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BASIC QUASI-PROXIMITIES, GRILLS 
AND COMPACTIFICATIONS 

R. N. HAZRA AND K. C. CHATTOPADHYAY 

ABSTRACT. In this paper we make a study of nonsymmetric basic 
proximity structures defined by ignoring the symmetry axiom from 
the definition of basic proximities given in Cech [1]. They have been 
used to construct a type of compactification of Z)0-closure spaces. 

1. Introduction. Pervin [14] introduced the concept of quasi-proximities 
in 1963. He defined quasi-proximities by ignoring the symmetry axiom 
from the definition of classical proximities (EF-proximities) defined by 
Efremovic [4]. Steiner [15] has proved that there is a quasi-proximity as 
defined by Pervin, compatible with each topological space. Gastl [6] has 
also investigated quasi-proximities as defined by Pervin [14]. 

Mattson [11] has investigated nonsymmetric proximities, which are 
defined by including distributive properties in addition to what has been 
defined by Pervin [14]. This type of nonsymmetric proximities have also 
been studied by E.P. Lane [8], Singal and Sunder Lai [17] among others. 

After the introduction of Efremovic proximities, extensive investiga­
tions to generalize the theory of proximities in different ways have been 
made by Leader [9], Lodato [10], Harris [7], Gagrat and Naimpally [5], 
Sharma and Naimpally [16] Thron and Warren [22] and Mozzochi, Gagrat 
and Naimpally [12]. 

Basic proximities were introduced by Cech [1]. It has been shown that 
the closure operator induced by a basic proximity satisfies a symmetry 
axiom. Thus one can not expect a basic proximity compatible with an 
arbitrary closure space. 

In this paper, an attempt, parallel to what has been done by Pervin to 
subsume all topological spaces under proximity-like structures defined 
by modifying suitably the definition of EF-proximities, has been made 
to subsume all closure spaces under basic proximity-like structures defined 
by modifying the definition of basic proximities of Cech. We have intro­
duced the concept of basic quasi-proximities and used the theory of grills 
to develop the theory in line with what has been done by Thron [19] for 

AMS (MOS) subject classification 1980, 54D35, 54E05. 
Received by the editors on April 15, 1983. 

Copyright © 1985 Rocky Mountain Mathematics Consortium 

835 



836 R.N. HAZRA AND K.C. CHATTOPADHYAY 

the theory of proximities. We can show that many of the results of [19] 
remain valid for quasi-proximities. 

Finally, we have used the theory of quasi-proximities to construct 
Z>0-extensions (in particular compactifications) of Z>0

-Cl°sure spaces. But, 
as it stands right now, we have failed to characterize what compactifica­
tions of Z)0-closure spaces could be achieved by our method. We have 
concluded by making a remark about the Riesz' problem in the context 
of quasi-proximities. 

2. Preliminaries. In this section we fix our notation, collect several 
definitions, and state some results without proof. 

In what follows there is always an underlying nonempty set X. It will 
be convenient to denote the elements of X by x, y, . . . and its subsets by 
A, B, . . . . Families of subsets will be denoted by sé, £ß, . . . . In particular, 
J^will be used for filters, ^ , ^ f o r ultrafilters and ^ for grills. The collec­
tion of filters, ultrafilters and grills will be denoted by 0(X), Q{X) and 
r(X) respectively. Though, an element x e X and the set {x} containing 
the single element x are conceptually different, they are not distinguished. 

We begin by recalling the definition of a filter, ultrafilter and grill. Basic 
results on grills are given in Thron [19]. 

DEFINITIONS 2.1. A stack y o n a set X is a subfamily of the power set 
0>(X) satisfying the condition 

A => Bey => Aey. 

We denote, by £ W , the set of all stacks on the set X. Note that D(X) 
is closed under arbitrary unions and intersections. 

A filter « f o n a set X is a nonempty stack satisfying the condition A, 
B e^F => A fi B e <F. A filter is said to be a proper filter if it does not 
contain the empty set. 

An ultrafilter fy on X is a maximal proper filter on X. In particular, if 
% contains a singleton {x}, then fy is called a principal ultrafilter and is 
denoted by %{x). 

A grill <g on X\% a stack which satisfies the additional conditions 

^ ^ ^ a n d ^ U Be& => Ae& or Be&. 

A nonempty grill is called a proper grill. Observe that @(X) is closed under 
arbitrary intersections and r(X) is closed under arbitrary unions. 

The words ''filter, grill" will be used to mean 'proper filter, proper grill' 
unless stated otherwise. 

DEFINITIONS 2.2. A functionc : 0>(X) -* 0>(X)\s called a closure operator 
on the set ^ i f it satisfies the following three conditions: 
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Cx:c{0) = 0 ; 
C2: c(A U *) = c(A) U c(B)\ 
C3: c(^) 3 A. 

