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ON THE DIOPHANTINE EQUATION
1+pa=2b+2¢pd

LEO J. ALEX AND LORRAINE L. FOSTER

ABSTRACT. In this paper the exponential Diophantine equation
1 + p® = 2% + 2°p?, where a, b, ¢, d are non-negative integers and
pis an odd prime, is studied. All solutions to the equation are found
for which p < 499. This work extends earlier work of the authors
and J. L. Brenner.

1. Introduction. In this paper we consider the equation
€)) 1 + p2 =20 + 2¢pd

where p is an odd prime and a, b, ¢ and d are non-negative integers. This
equation is of the form

2 l+x=y+z
or, more generally,
3) XX, =0,

where the primes dividing xyz in (2) and [] X; in (3) are specified.
There has been very little work done in general to solve such Diophan-
tine equations. For example the equation

4 1 + 2036 = 5c 4 243¢5f

is unsolved. Some of these equations have an infinite number of trivial
solutions. (For example the equation (4) above has infinitely many solu-
tions of the form ¢ = f =0, a = d, and b = e.) It is unknown whether
such equations always have only a finite number of non-trivial solutions.

It follows from work of Dubois and Rhin [6] and Schlickewei [7] that
the related equation p + g + r¢ + s? = 0 has only finitely many solu-
tions when p, ¢, r and s are distinct primes. However, their methods do not
seem to apply when the terms in the equation are not powers of distinct
primes.

The authors and J. L. Brenner [1], [2], [4], [S] have recently developed
techniques which solve such equations in some cases. These techniques
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involve careful consideration of the equation modulo a series of primes
and prime powers.

Such equations arise quite naturally in the character theory of finite
groups. If G is a finite simple group and p is a prime dividing the order of
G to the first power only, then the degrees x;, x, . . ., x,, of the ordinary
irreducible characters in the principal p-block of G satisfy an equation of
the form };d;x; = 0, §; = + 1, where the primes dividing []x; are those
in |G|/p. Much information concerning the group G can be obtained from
the solutions to this degree equation. For example, one of the authors in
[3] has used solutions to the equation

1 4 20 = 365¢ 4 2435/

to characterize the simple groups L(2, 7), U(3, 3), L(3, 4) and As.

In §2 several general results regarding equation (1) arede rived.

In §3 the results obtained in §2 are used to find all solutions to
equation (1) with p < 499.

2. Equations of the form 1 + p¢ = 2% + 2¢pd, In this section we derive
several general results regarding equation (1). We first note that if (a, b,
¢, d) is a solution to equation (1) with b > 0, then clearly ¢ > 0.

LemMMA 2.1. Suppose p = 3 (mod 8) and let (a, b, ¢, d) be a solution to
equation (1) such that b > 0. Then
(i) either b or ¢ is equal to 1 or 2;
(i) if p = 11, then b or c is 2 and a is odd; and
(iii) if p =2 11 and d > 0, then ¢ = 2.

PROOF. Since 1 + 3° = 2° 4+ 2°3? (mod 8), either b or ¢ is equal to 1
or 2. Writep— 1l =2m, m=4k + 1 =5. Thenif borcisl, 0 = 2=
(mod m) for x = ¢ or b, a contradiction. Hence b, ¢ = 2 and consideration
mod 4 implies that a is odd. Finally, if d > 0, then 1 = 2% (mod p), b < 3
and ¢ = 2.

LEMMA 2.2. Let p = 5 (mod 8), p > 5. Then there is no solution to
equation (1) with b > 0.

PRrROOF. Suppose that (a, b, ¢, d) is a solution with b > 0. Since 1 + 5¢ =
26 + 2¢57 (mod 8), clearly b or cis 1. Let p — 1 = 4m, m > 1, m odd.
Then 0 = 2+ (mod m), where x = ¢ or b, a contradiction.

LeEMMA 2.3. Let p = 1 (mod &) and suppose that p is not a Fermat prime.
Then equation (1) has no solution with b > 0.

