now in a position to prove the assertion on weak and strong 
convergence. 

THEOREM 1.2. If the valuation on K is non-archimedean, weak and strong 
convergence are equivalent in CQ(P). 

PROOF. It suffices to show that weak convergence implies strong con­
vergence. Let yn -• y weakly in C0(p% i. e., i f / e C0 (/?)*, then f(yn - y) 
-+ 0, n -* oo. But/(x) = £r=i akxk, {ak} e l j p ) , XG C0(/?). NOW, 

oo 

f(yn - y) = 11 ak(ynk - yk). 
k=i 

Thus, if bnk = (ynk - yk) and B = {bnk\ then Bx e cQ, for every x e 1J/?). 
By Lemma 1.1, sup*èl \bnk\*k -• 0, « -> oo, which means that #(>>„ - >>) 
-• 0, n -+ oo. The proof is complete. 
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In contrast to the unconditional equivalence of weak and strong con­
vergence, we have the necessary and sufficient condition for the metric 
linear space C0(p) to be normable to be infÄ pk > 0, whatever K is. The 
Case K — R or C has been dealt with by Maddox and Roles [7], The proof 
presented below is applicable to any K with a non-trivial valuation. 

THEOREM 1.3. CQ(P) is normable if and only if infk pk > 0. Moreover, 
in such a case, C0(p) — c0. 

PROOF. If inf* pk = 0 and U(e) = {x e C0(p): g(x) < e}, g is the para-
norm, let a e K, a ^ 0 and k(i) be positive integers such that lim^oo 
Pk^/H = 0, H = max(l, supk^pk). Thus, for some k(m\ \a\pk(m)/H < 2. 
By non-triviality of the valuation, there exists % e K and a positive integer 
n (depending on k(m)) such that 0 < \n\ < 1 and |7r|M+1 g (el2)H,p**> < 
\iz\n. If x = {0, . . ., 7TW+1, 0, . . .}, where the non-zero entry is in the 
k(m)th place, then x e CQ(p) and g(x) < e. But g(x/a) ^ (e/4) \K\, and so, 
taking ß = (e/4) \%l it follows that x i aU(ß), i.e., U(e) <£ aU(ß). Thus 
inf̂  pk > 0 when C0(p) is normable. 

Conversely, consider (7(1). Take any U(ß) and choose a e K such that 
|a| > max(l, l/ßH/^), p = infÄ pk. Then it is easily seen that (7(1) c= 
a U(ß), i.e., (7(1) is a convex (AT-convex) bounded neighbourhood of 0. By 
the Kolmogorov criteria (see [4,8]) for normability, C0(p) is normable. 

Under this condition it is routine to check that C0(p) = c0. The proof 
of the theorem is complete. 

NOTE. When C0(p) is normable, we have CQ(p) = c0 not only as vector 
spaces but topologically, too. In other words, the above theorem implies 
that there can not be a proper subspace of cQ of the form CQ(p) which is 
topologically isomorphic to c0. 

2. Nuclearity of C0(p). In this section, K is R or C. We shall consider 
Frechet spaces (complete metrizable locally convex spaces) and we shall 
assume that the topology is given by an increasing sequence {&>„} of 
semi-norms. 

DEFINITION 2.1 (see [12]). A continuous linear map T from a normed 
linear space E into a Banach space Fis called nuclear if there are elements 
/ , e E*, yn G F, n = 1, 2, . . . such that T(x) = En=iA (x)yn, x e E and 
Zn=i ll/JI \\yn\\ < oo. 

DEFINITION 2.2 (see [12]). A Frenchet space F is said to be nuclear if, 
given m, there exists n > m such that the canonical map (F/^'1 (0))~ -> 
(F/^" 1 (0))~ obtained by extending the map x + &>? (0) -> x + ^ 
(0) is nuclear, where ~ stands for the completion of the normed linear 
space in question. 