The pair (X, c), where c is a closure operator on the set X, is called a 
closure space. These concepts are generalizations of the more familiar 
concepts of Kuratowski clousre operators and topological spaces, respec­
tively. If, in addition, a closure operator c satisfies 

C4: c(c(A)) c c(A), 

then c is called a Kuratowski closure operator and (X, c) is called a topol­
ogical space. 

Closure spaces were introduced by Cech [1]. They form the basic spatial 
structures in [1]. One advantage of this approach is that it provides a 
convenient basis for the study of general proximities and uniform struc­
tures. 

DEFINITIONS 2.3. A binary relation % on the power set £P{X) is said to 
be a basic quasi-proximity on X if the following conditions hold : 

ß / V (i) (A,B{) C)£%o (A, B)exor {A, C) G TZ\ 
(ii) (A U B, C) e % o (A9 C) G TI or (B, C) G TC\ 

QP2: A fi B & <f> => (A, B) e TU; and 
QP3: (A, B) e TI => (A * <f> * B). 

The pair (X, %) is called a basic quasi-proximity space. If, in addition, 
the basic quasi-proximity % satisfies 

QP±: (A, B)ETC=>(B, A) ETC, 

then % is called a basic proximity on X and (X, TT) is called a basic pro­
ximity space. The basic proximity spaces were introduced and studied by 
Cech [1]. For each basic quasi-proximity TC, we define 

cn(A) = { i e l : (A, x) G TC}, for all A c X. 

One can easily verify that c%\ &>(X)->0>(X) is a closure operator; it is 
called the closure operator induced by TC. By %~l we mean TC"1 = {(>4, 
i?): (i?, ,4) G Tt}. It can be verified that %~l is also a basic quasi-proximity 
and it is called the conjugate of %. 
We define 

TZ{A) = {fi c J : (A, B)ETU}, for all ^ c= X 

Henceforth we shall drop the prefix 'basic' and just talk of quasi-proxim-
ities. 

DEFINITION 2.4. A duality function d: J}(X) -> 2 ( 1 ) is defined by 

d(S?) = {B a X: B Ç] A ï <f>,Ae &>}. 

The duality function satisfies the following results : 
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(i)d(y) = {B c X:X - Bt^}; 
(ii) d(d(sr)) = ST\ 

(iii) d is a bijection map from 0(X) onto r(X) and from /"(X) onto 0(X) ; 
(iv) For any element % e Û(X), d($r) = %\ 
(v) d(U ^ ) = fi d{?t) and </(f| &>{) = U rf(^); and 

(iv) Sfl9 ^2 e S W , ^ i => ^2 => d(yx) c d(^2). 
Below, we state without proof some results from Thron [19]. 

THEOREM 2.5. Let & e r(X) be any element. Then 

<$ = U {WeQ(X): ty Œ &}. 

THEOREM 2.6. Let & G 0(X) and <g e T(X). Then & a & holds if and 
only if there exists an element <% G Q(X) such that ZF c % a <g. 

THEOREM 2.7. Let &re0(X)and&1, &2eT(X)be such that & c <&X (J gp2. 
Then ^ c <gx or & a &2. 

From Theorem 2.7 one can easily deduce the following corollary. 

COROLLARY 2.8. Let &er(X) and J ^ , &2
 G # W be such that &x f] ^2 

a <g. Then &x a & or ^2 a <g. 

THEOREM 2.9. A binary relation % on 0>(X) is a quasi-proximity on X if 
for each A a X, 

(i) 7Ü(A) and n'^A) are grills; and 
(ii) iz(A) =D U {% e Q(X): A e®} = {B a X: A f] B ^ <j>}. 

PROOF. It is easy to verify that the condition (i) is equivalent to QP\ and 
QP$, and the condition (ii) is equivalent to QP2. 

THEOREM 2.10. Let % be a binary relation on 0>(X). Then % is a quasi-
proximity on X if and only if 

(i) 7z(A) is a grill for each A a X; 
(ii) 7t(A U B) = ic(A) U MB) for all A, B c X\ 

(iii) K(A) 3 (J {% G Q(X): A G %}for all A c X; and 
(iv) TT(ÇS) = <t>. 

PROOF. Conditions (i), (iii) and (iv) are equivalent to conditions QPi 
and QP3. Condition QP2 is equivalent to condition (iii). 

THEOREM 2.11. Let m, n2 be any two quasi-proximities on X and let A, 
B be subsets ofX. Then 

i) %\ U 7T2 ̂  a quasi-proximity on X; 
ii) if A ZD B, then TCI(A) ZD ÏÏI(B); 

iii) (%\ U 7C2) (A) = m(Â) U 7U2(A); and 
iv) c%l{]%2{A) = cm(A) U c„2(A). 

PROOF. The proof is straightforward and hence we omit it. 
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COROLLARY 2.12. For any quasi-proximity TI on X, % \] TZ~X is a pro­
ximity on X. 

PROOF. The proof follows from the fact that {% (J TT -1) -1 = iz fl TT_1-

THEOREM 2.13. Let % be a quasi-proximity on X. Then A e %{B) implies 
there is a m G Q{X) such that % c: x(A) Ç] TC(B). 