PROOF. Suppose that (a, b, ¢, d) is a solution with & > 0. Then con-
sideration mod 8 implies that b or c is 1. Further, since p is not a Fermat
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prime, p — | has an odd factor m > 1. Thus we obtain a contradiction
mod m.

The following obvious result is useful.

LEMMA 24. If p = — 1 (mod 3) and (a, b, ¢, d) is a solution to equation
(1) then (a. b, ¢, d) = (0,0, 0,0), (0,0, 1, 1),(1,0,0, 1), (1,0, 1,0), (I, 1,
0,0)o0r(l, 1,1, 1) (mod 2).

THEOREM 2.5. Let p = 29 — 1, ¢ > 2 (so that p is a Mersenne prime).
Then the solutions to equation (I) are (a, b, ¢, d) = (1,0, 0, t) and (I,
q—1,qg—-10),r=0.

PROOF. Let (a, b, ¢, d) be another solution. Since ¢ must be an odd
prime, p =1 (mod 3), 2 = 2% 4+ 2¢ (mod 3), b = ¢ = 0 (mod 2), and
bc # 0. Hence 1 4+ (29 — 1) = 0 (mod 4), so that a is odd.

Case 1. d = 0. We may write equation (1) as 1 + p¢ = 20 4 2¢ If
b, ¢ £ q — 1, then clearly since 0 = 2% + 2¢(mod 29), it follows that b =
¢ =¢q —1,a = 1, a contradiction. If b or c is g then p* = 2% + p, where
x = c or b, also a contradiction. If b, ¢ =2 g + I, then 2?9 = 29 =
1 + p2 = 0 (mod 2¢+1), another contradiction.

Case 11. d > 0. Here 1 = 2% (mod p), q divides b, b = 2g > g + 1.
Hence 29 = 2¢p4 (mod 29*1), ¢ = ¢ + 1, again a contradiction.

LEMMA 2.6. Let p = 48k + 7, k = 0. Then the solutions to equation
(I)are(a, b, c,d) =

(i) (1,0,0,t)and (1, 2,2,0)if p = 7, and

@) (+,0,0,t)ifp > 7.
Heret = 0.

PROOF. Let (a, b, ¢, d) be another solution. Since 2 = 2% + 2¢(mod 3),
b and c are even. Consideration mod 8 implies that eitherb = ¢ = 2 or
b, ¢ = 4. In the former case, | = 22 (mod p), a contradiction; in the latter
case 1 + p2 = 0 (mod 16). Since p = 7 (mod 16), p2 = 1 (mod 16), and
we again have a contradiction.

LEMMA 2.7. Let p = 56k + 43, k Z 0. Then the only solutions to equa-
tion (I) are(a, b, c,d) = (1,0,0,t),t = 0.

PROOF. Suppose that (a, b, ¢, d) is another solution. By Lemma 2.1,
borcis?2 Hence2 =1 + pe = 2¢ + 2¢ = 25 4+ 4(mod 7), where x =
c or b, a contradiction.

LEMMA 2.8. Let p = 184k + 139, k Z 0. Then the only solutions to
equation (I) are (a, b, c,d) = (1,0,0,1),t = 0.

PrOOF. Let (a, b, ¢, d) be another solution. By Lemma 2.1, without
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loss of generality, ¢ = 2. Then consideration mod 23 yields a contradic-
tion.

THEOREM 2.9. Let p be a prime of the form 2 - 9% + 1, k = 1. Then the
solutions to equation (1) are (a, b, ¢, d) =

(1) (1,0,0,1),t =20, fork = 1, and

(i) (1,2,4,0)and (1, 4, 2,0), fork = 1.

PRrROOF. Let (a, b, c, d) be another solution. By Lemma 2.1 a is odd and
without loss of generality we may assume ¢ = 2. Thus we have 2 =
26 + 4 (mod 9) so that b = 4 (mod 6). Similarly, if £k > 1, =2 = 2¢
(mod 81) so that b = 28 (mod 54). Suppose d > 0. Then 1 = 2¢(mod p)
so that 3 | b, a contradiction. Hence we may assume d = 0, so that p? =
20 + 3. If k = 1, then 192 = 3 (mod 64) so that a = 5 (mod 16). Thus
12 = 2% (mod 17), a contradiction.

