PARALLEL MAPS THAT PRESERVE GEOMETRIC OBJECTS OF HYPERSURFACES

KRISHNA AMUR

Abstract

It is known that parallel maps of hypersurfaces in R^{n+1} preserve principal directions, umbilics and the third fundamental form [4]. We study the conditions under which the parallel map $f_{t}^{\#}$ of a parallel \sum_{-t} of a hypersurface Σ into the parallel Σ_{t} preserves other geometric objects besides the three mentioned above and show, in particular, that when the determinant of the Jacobian matrix of $f_{t}{ }^{\#}$ is 1 and n is even, Σ is a certain non-trivial minimal hypersurface and $f_{t}{ }^{\#}$ preserves the element of area and all the even order elementary symmetric functions of principal curvatures.

Introduction. Let Σ_{t} and Σ_{-t} denote parallel hypersurfaces of an immersed hypersurface Σ in R^{n+1} for a sufficiently small parameter t. The parallel maps of Σ into Σ_{-t} and Σ_{t}, which we can assume to be local diffeomorphisms, define a parallel map $f_{t}^{\#}$ of Σ_{-t} into Σ_{t}. As a parallel map $f_{t}^{\#}$ preserves principal directions, umbilics, and the third fundamental form. In this paper we investigate the conditions under which other geometric objects of the hypersurfaces besides the three mentioned above are preserved by $f_{t}^{\#}$ and show that they occur in the form of restrictions on the non-singular Jacobian matrix of $f_{t}^{\#}$. We illustrate the use of such conditions in the proof of our main results stated in Proposition 2.1.

1. Parallel immersions. Let M be a connected, orientable smooth manifold of dimension n. Let $X: M \rightarrow R^{n+1}$ be an immersion. For sufficiently small values of t, the mappings $X_{t}, X_{-t}: M \rightarrow R^{n+1}$, defined by

$$
\begin{equation*}
X_{t}(p)=X(p)+t N(X(p)), \quad X_{-t}(p)=X(p)-t N(X(p)) \tag{1.1}
\end{equation*}
$$

where $p \in M$ and N is a unit normal vector field on $X(M)$, are also imimersions. Let $X(M)=\Sigma, X_{t}(M)=\Sigma^{t}$ and $X_{-t}(M)=\Sigma_{-t}$. Define f_{t} : $\Sigma \rightarrow \Sigma_{t}$ and $f_{-t}: \Sigma \rightarrow \Sigma_{-t}$ by

$$
\begin{equation*}
f_{t} \circ X(p)=X_{t}(p), \quad f_{-t} \circ X(p)=X_{-t}(p) \tag{1.2}
\end{equation*}
$$

for all $p \in M$. We assume f_{t} and f_{-t} are local diffeomorphisms.

[^0]Observing that quantitites for Σ_{-t} can be obtained from those for Σ_{t} by changing t to $-t$, we usually write results for Σ_{t} and write those for Σ_{-t} only when necessary.

We write the first equation of (1.1) as $f_{t} \circ X=X+t N \circ X$, where N is viewed as the Gauss map of Σ into the unit sphere S^{n}. The derivative map, when we identify $X_{*} Z$ with $Z \in T_{p}(M)$, gives

$$
\begin{equation*}
f_{t^{*}} Z=Z+t L(Z) \tag{1.3}
\end{equation*}
$$

where L is the Weingarten map for Σ. Since N is normal to Σ_{t} also, we have $N \circ X=N \circ X_{t}$ which yields

$$
\begin{equation*}
L(Z)=L_{t}\left(f_{t} Z Z\right) \tag{1.4}
\end{equation*}
$$

where L_{t} is the Weingarten map for Σ_{t}. From (1.4), we get the known result [4] that parallel maps preserve principal directions, umbilics and the third fundamental form.

Choose an orthonormal frame e_{1}, \ldots, e_{n} at $X(p)$ such that $\operatorname{det}\left(e_{1}, \ldots\right.$, $\left.e_{n}, N\right)=1$. Since the tangent planes at $X(p)$ and $X_{t}(p)$ are parallel, e_{i} can be chosen as an orthonormal frame at $X(p)$ also. Let τ^{i} and τ_{t}^{k} denote 1 -forms dual to e_{i} at $X(p)$ and $X_{t}(p)$, respectively. Then $d X=\sum \tau^{i} e_{i}$ and $d X_{t}=\sum \tau_{t}^{i} e_{i}$. But, from (1.1), we have $d X_{t}=d X+t d N$. So