PROOF. The proof follows from the fact that all grills are unions of 
ultrafilters, and if C e ^, ^ G Q(X), then % a TT(C). 

THEOREM 2.14. Let %x and %2
 oe any two quasi-proximities on X. Then 

c%l = cK2 if and only ifm{x) = %2\x),for all x G X. 

PROOF. The proof follows from the following observation. Let % be any 
quasi-proximity on X and A be any subset of X. Then 

cx(A) = {x G X: (A, x) G TV} = {x G X: (x, A) G T:'1} 

= {x G X: A G TU-HX)}. 

DEFINITION 2.15. For any quasi-proximity % on X and for any filter 
J^ on X, we define 

TT(^) = fi {K{F)\ Fe^}. 

THEOREM 2.16. For any quasi-proximity % on X, 
(a) 7T( «F) is a grill on X, for each «f e 0 (X) ; 
(b) iz{^i fi ^2) = n&i) U 7c{^2)Jor any two &^ ^2e^{X)\ 
(c) TT(A) = U {TTW: A G # , % G Q(X)}; 
(d) %(&) •=> &, for each & G 0(X); 
(e) &x a %{&r

2) o^2a %-\&ù* where &l9 3?2
 G #P0; 

(f) TT C TT(^), 3 ö f e ß(X) swc/j fAfl/ ^ G fy and *r <= n{^/)\ and 
(g) 7r(f(i)) = 7t(x),for ail xeX. 
PROOF, (a). Clearly, n{<F) is a stack on X not containing the empty set <f>. 
For any two subsets A, B of X, A (J Ben{^) implies J^ c rc"1^ |J i?) 

= 7T_1(^) U n~l{B). In view of Theorem 2.7, we conclude that 

& c TZT1^) or JF c TT"1^). 

Hence A G 7r(J^) or B G 7T(^) . Thus 7r(J^) is a grill. 
(b). We have A e %(&x fl ^2) if and only if J ^ fl ^2 <= 7r_100 if and 

only if J^! c 7r_1(>4) or J^2 ^ 7r_1(v4) (see corollary 2.8) if and only if 
A G Tci&i) or A G 7T(^2) if and only if y4 G 7T(^I) U 7T(^2)-

(c). J5 G TTOO if and only if ^ G TT" 1^) if and only if 3 a ^ e Q(X) such 
that A G ^ and ^r c TT" 1^) if and only if 3 a ^ G Q(X) such that A G ^r 
and £ G TTW-

Thus 7r(i4) = U M * ) : ' * e fl(X), ^ G * } . 
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(d). The result is immediate from gP 2 . 
(e). J^! c 7T(J^2) if and only if J ^ a n(F), for all F e ^"2, if and only 

if F e irl(&à, for all F e ^ 2 , if and only if &2 e %-\&{). 
(f). *r c TT(^) => ^ e T T 1 ^ ) => 3 a ^ e £(Z) such that ^ e ^ c r 1 

(ir) => y c ^(^r). 
(g). TTWJC)) = fi {ÎT(^): ^ e ^ ( x ) } = TT(JC) (See Theorem 2.11 (ii)). 

DEFINITIONS 2.17. A closure space (X, c) is said to satisfy the i?0-axiom 
if, given x,y e X such that x e c(y), then y e c(x). 

Now we prove an interesting result in this section. Let (X, c) be a closure 
space. A quasi-proximity % on Zis said to be compatible with c if c% = c. 
In what follows we shall see that, for any closure space, there exists a 
compatible quasi-proximity. This is not true in the case of basic proxim­
ities. Since the basic proximity is symmetric, to get a compatible pro­
ximity, the given closure space is required to satisfy the /^-separation 
axiom. 

THEOREM 2.18. Let (X, c) be any closure space. Define 

TC°C = {(A, B): c(A) r\B^(j>). 

Then -nPc is a quasi-proximity on X compatible with c. Also, %Q
C is the smal­

lest of all quasi-proximities compatible c. 

PROOF. Verification of the fact that %Q
C is a quasi-proximity is straight­

forward and hence we omit it. Also, xec(A) if and only if (A, x) e %Q
C if 

and only if x e cnQ(A). Thus 7C°C is compatible with c. Finally, let % be any 
quasi-proximity on X compatible with c. Then c(A) f] B ^ <j) => c%(A) 
p| B ^ <f> => (A, x) e 7T, for some x e B => (A, B) e %. This completes the 
proof. 

REMARK 2.19. Now we give an example of a closure space for which 
there exists no compatible basic proximity. 

EXAMPLE 2.20. Let X be the set of all natural numbers. Define an op­
erator c: 0>(X) -+ &>(X) by the rule 

c(A) = { x e l : x ^ f l , for some a e A}. 

It can be easily verified that c is a closure operator. By the above theo­
rem, we can get a quasi-proximity 7Ü°C compatible with c. Since, by the 
definition of c, we have 2 e c(l) but 1 £ c(2), it follows that c does not 
satisfy the i?0-axiom and hence there does not exist a basic proximity on 
X compatible with c. 