Hence k > 1. If k is even we have 32 = pe = 26 4+ 3 (mod 5) so that
b = 2 (mod 4), and hence b = 10 (mod 12). Thus p2 = 0 (mod 13), again
a contradiction. Thus k is odd and —1 = p2 = 2% + 3 (mod 5) so that
b =0 (mod 4), and, in fact, b = 4 (mod 12). Therefore p? = 6 (mod 13).
We have three cases.

Case 1. k = 0(mod 3). Then 3¢ = p2 = 6 (mod 13), a contradiction.

Case 11. k = 1 (mod 3). Here 62 = 6 (mod 13) so that @ = 1 (mod 12).
Also p2 = 0, 132 or 92 (mod 19). Clearly p¢ # 0 (mod 19). Since b = 28
(mod 54) we have 22 + 3 =1 (mod 19). But 132 = | (mod 19), 92 = |
(mod 19) imply that 18 divides a, 9 divides a, respectively. These are both
contradictions.

Case 111. k = 2 (mod 3). Now 72 = 6 (mod 13) so that a = 7 (mod 12),
p=2(mod7),2 =2¢ =2+ 3 =5(mod 7), another contradiction.

THEOREM 2.10. Let p = 22" + 1 be a Fermat prime, n = 2. Then (a, b,
c,d)y=(,0,0,1t),(1,1,2%0), (I, 2% 1,0)and (2,2#3,1, 1), t = 0, are
solutions to equation (1). Suppose that (a, b, c, d) is another solution. Then:

(i) c = 1,d > 2and b = 271 kp for some positive integer k,

(1) (@, d) = (2, ) or (272 + 2, 3. 271 + ]) (mod 27+3) and k is odd,

(iii) (a, k, d) = (2, 5, 1) (mod 6), and

(iv) (a, b, ¢, d) does not exist forn = 2, 3, 4.

PROOF. (i). Let x = p — 1. Clearlyb > 0, ¢ > 0. Also ord,2 = 27*1,
Consideration of equation (1) modulo 4 implies that b or ¢ = 1. Suppose
that b = 1. Then consideration mod p givesd =0 and ps = 1 + 2¢. Hence
27+1 |2¢, 27| c. By hypothesis ¢ > 27 so that 2¢ = 0 (mod 2x) and hence
p? =1 (mod 2x). Since p = (x + 1) = ax + 1 (mod 2x), we conclude
that a is even. However, since x = 1 (mod 3) we then have 0 = 2¢ (mod 3),
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a contradiction. Hence ¢ = 1 and 1 + pe = 2¢ + 2pd. If d = 0 we have
p® = 1 + 2% which leads to a contradiction as in the preceding case.
Hence d 2 1, 1 = 2% (mod p), 2#*1|b, 2¢ = x¥’ for some positive in-
teger b, 1 + (x + 1)2 = x% 4 2(x + 1)4. Thus 2¢ = 241 (mod 3),
a # d (mod 2). Since 1 + (ax + 1) = 2(dx + 1) (mod 2x), we have a =
0 (mod 2) and hence d = 1 (mod 2). Thus we may write a = 2a'd =
2d’ + 1 for some integers a’, d’, wherea’ > 0, d" = 0. Supposed’ = 0
so that (x + 1) = x®' 4+ 2x + 1. By hypothesis ' > 1, @’ > | and
hence ((x + 1) + x*') « ((x + 1)¢ — x¥) = 2x + 1. Since (x + 1)¢ +
x¥>a'x+ 1 4+ x = 3x + 1, we again have a contradiction. Hence
d" > 0,d = 3. Since x? = (p — 1)?» = —1 (mod p?), we conclude that
ordzx = 2p. Thus, since 1 = x%' (mod p?), we have p | b, b' = pk for
some positive integer k. Thus we have established (i).