$$
\begin{equation*}
\Sigma f_{t}^{*} \tau_{t}^{i} e_{i}=\Sigma\left(\delta_{j}^{i}+t a_{j}^{i}\right) \tau^{j} e_{i} \tag{1.5}
\end{equation*}
$$

where we have set $d N=\sum a_{j}^{i} \tau^{j} e_{i}$. In (1.5) we need the pull back symbol because the τ_{t}^{2} live in Σ_{t}. Clearly, $\left(a_{j}^{i}\right)$ is the symmetric matrix of the Weingarten $\operatorname{map} L$ for Σ. From (1.5), we have

$$
\begin{equation*}
f_{t}^{*} \tau_{t}^{i}=\Sigma\left(\delta_{j}^{i}+t a_{j}^{i}\right) \tau^{j} \tag{1.6}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
f_{-t}^{*} \tau_{-t}^{i}=\Sigma\left(\delta_{j}^{i}-t a_{j}^{i}\right) \tau^{j} \tag{1.7}
\end{equation*}
$$

Let

$$
\begin{equation*}
A(t)=\left(\delta_{j}^{i}+t a_{j}^{i}\right) \text { and } A(-t)=\left(\delta_{j}^{i}-t a_{j}^{i}\right) \tag{1.8}
\end{equation*}
$$

In matrix notation (1.6) and (1.7) take the form

$$
\begin{equation*}
f_{t}^{*} \tau_{t}=A(t) \tau, \quad f_{-t}^{*} \tau_{-t}=A(-t) \tau \tag{1.9}
\end{equation*}
$$

where we regard τ, τ_{t} and τ_{-t} as column vectors of 1 -forms. Since f_{t}^{*} and f_{-t}^{*} are isomorphisms, their matrices $A(t)$ and $A(-t)$ are non-singular. Solving the second equation of (1.9) for τ and substituting in the first gives

$$
\begin{equation*}
f_{t}^{*} \tau_{t}=C(t) f_{-t}^{*} \tau_{-t} \tag{1.10}
\end{equation*}
$$

where

$$
\begin{equation*}
C(t)=A(t) A(-t)^{-1} \tag{1.11}
\end{equation*}
$$

We set

$$
\begin{equation*}
f_{t}^{\#}=f_{t} \circ f_{-t}^{-1} \tag{1.12}
\end{equation*}
$$

and observe that $f_{t}^{\#}$ is locally a diffeomorphism of Σ_{-t} into Σ_{t}. If Z is a tangent vector to Σ_{-t}, then

$$
\begin{equation*}
\left(f_{t}^{\sharp}\right)_{*} Z=\Sigma C(t)_{j}^{i} Z^{j} e_{i}, \tag{1.13}
\end{equation*}
$$

where Z^{j} are components of Z with respect to e_{i}.
Lemma 1.1. $f^{\#}$ preserves principal directions, umbilics, and the third fundamental form.

Proof. By our construction in (1.12), $f_{t}^{\#}$ is a parallel map and the result follows immediately.

The following Lemma is due to Gardner [2].
Lemma 1.2. Let $d A_{t}=f_{t}^{*}\left(\tau_{t}^{1} \wedge \ldots \wedge \tau_{t}^{n}\right)$ and $d A=\tau^{1} \wedge \ldots \wedge \tau^{n}$. Then

$$
\begin{equation*}
d A_{t}=\sum_{i=0}^{n}\binom{n}{i} \sigma_{i} t^{i} d A=\operatorname{det} A(t) d A \tag{1.14}
\end{equation*}
$$

where $\sigma_{0}=1$ and the σ_{i} are the elementary symmetric functions of principal curvatures of Σ. Further, if $\sigma_{i}^{(t)}$ denote elementary symmetric functions of principal curvatures of Σ_{t}, then

$$
\begin{equation*}
\binom{n}{i} \sigma_{i}^{(t)} d A_{t}=\sum_{j=i}\binom{j}{i}\binom{n}{j} \sigma_{j} t^{j-i} d A, \quad \text { for } 0 \leqq i \leqq n . \tag{1.15}
\end{equation*}
$$

Proof. On using (1.6) in $d A_{t}=f_{t}^{*} \tau_{t}^{1} \wedge \ldots \wedge f_{t}^{*} \tau_{t}^{n}$, we get (1.14).
If ($a_{t j}^{i}$) denote the matrix of the Weingarten map L_{t} for Σ_{t}, then since $N=N_{t}$, we have $d N=d N_{t}$, from which we obtain

$$
\begin{equation*}
\sum a_{j}^{i} \tau^{j}=\sum a_{t j}^{i} f_{t}^{*} \tau_{t}^{j}, \quad i=1,2, \ldots, n . \tag{1.16}
\end{equation*}
$$