THEOREM 2.21. Let (X, c) be a closure space. We define a relation TU] on 
&(X) by 
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Ti\ = 7L°C U {(A, B): A ± (fremd \B\ £ Ko}-

7%en 7TJ is the largest quasi-proximity on X compatible with c, where TZ® 
is defined in Theorem 2.18. 

(80 denotes the cardinal number of the set of natural numbers and \B\ 
the cardinal number of the set B.) 

PROOF. We denote, by J , the set {(A, B): A # 0 , \B\ ^ K0}. Clearly 
Z/ satisfies ÔA and ÖP3 of Definition 2.3. Since TZ°C is a quasi-proximity 
it follows that iz\ — TZ°C U à is a quasi-proximity on X 

Now, from the construction of n], it follows that {A, x) G %\ if and only 
if (A, x) e 7C°C if and only if x e c\o(A) = c{A). Hence it follows that %\ is 
a quasi-proximity compatible with c. 

Finally we shall show that %\ is the largest quasi-proximity on X com­
patible with c. Let TZ be any quasi-proximity on X compatible with c. Let 
{A, B) e TI. Clearly A # 0 # B. If \B\ ^ N0, then {A, B) e %\. So suppose 
that B is finite. Then there exists x G B such that (A, x) e TZ and hence 
x G cn(A) = c(A) = cKi(A). That is, (^, x) e %\. Consequently (A, B) erz]. 
This completes the proof. 

3. Proximity Neighbourhoods. In this section we give an alternative 
approach to introduce quasi-proximities by axiomatizing certain pro­
perties of neighbourhood filters. 

DEFINITION 3.1. Let (X, TZ) be a quasi-proximity space. A subset B of 
X is called a proximal neighbourhood of a subset A with respect to TZ if 
(X - B) $ TZ{A) (notation A <^% B). 

Now it is clear that A <^nB'\î and only if (X - B) mv-i (X - A). If 
no confusion is likely to arise about the proximity, then we simply write 
A m B. We denote by 31(TZ, A) the set of all proximal neighbourhoods of 
A with respect to TZ, i.e., W(TZ, A) = {B a X: X - B <£ TZ{A)}. 

THEOREM 3.2. Let TZ be a quasi-proximity on X. Then, for any A a X\ 
i) 9î(7r, A) — d(Tz(A)), where d is the duality function', 

ii) %TZ, A) = fi {# e Q(X): % c TC(A)} C {B a X: A a B}; and 

iii) 9?(TT, A) e fi {^ e 0 (1 ) : ^ G # } . 

PROOF, i). BeW(Tz, A) if and only if X - £<£ TTOO if and only if 
Bed(rc(A)). 

ii). Since 7T(^) is a grill, by (i), we have 

%TZ, A) = d(Tc(A)) = d(U{WeQ(X): <H cz rz(A)} 

= fi {</(#): * <= TTG4)} 

= fi { ^ : «r c ^ ) } . 

Also £ G 3Î(TT, A)=> X - SC TZ(A) =>(X-B)f)A = </>^AczB. 
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iii) Since %{A) => U {^ e Û(JT): ̂  G %}, it follows that 

91(TC, A) = </(*(>*)) c ( / (U{^e Q{X) :AeW} 

= n { ^ W : ^G^r} 

= Cl{WeQ(X):Ae<9f}. 

COROLLARY 3.3. For any quasi-proximity % on X and for any A a X, 
5}(7T, A) is a filter on X. 

PROOF. Since, for each A cz X, %{A) is a grill, d{%{Af) is a filter on X 
and hence by the above theorem, 9?(TT, A) is a filter on JT. 

COROLLARY 3.4. Let % be a quesi-proximity on X. Then B G %{A) if and 
only ifB r)NA* 09for all NA G m(7U, A). 

PROOF. By the above Theorem, 

7u(A) = d(d(ic(A))) = d(9t(7c9 A)) = {B a X:B f] NA* 0,NAe Sifo A)}. 

This completes the proof. 

COROLLARY 3.5. Let % be a quasi-proximity on X. Then for any subset 
AofX, 

cM)= f}{NA:NAe'3l(x,A)}. 

PROOF. From the above results, x e cn{Ä) if and only if {A, x) e % if 
and only if x e NA, for all NA e yi(n, A), if and only if x e fi {NA: NA e 
SROr, A)}. 

THEOREM 3.6. Let it\ and %2 be any two quasi-proximities on X and let 
A, B be any two subsets of X. Then 

(i) 5R(3Ti U 7T2, A) = 3Ü1CU A) ft K{n2, A); and 
(ii) SROn, A U B) = SR(Wl, ̂ ) 0 SWOn, 5). 