(ii). Define z = 22" + 1, n = 2. Clearly ord,2 = 27 and x = 1 (mod
z). Hence p = 2(mod z) and 22" = 2 - 224"+1 (mod z), so that 24’ = 2d’ +
2 (mod 2%) and @’ =d’ + | (mod 2771). Now since 1 + (x + )% =
2(x + 1)1 (mod 2x2), we have

) aa’ — Dx + 24’ = 2(2d’ + 1) (mod 2x).
Hence @’ is odd, say @’ = 2a” + 1,2a" + | = d’ + 1 (mod 27-1) and
©) 24" = d' (mod 27-1).

From congruence (5) we obtain x + 2(2a” + 1) = 2(2d" + 1) (mod 2x), ‘
so that 22(a@” — d’) = x (mod 2x), @’ = d' (mod 277?), a" = d’ (mod
2n-1), n = 2. Hence from congruence (6), a” = 0 and thus d" = 0 (mod
27-1), Write a@” = 21y, d’ = 271y, for positive integers u, v. We now
consider equation (1) modulo w = x2 + 1. Clearly ord,x = 4. Also, it is
easily seen that ord,p = 27+3. For by induction, (x + 1)¥ = 2¥™' (mod
w) for j = 3. Hence (x + 1)¥"* = x2 = —1 (mod w), so that ord,p =
27+3 as asserted. Observe also that ord,2 = 27*2. It now follows from
equation (1) that 1 + (x + 1)2" = x#" 4+ 2(x + 1)?'(x + 1) (mod w),
so that 1 + (2217 = x%' 4+ 2(22*1)¢" p (mod w). Suppose that b’ is
even. Then p € (2), contradicting the fact that ord,2 < ord,p. Hence b’
is odd. Further, ps = 22@7'0%1 x| pd = 227 (— 1" % (x + 1), x¥ =
(=1)¥ = —1(mod w). Hence 2 + 22%(2x) = 22*7) (= 1)" ™(x + 1)
(mod w) so that 1 + 22%x =227 (—1)*"" (x + 1) (mod w). Since
ord,2 = 27+2 we consider the cases v = 0, 1, 2, 3 (mod 4).

Case 1. v = 0 (mod 4). Here 1 = 22"7(— 1)* *(mod w) yields u =
0 (mod 8).

Case I1. v = 1 (mod 4). Here 1 + 27)x =1 4+ x2 =0 (mod w) so
that we have an immediate contradiction.
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Case 1II. v=2 (mod 4). In this case 1 —x =1+ 2%x =
227 —1)*"*(x + 1) (mod w). Multiplication by 1 + x yields 2 =
227~ 1) (2x) (mod w) so that 1 = 227%+2"(_ 1) % (mod w).
Thus ¥ = 6 (mod 8) yields a solution.

Case IV. v =3 (mod 4). Here 2 =1 — x2 = 22" %(—-1)"% . (x +
D, 1 =227~ 1) %p (mod w), p € (2D, a contradiction.

Thus we have established that b’ is odd so that k is odd and (a, d)=
2, D) or (272 4+ 2,3 . 271 4+ 1) (mod 27+3).

(ii1). We consider 1 + p2 = x2k» + 2pd where (a, k, d) = (0,1, 1) (mod
2) using the moduli 7, 9 and 13 successively. Observe that p = 2 (mod
3). Also, easy induction arguments establish that x = 2 or 4 (mod 7)
according as n is even or odd. Note that ord;x = 3 and x2? = x (mod 7)
in either case. Further, x = —2 or 4 (mod 9) according as n is even or
odd for n = 2, and x = 3 or 9 (mod 13) according as n is even or odd.
Thus, it is routine to verify that (a, k, d) = (2, 5, 1) (mod 6).

(iv). Case 1. n =2, p = 17. By (ii), (a, d) = (2, 1) or (18, 25) (mod 32).
Consider the prime @, = 137. Clearly x2# = 297! = | (mod Q) so that
17¢ = 2 - 174 (mod Q7). Now ordg17 = 4 - 17 so that, since (a, d) =
(2, 1) (mod 4), 174+1 = 2 (mod Q,) for some r, a contradiction.