Use of (1.6) and (1.16) gives

$$
\begin{align*}
\sum_{i=0}^{n} & \binom{n}{i} \sigma_{i}^{(t)} s^{i} d A_{t} \\
& =\left(f_{t}^{*} \tau^{1}+\Sigma s a_{t k}^{1} f_{t}^{*} \tau_{t}^{k}\right) \wedge \cdots \wedge\left(f_{t}^{*} \tau^{n}+\Sigma s a_{t k}^{n} \tau_{t}^{k}\right) \tag{1.17}\\
& =\left(\tau^{1}+\Sigma(s+t) a_{k}^{1} \tau^{k}\right) \wedge \cdots \wedge\left(\tau^{n}+\Sigma(s+t) a_{k}^{n} \tau^{k}\right) \\
& =\sum_{i=0}^{n}\binom{n}{i} \sigma_{i}(t+s)^{i} d A
\end{align*}
$$

Differentiating (1.17) with respect to s and equating the coefficients of powers of s we obtain (1.15).

Lemma 1.3. Let σ_{l}, for $l=1,2, \ldots, 2 m$, be elementary symmetric functions of real numbers k_{i}, for $i=1,2, \ldots 2 m$. If $\sigma_{1}=0$ and, in con-
sistency with this, $k_{1}+k_{2}=0, k_{3}+k_{4}=0, \ldots, k_{2 m-1}+k_{2 m}=0$ and $k_{i} \neq 0$, for all i, then

$$
\begin{aligned}
\sigma_{i}=0, & i=3,5, \ldots, 2 m-1 \\
\sigma_{i} \neq 0, & i=2,4, \ldots, 2 m .
\end{aligned}
$$

Proof. Let

$$
P_{\iota}=\sum_{i=1}^{2 m}\left(k_{i}\right)^{\prime}, s_{\iota}=\binom{2 m}{\ell} \sigma_{\iota}, \quad \iota=1,2, \ldots, 2 m
$$

The $p_{\prime}^{\prime} s$ and $s_{l}^{\prime} s$ are related by Newton's formulas

$$
\begin{equation*}
p_{r}-s_{1} p_{r-1}-\cdots-(-1)^{r} s_{r-1} p_{1}+(-1)^{r} s_{r}=0 \tag{1.18}
\end{equation*}
$$

where $1 \leqq r \leqq 2 m$. It is easy to see from (1.18) and the hypothesis that $s_{1}=0, s_{2} \neq 0$. We prove the Lemma by induction.

Suppose $s_{3}=0, s_{5}=0, \ldots, s_{2 j-3}=0$ and $s_{4} \neq 0, \ldots, s_{2 j-2} \neq 0$,
$j<m$. We need to show that $s_{2 j-1}=0$ and $s_{2 j} \neq 0,1 \leqq j \leqq m$.
By the induction hypothesis, (1.18), for $r=2 j-1$, reduces to

$$
\begin{aligned}
(2 j-1) s_{2 j-1} & =p_{2 j-1}=\sum_{\ell=1}^{m}\left(k_{2 \iota-1}^{2 j-1}+k_{2 \prime}^{2 j-1}\right) \\
& =\sum_{\ell=1}^{m}\left(k_{2 \iota-1}+k_{2 \iota}\right)\left(k_{2 \iota-1}^{2 j-2}-\cdots+k_{2 \zeta}^{2 j-2}\right)=0 .
\end{aligned}
$$

Thus $s_{2 j-1}=0$.
It is known [3, p.51] that, for all real values of $k_{i}, \sigma_{l}^{2} \geqq \sigma_{\ell-1} \sigma_{\ell+1}, 1 \leqq$ $\zeta \leqq 2 m-1$, and the equality holds if and only if $k_{1}=k_{2}=\cdots=k_{2 m}$. Suppose $\ell=2 j-1$. Then $\sigma_{2 j-1}=0$, since $s_{2 j-1}=0$. Since, by hypothesis of the lemma, k_{i} cannot all be equal, and by the induction hypothesis $s_{2 j-2} \neq 0$, the above inequality reduces to $0>s_{2 j-2} s_{2 j}$ which implies $s_{2 j} \neq 0$. This completes the proof of the lemma.
2. Geometric objects preserved by parallel maps. The matrix $C(t)$ defined in (1.11) relates a coframe of Σ_{t} to that of \sum_{-t} and (1.13) shows that it can be viewed as the Jacobian matrix of f_{t}^{\sharp}. Clearly, $C(t)$ is an element of $G L(n, R)$; restriction on $C(t)$ that it be an element of a particular subgroup of $G L(n, R)$ requires Σ to be a special surface and forces $f_{t}^{\#}$ to preserve additional geometric objects besides those mentioned in Lemma 1.1. The following Proposition illustrates this in two cases.