PROOF, (i). Jlfe U ic2, A) = J((?n U n2) (A)) = «/(«r^) U n2{A)) = 

rf(?ri(^)) n d(7T2(A)) = «won, ^ n ftfe, A 
(ii). Mfo, ^ U B) = rf(ffl(^ U B)) = rf(ffl(X) U ffi(J)) = 

cHicM)) n </(ffi(Ä)) = 3K*I, A) n SR(JTI, 5). 
COROLLARY 3.7. Le/ %be a quasi-proximity on X let A, B be subsets of 

X. Then 

SR(7T, ^ U ^ ) = { ^ U #*: ^ G HOr, ^), # 5 G 9̂ (TT, *)}. 

PROOF. Note that NA G 9Î(TT, ^) and NB e m(7u, B) implies that NA U 
JV5 G 9?(7T, 4̂) fi 9Î(̂ » ^) and, hence, by the above results, 

NA I) NBem(7u,A \JB). 
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Also, if E G 9?(TT, A U B \ then E e %ic, A) and E e 3I(IÜ9 B). Thus 9?(TT, 
A\J B) = {NA\JNB:NAe 3l(ic9 A), NB e SR(TT, * )} . 

LEMMA 3.8. Let TU be a quasi-proximity on X and let A, B be subsets of 
X. Then 

{[) A c B=>yi{ic,A) =3 31(TC, B); 
(ii) 3l(ic9X) = pf};and 
(iii) W(TC, A) = &>(X) if and only if A = 0 . 

PROOF, (i). We know that A cz B => K(A) <= %(B). Hence A a B => 
d(n(A)) => d(ic(B)). Thus we have A a B => 9Ì(TT, 4) =3 9l(ic, B). 

(ii). Note that (&(X) - {0}) is a stack. Thus SR(TT, X) =J(^(Z)) = 

rf(^W - {0}) = W-
(iii). Finally, 3l(iu9 A) = ^ ( * ) if and only if </(9?(TT, A)) = </(^W) if 

and only if %(A) = 0 if and only \î A = 0. 

COROLLARY 3.9. Let % be a quasi-proximity on X and let A{ (i = 1, 2, 
. . . ni), Bj ( y = l , 2 , . . . «) òe subsets of X. If for any pair (/, j), i = 1, 
2,. . . ra,y* = 1, 2 , . . . AI, Z?y e 9ï(7r, A{), then 

( i ) n > = i ^ € 3 ^ , U ? = i ^ ) ; 
( i i ) U y = i ^ e S R ( ^ U r = i ^ ) ; a n d 

PROOF, (i). Since, for each /, 9?(TT, >4,-) is a filter on A', it follows that 
Bj e yi(%, Ai) => fly=i ^y e 5Kfe ^ ) , for all / = 1, 2, . . . m. Hence, by 
Theorem 3.6 (ii), f ^ i ^ e f l ^ i ^ ^ ) = Mfo U<=i ̂ ) -

(ii). Since 5«(7r, ( J j ^ ̂ t) is a filter, it follows from above that (J;=1 5 y 

e3ï(7r,Uî?=i^). 
(iii). From above, we get Q j = 1 i?y e 9Z(TT, V4,-), for all / = 1, 2, . . . m. 

Now, since Ç\f=l At- a Ai9 by Lemma 3.8 (i), 31(TC, At) a 31(TC9 f ^ At). 
Hence we get 

n m 

y=i i=i 

REMARK 3.10. Observe that, in the above theorem, some of the neighbour­
hood filters may not be proper. This, however does not affect the proof 
of the theorem. 

REMARK 3.11. From the above results, it is clear that if we are given a 
quasi-proximity space (X, %), then a unique filter "31(A) is assigned to each 
A cz X, defined by 31(A) = 3l(n, A), such that the following conditions 
hold: 

(Nx)3l(A \J B) = M(A) fi M(B); 
(N2) 31(A) e fi {^ e Q(X): Ae<%}; and 
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(Ns) 31(0) = &(X). 

THEOREM 3.12. Let X be a nonempty set and 31(A) be a unique filter on X 
for each A c X such that the conditions N\9 N2, N3 of Remark 3.11 are 
satisfied. Then the binary relation n on £P(X), defined by 

%(A) = d(3l(A))for each A a X, 

is a quasi-proximity on X such that 3l(n, A) = 31(A), for each A cz X. 

PROOF. Since 31(A) is a filter, it follows that n(A) is a grill, for each A c 
X. Since 31(A) c ft {% G Q(X): A G %}, it follows that 

%(A) = d(3l(A)) =) U {</(#): AeW} (by N2) 

= \j{q/:Ae<%}. 

Also 

n(A U B) = d(3l(A U B)) = d(3l(A) ft 31(B)) (by N{) 

= d(3i(A)) U d(3l(B)) = n(A) U TT(B). 

Finally, 

TT(0) = d(3l(0)) = d(&(X)) = 0 (By N3). 

Thus, by Theorem 2.10, it follows that % is a quasi-proximity on X. 
Also, 3l(iz, A) = d(x(A)) = d(d(3l(A))) = 5R(̂ ) (by Theorem 3.2 (/)). 
This completes the proof. 