Familiar sequence spaces such as /TO and c0 are not nuclear spaces as 
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they are Banach spaces of infinite dimension. In view of Theorem 1.3, 
inf̂  pk = 0 is necessary for nuclearity of the Frechet space C0(p). Schaefer 
[13, p. 107, Example 4] has remarked that the space of entire functions, 
CQ(p)(pk = l/k) is a nuclear space. Thus, it is worthwhile to find necessary 
and sufficient conditions on the sequence {pk} which make C0(p) nuclear. 
Necessary and sufficient conditions for nuclearity of certain sequence 
spaces (e.g., the ct-dual or Köthe-Toeplitz dual [4, p. 405], power series 
spaces of finite and infinite type [12, p. 99] are already known [12, p. 98, 
Theorem 6.1.2; Theorem 6.1.4]. Using these results and that in [5, The­
orem 13(2)], we obtain 

THEOREM 2.3. CQ(p) is nuclear if one of the following equivalent conditions 
hold: 

i) The power series space of infinite type defined by the sequence ak = 
1 jpk is the same as C0(p) (as topological vector spaces) ; 

ii) There exists q, 0 < q < 1, such that 2 ^ q1/pk < oo; and 
iii) C0(p) c lx. 

REMARKS 2.4. 1) There are sequences {pk} for which C0(p) <£ ll9 e.g., 
Pk = l/(log k)r, 0 < r < 1. On the other hand, if pk = 0(l/kr), 0 < r < 
1, then CQ(p) <= lx. 2) If ii) of Theorem 2.3 is satisfied, then lim^co pk = 0. 

3. C0(p) as a Schwartz space. In this section, K is a non-archimedean, 
non-trivially valued complete field. We assume that the linear spaces are 
complete non-archimedean metrizable locally AT-convex spaces so that the 
topology is induced by an increasing sequence {&>„} of seminorms. CQ(p) 
is one such space. 

A subset A of a non-archimedean normed linear space X (see [18, p. 
134]) is said to be a compactoid if, for every e > 0, there exist a finite 
number of elements jq, x2, . . ., xw of I such that A <= B£(0) + CO(JC1? 

JC2, • • -, *„), where B£(0) = {x G X: \\x\\ ^ e} and Co(Y) denotes the 
closed absolute convex hull of Y. A linear map from a non-archimedean 
normed linear space Xx to a non-archimedean Banach space X2 is said to 
be compact if it maps the unit ball of Xx into a compactoid in X2 (see 
[18, p. 142]). Prof. De Grande De Kimpe suggested during a discussion 
that the concept analogous to nuclear spaces relevant to non-archimedean 
analysis is that of Schwartz spaces introduced in 

DEFINITION 3.1. Let A" be a locally ^-convex space. X is said to be a 
Schwartz space, if given m, there exists n > m such that the canonical 
map (X/0>~1 (0))~ -• (X/0>-1 (0))~, obtained by extending the map x + 
0>~l (0) -• x 4- &M1 (0), xe X, is a compact operator, where ~ denotes 
the completion of the basic normed linear space. 

We are interested in finding conditions on {pk} which make CQ(p) a 
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Schwartz space. To this end, we need the analogue of the Köthe-Toeplitz 
dual in the non-archimedean set up and also an auxiliary result of De 
Grande De Kimpe communicated in a discussion. 

Let P be a sequence {aU)} of real sequences, aU) = {a£°}£Li, / = 1, 
2, . . ., such that: 

1) ajp > 0, i, k = 1,2, . . . ; 
2) aj['+1) £<*£V = 1 , 2 , . . . . 

The dual P is defined to be the space of sequences {xk}, xk e K, h = 
1,2, . . . such that lim^oo \xk\ afî = 0, / = 1,2, . . . . It is easily seen that 
P is a linear space with respect to co-ordinate-wise operations and is also 
a complete locally jK-convex space with the non-archimedean seminorms 
(in fact norms), given by 

»fci = sup \xk\ ajp9 x e P, i = 1, 2, . . . . 

We shall now prove the auxiliary result. 

THEOREM 3.2. If K is spherically complete, P is a Schwartz space if and 
only if for every i = 1,2, . . ., there exists V > i such that ap/ajf') -* 0, 
k -> oo. 