Proposition 2.1. Suppose Σ is a connected, orientable smooth n-manifold and $X_{t}, X_{-t}: M \rightarrow R^{n+1}$, are parallel immersions of an immersion $X: M \rightarrow$ R^{n+1} for all sufficiently small t. Let $C(t)$ be the Jacobian matrix of the parallel map f_{t}^{\sharp} of $\Sigma_{-t}=X_{-t}(M)$ into $\Sigma_{t}=X_{t}(M)$.
(a) If the principle curvature k_{i} of M are all non-zero, $\operatorname{det} C(t)=1$ for
all such t, that is, if $C(t) \in S L(n, R)$, and $n=2 m$, then $\Sigma=X(M)$ is a nontrivial immersed minimal hypersurface of $R^{2 m+1}$ and $f_{t}^{\#}$ preserves:
(i) the element of area;
(ii) all even order elementary symmetric functions of principal curvatures; and
(iii) the absolute value of each odd order elementary symmetric function of principal curvatures.
(b) If $C(t)=\lambda I$, for some $\lambda>0$, then Σ is an umbilical hypersurface or a hyperplane in R^{n+1} and $f_{t}^{\#}$ is conformal. In particular,
(i) if $\lambda \neq 1$ and Σ is compact, then Σ is an Euclidean sphere;
(ii) if $\lambda=1$, then Σ is a hyperplane in R^{n+1} and $f_{t}^{\#}$ is an isometry.

Proof. (a). If $\operatorname{det} C(t)=1$, then, by the definition (1.11) of $C(t)$, it follows that $\operatorname{det} A(t)=\operatorname{det} A(-t)$. Hence

$$
\begin{equation*}
d A_{t}=\operatorname{det} A(t) d A=\operatorname{det} A(-t) d A=d A_{-t} \tag{2.1}
\end{equation*}
$$

By using the formula (1.14) in (2.1) and writing $n=2 m$, we have

$$
t\binom{2 m}{1} \sigma_{1}+t^{3}\binom{2 m}{3} \sigma_{3}+\cdots \cdots+t^{2 m-1}\binom{2 m}{2 m-1} \sigma_{2 m-1}=0
$$

for all sufficiently small t, which implies

$$
\begin{equation*}
\sigma_{1}=0, \sigma_{3}=0, \ldots, \sigma_{2 m-1}=0 \tag{2.2}
\end{equation*}
$$

Thus, if det $C(t)=1$, then Σ_{t} and Σ_{-t} have the same element of area at corresponding points and the principal curvatures $k_{1}, \ldots, k_{2 m}$ satisfy (2.2). In view of Lemma 1.3 we may choose $k_{1}, \ldots, k_{2 m}$ such that $k_{1}+$ $k_{2}=0, \ldots, k_{2 m-1}+k_{2 m}=0$ and $k_{i} \neq 0$, for all $i=1,2, \ldots, 2 m$. With this choice, Σ is a non-trival minimal hypersurface in $R^{2 m+1}$ and we may write (2.1) as

$$
\begin{equation*}
d A_{t}=\left(1+\binom{2 m}{2} t^{2} \sigma_{2}+\cdots \cdots+t^{2 m} \sigma_{2 m}\right) d A=d A_{-t} . \tag{2.3}
\end{equation*}
$$

Now consider the formula in (1.15) for the elementary symmetric functions $\sigma_{i}^{(t)}$ of principal curvatures of \sum_{t}. When i is even, the right hand member of (1.15) is a polynomial in even powers of t. This is so because odd powers of t multiply odd order elementary symmetric functions which vanish. Thus, using (1.15) and (2.3), we obtain

$$
\begin{equation*}
\sigma_{i}^{(t)}=\sigma_{i}^{(-t)}, \quad i=2,4, \ldots, 2 m \tag{2.4}
\end{equation*}
$$

When i is odd, the right hand side of (1.15) is a polynomial in odd powers of t and so again in view of (2.3), we get

$$
\begin{equation*}
\sigma_{i}^{(t)}=-\sigma_{i}^{(-t)}, \quad i=1,3, \ldots, 2 m-1 \tag{2.5}
\end{equation*}
$$

The formulas (2.3), (2.4), and (2.5) prove the statement in part (a).
(b). If $C(t)=\lambda I, \lambda>0$, from (1.11), we have $A(t)=\lambda A(-t)$. Using (1.8), we get

$$
\begin{equation*}
a_{j}^{i}=\frac{1}{t} \frac{\lambda-1}{\lambda+1} \delta_{j}^{i} \tag{2.6}
\end{equation*}
$$

which shows that the Weingarten map L of Σ is a constant multiple of the identity map. Hence we conclude that Σ is umbilical or flat, depending on $\lambda \neq 1$ or $\lambda=1$.