4. Extension of D0-closure spaces. 

DEFINITION 4.1. Let (X, c) be a closure space. A grill ^ on X is called 
a c-grill if 

Ae&if c(A) e ^ . 

Dual to the concept of a neighborhood filter of a point x is that of an 
adherence grill of the point x. By this, we mean the grill 

<&c(x) = {A c I : X G C ( 4 

LEMMA 4.2. Le/ (^, 7zr) èe Û quasi-proximity space. Then, for each x G X, 
7i~l(x) = &CK(X). 

PROOF. The result follows from the appropriate definitions. 

DEFINITION 4.3. A closure space (X, c) is said to satisfy the G0-axiom if 

A closure space (X, c) is said to satisfy the Z>0-axiom if jq G C(X2) and 
x2 G c(xi) => Xi = x2. (It is immediate that the D0-SLXiom implies the 
G0-axiom. But the converse need not be true in general.) 
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For any grill <& on X, we define 

^+ = {WeQ(X): % c ^ } . 

DEFINITION 4.4. A quasi-proximity space (X, %) is said to be separated 
if, for each pair of points x, y in X, 

(x, y)e% fi 7z~l => x = j . 

THEOREM 4.5. y* quasi-proximity space (X, %) is separated if and only 
if (X, cn) is a DQ-do sur e space. 

PROOF. The result follows from the fact that, for x, y in X, (x, y) e 
% H it"1 if and only if (x, y) e % and ( j x) e % if and only if y e ^(x) and 
X G Q ( ^ ) . 

DEFINITION 4.6. Let (A; c) and (Y, k) be two closure spaces and let 
W: (X, c) -+ (Y, k) be an injection map. Then E = (¥,(7, k)) is called an 
extension of (X, c) if 

(i) ¥{c{A)) = fc(#r(/0) H $ W , for all ^ cz JT; and 
(ii) k(¥(X)) = y. 

(Since $" is an injection map, (i) insures that ¥ is a homeornorphism 
from (A", c) onto (^(X), /:') where k' is the relativised closure operator on 
¥(X) induced by k. Condition (ii) insures that ¥{X) is dense in (Y, k),) 

Two extensions ^ = (¥\, (Yh k{)) and £2 = (¥2, (Y2, k2)) of the space 
(X, c) are called equivalent if there exists a homeornorphism 6 from 
( F b kx) onto ( r2, /c2) such that, on X, 6 ° ¥x = ¥2, 

The extension Ex is said to be greater than the extension E2 if there exists 
a continuous function 0 from (Y^ k{) onto (Y2, k2) such that, on X, 
0o¥l = ¥2. 

Associated to each extension E = (¥, (Y, k)) of (X, c) is the trace system 

X* = X«(E) = {z(y):yeY}, 

where 
T(y) = rty, £ ) = { ^ c J : y G Ä : ( M ) } . 

(Extension theory of G0-closure spaces has been studied in [2].) 

DEFINITION 4.7. Let % be a quasi-proximity on X and ^ be a grill on 
Jf. Then ^ is said to be a %-family if (^(^4), ^(2?)) e 7T fi 7zr-1 for all 
v4, Be&. 

LEMMA 4.8. For each x e X, %~l(x) is a %-family. 

PROOF. Since A, Be %~l(x) =>xe c„(A) and x e ^(2?) => x e c ^ ) f] 
cn{B) => (Q(/4) , CV(2?)) G % f| 7T_1, it follows that TT - 1 ^) is a ;r-family. 

LEMMA 4.9. 2?ac/? %-family is contained in a maximal %-family. 
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PROOF. The result follows by Zorn's lemma. 

THEOREM 4.10. Let % be a quasi-proximity on X and let sé be a family of 
subsets of X. If each finite subfamily of sé is contained in a %-family, then 
sé is contained in a maximal %-family. 

PROOF. By Zorn's Lemma, there exists a subfamily 88 a 0>{X) such 
that sé CL & and each finite subfamily of M is contained in a 7r-family and 
such that it is maximal with respect to this property. Since each finite 
subfamily of 8S is contained in a ^-family, to complete the proof, one 
needs to check that & is a grill. Since each finite subfamily of 31 is con­
tained in a 7T-family, it follows that 0 <£ ̂ . 

Now let B => A e @. It is clear that the subfamily {B} [j 0& a &>{X) 
contains sé and each finite subfamily of its contained in a 7T-family. 
By maximality of 08, it follows that B e 36.. 

Next let A $ & and B $ &. Then there exist two finite subfamilies 8S\ 
and &2 of & such that none of {A} [j Mx and {B} [j &2 *

s contained in a 
7T-family. Consequently, {A [j B] U ^ i U &2 *s n o t contained in a TC-
family. Since 8S\ U ^2 is a finite sub-family of ^ , it follows that A [j B $ 
&. Thus J* is a grill on X. 

Finally, since any 7r-family containing ^ has the property with respect 
to which £S is maximal, ^ is a maximal 7z>family containing sé. 

Now we are in a position to construct extensions of ZVclosure spaces 
with the help of the theory developed here for quasi-proximities. 