PROOF. Let P be a Schwartz space. For each /, there exists /' > i such 
that the canonical mapping 77 :(P, ^ / ) ~ -> (P, ^V)~, which is the in­
clusion map, is a compact operator. If U is the unit sphere in (P, ^,v)~, 
then É7, the closure of (7 in (P, &>i)~, is a compactoid. So, for e > 0, there 
exist p ( 1 ) , . . ., <p(n) in (P, ^,.)~ such that Ü a Be(0) + Co {cpa\ . . ., <p(n)}. 
But we can choose (p[j\j = 1, 2, . . ., « in (P, ^ ) such that pp> = { f̂f, 
• - -, <plH 0, . . .}J = 1 , 2 #i and B,(0) + CO fo"), . . ., p<»>} = 
B£(0) + CO {^», . . ., $">}. Now, f(*> = {0, . . ., 7T-W(Ä), 0, . . .}, the 
non-zero entry in the &th place, where %, n(k) are such that 0 < \%\ < 1 
and |7r|w(*)+1 ^ a{p < \Ti\nik\ k = 1, 2, . . ., are in (7 and so are in Ü 
in (P, ^V)~. Hence, 

£<*> = /3<*> + 2 a „ ^0), ^c» e P£ (0), A = 1, . . ., n. 

Thus, for k > k0,ajp/\iü\n{k) < s and so ajp/ajf" < e/\iu\, i.e., ajp/aP -* 
0, & -» oo. 

To prove the converse, let i be any given index. Then there exists /' > i 
such that, given e > 0, there exists k0 such that, for all k > k0, ajp/ai'f) < 
e. We shall prove that the canonical map TJ: (P, ^V>)~ -» (A ^V)~ *s com­
pact. On Kl define | |. | |*by 

ll(iSi,...,A0)ll* = max| /3, |a^. 

Clearly, || • || * is a norm on T̂§ and the unit sphere in AT§, in the to­
pology induced by ||«||* is ocompact. Consequently, by Theorem 4.56, 
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[18, p. 161], the unit sphere is a compactoid. That is, there exist points 
<p(i) = (<Pi\ • • •» <p$)> i = 1, 2, . . ., /i such that the unit sphere is con­
tained in B'e(0) + Co {<pa\ . . ., p(»>}, where ££' = {<peKk

0: \\q>\\* g e}. 
If {£,.} is any element of P with ^ { f / } ) £ 1, then {0, . . . &0+1, f,0+2, 
. . .} e B£(0) in (A <^)~ and {&, . . ., |,0, 0, . . .} e 2?,(0) + Co {r<i>, . . ., 
r
(»>), where r<o = fo«, . . ., <pg\ 0, . . .}, z = 1, 2, . . ., n, and {fy} e 
££(0) + Co {^(1),..., j-{n)}- This shows that 97: (P, &>{,) -> (P, ̂ , ) ~ is com­
pact. In general if X, Y are non-archimedean normed linear spaces of 
which Y is complete and if / : X -> F is compact, then/can be uniquely 
extended to a compact map / : X -> 7. The proof of the theorem is now 
complete. 

THEOREM 3.3. Let K be a non-archimedean non-trivially valued spherically 
complete field. C0(p) is a Schwartz space if and only //lim^oo pk = 0. 

PROOF. We first note that C0(p) = P, where P = {{z1^*}: / = 1, 2, 
. . .} as locally convex spaces. If lim^oo pk = 0, then (i1/pk)/(i2/pk) = 
1//i//>* _* 0, h -* 00, / = 1, 2, . . . , so, by Theorem 3.2, C0(p) is a Schwartz 
space. Conversely, if /' > /', i = 1 , 2 , . . . and (i/i')1/pk -* 0, /: -> 00, it is 
obvious that lim^oo /?* = 0. 