Let U, V be tangent vectors to \sum_{-t} at $X_{-t}(p)$. Then(1.13), together with $C(t)=\lambda I$, gives

$$
\left\langle f_{t}^{\sharp} U, f_{t}^{\sharp} V\right\rangle=\lambda^{2}\langle U, V\rangle,
$$

which shows that f_{t}^{*} is conformal.
(i) If $\lambda \neq 1, L$ is a non-zero constant multiple of the identity map and, further, compactness of Σ implies that it is an Euclidean sphere.
(ii) If $\lambda=1$, then $L=0$, and hence Σ is a hyperplane. In this case, $f_{t}^{\#}$ is clearly an isometry.

When Σ is a surface in 3-dimensional Euclidean space \mathbf{R}^{3}, (1.14) and (1.15) give the well known formulals

$$
\begin{align*}
d A_{t} & =\left(1+2 \sigma_{1} t+\sigma_{2} t^{2}\right) d A, \quad \sigma_{1}^{(t)}=\frac{\sigma_{1}+\sigma_{2} t}{1+2 \sigma_{1}+t^{2} \sigma_{2}} \tag{2.7}\\
\sigma_{2}^{(t)} & =\frac{\sigma_{2}}{1+2 t \sigma_{1}+t^{2} \sigma_{2}}
\end{align*}
$$

If Σ is minimal, we have $\sigma_{1}^{(t)} / \sigma_{2}^{(t)}=t=-\sigma_{1}^{(-t)} / \sigma_{2}^{(-t)}$, which imply that the sum of the principal radii of curvature is constant on each of the parallel surfaces of the minimal surface Σ. We prove the converse.

Proposition 2.2. If S is a surface in \mathbf{R}^{3} with Gaussian curvature $\sigma_{2}<0$ and at each point of which the sum of the principal radii of curvature is constant, then S is a parallel of a minimal surface (which may be degenerate).

Proof. Let $\sigma_{1} / \sigma_{2}=t=$ constant. Consider a parallel surface S_{-t} of S defined by

$$
\begin{equation*}
X_{-t}=X-t N \tag{2.8}
\end{equation*}
$$

Exterior differentiation gives $d X_{-t}=d X-t d N$. Since $N=N_{-t}$, we have

$$
\begin{equation*}
d N_{-t} \times d X_{-t}=d N \times d X-t d N \times d N \tag{2.9}
\end{equation*}
$$

It is well known [1] that $d N \times d X=2 \sigma_{1} d A N$ and $d N \times d N=2 \sigma_{2} d A N$, so (2.9) reduces to

$$
2 \sigma_{1}^{(-t)} d A_{-t} N_{-t}=2 \sigma_{1} d A N-\left(\frac{\sigma_{1}}{\sigma_{2}}\right) 2 \sigma_{2} d A N=0
$$

This implies $\sigma_{1}^{(-t)}=0$, that is, S_{-t} is a minimal surface. Now, we may write (2.8) as $X=X_{-t}+t N_{-t}$, which shows that S is a parallel of the minimal surface S_{-t}.

Acknowledgement. The author would like to express his deep sense of gratitude to Professor Robert B. Gardner for his helpful suggestions and remarks while preparing this paper.

The author would also like to thank the referee for his comments. Among other things, he pointed out that an easier proof of Lemma 1.3 could be obtained by observing that, under the hypothesis of the Lemma, $f(\lambda)=\left(\lambda+k_{1}\right) \cdots\left(\lambda+k_{2 m}\right)$ is an even function of λ.

References

1. H. Flanders, Differential forms with applications to the physical sciences, Academic Press, New York, 1963.
2. R. B. Gardner, The Dirichlet integral in differential geometry, Proceedings of the symposia in pure mathematics, Vol XV, AMS (1970), 231-237.
3. G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge University Press, London, 1934.
4. N. J. Hicks, Connexion preserving, conformal, and parallel maps, Michigan Mathematical Journal 10 (1963), 295-302.

Karnatak University, Dharwad 580003, India

[^0]: Received by the editors on January 23, 1984 and in revised form on May 30, 1984.
 The work was supported by U. S. Government grant CIES 04946 under the Indo American Fellowship program and was carried out at North Carolina University at Chapel Hill.