THEOREM 4.11. Let (X, n) be a separated quasi-proximity space and let 
X% be the collection of all maximal %-families and %~\x), for all x £ X. 
Define, for each A a X, 

A« = {&eX*: Ae&} 

and a mapping cpfrom X into X% by the rule 

<p(x) = %~~l{x), for allxel 

Define, an operator hr\ 0>(X*) -+ 0>(X*) by the rule hr(a) = {(p~l{a)y U 
r(a - (p(X)) for all a <= X*, where r: 0>(X% - <p(X)) -> &>(X*) is an 
arbitrary function satisfying r((f>) = <j>, a <= r(a) and r(a U ß) = r(a) U 
r(ß), for all a, ß c X% - <p{X). Then (ç, (XK, hr)) is a G0-extension of 
(X, cK), for each such r, with trace system X% such that z{&) = &9 for all 
<g e Xn. Moreover, all extensions of (X, c^) on X% with traces z(&) = <&, 
for all <g e Xn, can be obtained by a suitable choice ofr. 

PROOF. In Lemma 4.2 we have seen that 7r_1(x) = &Cx(x) for all x e X. 
Hence X* is a collection of grills on X containing all adherence grills of 
(X, Cx). Now, it is clear that the proof of the above theorem may be 
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omitted, for it can be completed in a way similar to what has been done 
by Chattopadhyay and Thron in [2]. 

4.12. SPECIAL CHOICES OF r AND TOPOLOGICAL EXTENSIONS. 

A permissible choice of r in hr is r{ß) = ß, for all ß c X% - <p(X). 
The identity mapping from (X, c) into (X, c') is continuous if c(A) c 
c\A\ for all A a X. So, if we define hx(a) = (p"1*»)* U (a - <p(X)), 
for all a cz A"*, then, for any r, it is clear that hi(a) cz hr(cc). Consequently, 
it follows that (<p, (X*, hi)) is the largest among all the extensions (<p, 
(X*9 hr)) of (X, cK). Now, if we define, for all a c X", 

h{a) = {<p-K<x)y U r0(a - <p(X)), 

where rQ((j>) = <f> and r0(/3) = X* if ß is a nonempty subset of X* - <p(X), 
then, as above, it can be verified that (<p, (X%, h0)) is the smallest among 
all the extensions (<p, (X71, hr)) of (X, c^). 

Thus we get the result 

THEOREM 4.13. Let (X, TI) be a separated quasi-proximity sfrace. Then 
(<p9 (X%, hi)) and (p, (Xx, hG)) are the laregest and the smallest among all 
extensions (<p, (X*, hr) of(X, cK). 

It can be easily verified that {A%\ A cz X} forms a base for the closed 
sets of some topology on X%. Hence the closure operator s defined on 
X% by s (a) = fl {A%: a cz An}, for all a cz X%, is a Kuratowski closure 
operator. Now for each a cz X%, define 

hs{a) = {<p-Ka)y U s(a - <p(X)). 

Since s((p(A)) cz A%, it can be easily verified that hs(a) = ((p~l(a)z (J 
s(a), for all a cz Xn (see [2]). However, if (X, re) is a topological space, 
then all TC~1{X) are (vgrills and if, in addition, all maximal 7r-families are 
also cvgrills, then A% = {c%{A))% and, hence, <p(A) cz B% if An cz B%. 
Consequently, we get s(<p(A)) = AK. Therefore, 

hs(a) = (<p-K<*)Y U s{a - <p(X)) 

= s(<p(cp-\a)) U s(ct - <p(X)) 

= s(a). 

Since the restriction of s to X% — <p(X) is a choice of r in Theorem 4.11 
and s is a Kuratowski closure operator on X*, it follows that (cp, (X*, 
s)) is a topological extension of (X, c j with the trace r(^) = ^ , for all 

DEFINITION 4.14. An extension (W, (Y, k)) is a compactification if 
(7, k) is a compact closure space. Cech [1 ; 41 A3, p. 785] defines a closure 
space to be compact if and only if every filter has a cluster point. Using 
his definition of a cluster point we are led to the following statement. 
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A closure space (X, c) is compact if and only if, for every filter <F on 

n{c(F):Fe^} * <f>. 

Let (X, c) be a closure space and ^ be a grill on X. Then x e X is said to 
be a cluster point of ^ if ^+ fl &t(x) ^ <j). It has been shown in [2] that 
(X, c) is compact if and only if {&t(x): x s X] covers Q(X). Using this 
result one can easily deduce that a closure space (X, c) is compact if and 
only if each grill on X has a cluster point. It can also be verified that a 
continuous image of a compact closure space is compact. 

DEFINITION 4.15. A family © of grills on X is said to be a *-family if the 
following condition holds. 

Given sé cz £P(X), if each finite subfamily of sé is contained in an 
element of @ then sé is contained in an element of @. 

LEMMA 4.16. Let X% be the set of all maximal %-families and all %~1(x), 
x e X. Then X% is a ^-family. 