REMARKS 3.4. i) If P = {{(/// + l)17^} : i = 1,2,...} and K is spherically 
complete, then P is a Schwartz space if and only if lim^oo pk = 0. 

ii) Analogously, as in the case K = R or C, we can define f: E -* F, 
where E, F are non-archimedean Banach spaces over a complete non-archi­
medean non-trivially valued field, to be nuclear if there exist yn e F,fne 
E*, n = 1, 2, . . . such that lim | | /J | | |^ | | = 0 and /(*) = ^=1fn(x)yn9 

x e E. Such a map is precisely a compact map as defined in the second 
paragraph of this section (cf. [18, p. 143, Theorem 4.40]). Consequently, 
nuclear and Schwartz spaces are the same among locally ^-convex 
spaces. It has been shown by van der Put and van Tiel [17] that when 
K is spherically complete, all locally A>convex spaces are nuclear in the 
sense that the e and % topologies on the algebraic tensor product X ® Y 
are the same, where X is the given locally AT-convex space and Y is an 
arbitrary locally AT-convex space (we note that this definition of nucelarity 
does not involve the concept of a nuclear map). Accordingly, any infinite 
dimensional Banach space over Qp, the /?-adic field, is nuclear while it is 
not a Schwartz space. Thus it is worthwhile to note that the concept of 
Schwartz space (Definition 3.1) is different from that of nuclear space 
in the sense of [17]. 

iii) In this context, one should note that Serre [14], is not explicit about 
his definition of nuclearity of a m a p / e S£ (X, Y), where X, Y are /?-adic 
Banach spaces. If Serre had in mind the definition of a nuclear map as 
defined in the beginning of Remark ii) above, he would have considered 
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only completely continuous operators (or equivalently compact operators 
(vide [18])). Hence, the identification of completely continuous operators 
and nuclear operators mentioned by Serre is meaningless. This being the 
case, the consideration of the space C(X, Y) of compact operators and 
N(X, Y) of nuclear operators, X, Y non-archimedean Banach spaces by 
De Grande De Kimpe [1], without spelling out what her nuclear oper­
ators are, makes the situation more confusing. Still more confusing is the 
remark by a reviewer (MR 46 # 2488) that the counter example given by 
De Grande De Kimpe to the effect that a compact operator need not 
be a nuclear operator is wrong, when even the definition of nuclearity of 
a map is not known. If one were to depend on the result claimed by 
Serre without caring for an explicit definition of nuclearity of an operator, 
there does not seem to be any need to introduce nuclear spaces over non-
archimedean valued fields in preference to Schwartz spaces. The authors 
feel that earlier literature in this respect may mislead future workers and 
are therefore constrained to make the above forthright comments. Ob­
viously, the issue on hand is not semantic. 

4. C0(p) as a metric linear algebra. We have already seen that C0(p) 
is a metric linear space, where the metric is induced by the paranorm g. 
In fact, g also satisfies g(x • y) ^ g(x)g(y), where x • y — {xkyk} (Ha-
damard product), x = {xk}, y = {yk} e C0(p). Srinivasan [15, 16] has 
studied the ideal structure of C0(p) for the case pk = l/k, k = 1, 2, . . ., 
when K = R or C or a non-archimedean non-trivially valued complete 
field. Let en = {0, . . ., 1, 0, . . .}, 1 at the nth place and 0 elsewhere and 
ê be the collection of all en, n = 1, 2, . . . . A non-zero ideal / of C0(p) 
determines a subset J = {ene^: enel} of ê. We note that a nonzero 
ideal / of C0(p) is closed if and only if / is the closed linear span of J. 
Also, a closed ideal is maximal if and only if it is the closed linear span of 
j = <f\{ew}, for some n. Consequently, C0(p) is semi-simple. Further, we 
observe that every maximal closed ideal of CQ(p) is a step space, usually 
called an echelon space, (see [2, p. 53]) and every echelon space is a closed 
ideal. If/ is a closed ideal of C0(/?), Jt the class of all maximal closed ideals 
of CQ(P) containing it, and ^ t h e class of all echelon spaces containing it, 
then 

f)Scz()Af= Ic()S9 
S^y M^M SŒS? 

i.e., every closed ideal of C0(p) is the intersection of all echelon spaces 
containing it. 

The authors are thankful to Dr. M. S. Rangachari for his help in the 
preparation of this paper. They are also thankful to the referees for valu­
able suggestions. 
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