PROOF. The result follows immediately from Lemma 4.9 and Theorem 
4.11. 

THEOREM 4.17. Let (X, %) be a quasi-proximity space and let X% be the 
set of all maximal %-families and %~1(x), for all x e X. Then (Xn, s) is a 
compact topological space. 

PROOF. Let sé% be a subfamily of {A71: A c X) such that, for any 
finitely many A\, A%, , Al of sé71, 

A\n A\n n A** 0. 

Set sé = {A c X: A% e sé*}. Since sé71 has the finite intersection prop­
erty, it follows that each finite subfamily of sé is contained in a %-
family. Hence, by Lemma 4.16, sé is contained in a maximal ^-family, 
i.e., sé c <g and ö?e AX Hence 3? e fi {A*: A* e sé71}. Since {A71: A c 
X} is a base for the closed sets of the topological space (X*, s\ it follows 
that (Xx, s) is compact. 

THEOREM 4.18. Let (X, %) be a quasi-proximity space. (X71, hr) is the 
closure space defined as in Theorem 4.11 such that s(a) a hr{oc) for all 
a a X%. Then (<p, (Xx

9 hr)) is a compact extension of(X, c%) ; in particular, 
((p, (Xn, hs)) is a D0-compactification of(X, c^). 

PROOF. From Theorem 4.11, we have (<p, (Xn, hr)) is an extension of 
(X, Cn). From above, we know that (X*, s) is a compact topological space. 

Since s(a) c hr(a), for all a <= Xn, it follows that the identity mapping 
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from (X*9 s) onto (X*9 hr) is continuous and, hence, (<p, {X11, hr)) is a 
compact extension of (X, c^). 

It can be easily verified that hs(a) = (<p~l{a))% U s(a). Consequently 
hd(a) •=> s(a) for all a a X* and, hence, as above, (<p9 {X%, hs)) is a com-
pactification of (X, c„). 

To show that (X*, hs) is DQ, let us consider that ^ e A5(^2) and ^ 2
 G 

/zs(^i) for two elements &l9 &2 of ^7r-
(i). Suppose both of ^1? ^ 2 belong to ^ W . Then there exist x, y in X 

such that g?x = n~l(x), <g2 = TT"1*»- Hence rc^O) E As(^"1(j;)) = M * . 
Similarly n^iy) e {x}*. These together imply that (x, y) e % f| TT-1. 
Since TT is separated, x = j> and hence ^ = g?2-

(ii) Suppose that at least one of ^ 1 , ^ 2 does not belong to (p(X). Let 
&2 £ )̂(Ar). Since ^ e /zs(3?2) = fi {A*: A e &2} it follows that ^ 2 c ^ . 
Since ^x is a 7r-family and ^ 2 is a maximal TT-family, it follows that &x = 
^2 . This completes the proof. 

REMARK 4.19. In general, there is no proximkty compatible with a given 
Z)0-closure space. In order to have a proximity compatible with a given 
Z>0-space, one must assume that the underlying space is symmetric. 
But compatible quasi-proximities are always available for a given Do-
closure space (See Example 2.20). Thus, from the result discussed above, 
it is clear that we have introduced a method of compactification of all 
Z>0-closure spaces. But, at this moment, it is not clear to us what com-
pactifications could be achieved by our method. So it remains an open 
problem to find the class of compactifications that can be realized by our 
method. 

REMARK 4.20. F. Riesz in 1908 asked to determine the class of proximity 
spaces (X, %) for which the following condition holds. 

There exists an extension ($*, ( Y, k)) of the closure space (X, cn) such 
that {A, B) G % if and only if k (W(A)) fl k(W(B)) # (f>. 

While proving the remarkable result that there is a one-to-one corres­
pondence between the class of all r2-compactifications of a Tychonoff 
space and the class of EF-proximities compatible with the Tychonoff 
space, Smirnov [18] has pointed out that separated EF-proximities satisfy 
the Riesz property. Thron [21] has proved that proximities belonging to 
the class of separated LO-proximities, have the property of Riesz. The 
class of LO-proximities is larger than the class of EF-proximities. Chat-
topadhyay and Thron [3] have pointed out that proximities belonging to 
the class of separated RI-proximities satisfy the Riesz property. The 
latter class is even larger than the class of LO-proximities. 

A meaningful formulation of Riesz' problem in the context of quasi-
proximities should have been the following. 
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What quasi proximities (X, %) have the property that there exists an 
extension (W9 (F, k)) of the closure space (X, c%) such that 

(A, B) e x if and only if k(¥(A)) f] W{B) # 0 ? 

Now it is easy to verify that cK(A) fl B # 0 if and only if k(W(A)) fl 
#"(£) ^ ^. Thus, given a D0-closure space, the smallest quasi-proximity 
compatible with it satisfies Riesz' property (in the context of quasi-
proximities). This shows that the investigation of Riesz' problem in the 
context of quasi-proximities does not seem to be that interesting, as its 
interest lies in the theory of proximities. 
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