Case 11. n = 3, p = 257. Consider the modulus Q, = 98689 = 384p + 1.
One finds that ordg,p = 64p and ordy, x = 8p. By (ii), (a,d) = (2, 1)
or (34, 49) (mod 64). Since x%? = + x2¢ = + 37468 (mod Q,), we have
the four possibilities given by

1 + pb4+2 = +37468 + 2p540+i(mod Q,),

and

1 + p64A+34

+ 37468 + 2p%40+499(mod Q,),

where 0 S A <p-1,0=D < p-— 1. Thus | + (66049) (55741)4 =

+ 37468 + (514) (55741)°? (mod Q,), or 1 + (26836) (55741)4 = + 37468
+ (28403) (55741)2 (mod @,). Only two solutions occur and these
are (A, D) = (133, 202), (215, 179) (mod p). (These appear in the first
congruence with the plus sign taken.) Hence (a, d) = (8514, 12929) or
(13762, 11457) (mod 64p). We now consider equation (1) modulo the
prime Q3 = 1543 = 6p + 1. We note that ordgx = ord o,p = 3p.
From (iii) and the above results we conclude that (a, d) = (290, 79)
or (398, 406) (mod 771). In each case, since x2*? = x? (mod Q3), we have
a contradiction.

Case 1II. n = 4, p = 65537. Consider the prime Q, = 50332417
256 - 3p + 1. We find that ordgx?? = 12, ordg,p = 128p. Since k =
5 (mod 6) and (a, d) = (2, 1) or (66, 97) (mod 128), we have four pos-
sibilities as in the previous case. These are given by

o
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1 + pl28a+2 = 4 x100 4 2p128D+1(mod Q,),
and
1 + pl284+66 = 4 x10» 4 2p128D-9(mod Q,),
where0 < 4 <p — 1,0 £ D £ p — 1. Thus we have:

1 + (17928511)4 (16842924) = 287000230 + (17928511)P

)
- (131074) (mod Qy),
or
® 1 + (17928511)4(32053706) = 287000236 + (17928511)P

- (26892932) (mod Q)

where § = + 1. There are 345 solutions (4, D) (mod p) to congruences
(7) and (8). These are listed in Tables 2.1 through 2.4. Finally, we consider
the prime Qs = 2359333 = 36p + 1. Now ordg,p = 3p and ordgx =
9p. Since (a, d) = (2, 1) (mod 3) each (4, D) in Tables 2.1 through 2.4
generates a unique pair (a, d) (mod 3p). (These are also listed in the
tables.) Note that x2# = x1+3n2 = 1380078, 1513046 or 1825542 (mod
Qs), for r =0, 1, 2. In none of the 345 cases is 1 + p¢ — 2pd = x2pk
(mod Qs), so we are finished.

A D a d
1182 7947 151298 34162
1464 49103 187394 59170
2076 46130 69119 71848
2389 352 43646 176131
3539 47696 125309 75685
5545 36083 54392 162109
7088 60811 186359 50443
7639 44098 125813 73900
8870 46404 21233 41383
8986 52435 101618 157981
9296 16938 75761 5344
9682 24758 190706 88786
10787 18187 69998 99679
11091 31661 43373 185926
11938 1552 86252 133120
12706 61162 184556 95371

TABLE 2.1. Solutions (4, D) (mod p) to equation (7) and corresponding
pairs (a, d) (mod 3p), 0 = 1.
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A D a d
13569 6639 163946 63349
14140 6848 171497 155638
14308 34802 193001 194752
14537 24028 156776 60883
14543 46844 157544 163240
14893 57203 71270 112915
15183 22620 173927 142807
17066 39984 87266 6067
18217 33434 103520 19648
18397 50041 126560 48160
19273 27382 42077 96973
19286 5996 174815 46582
20169 46920 25691 107431
20445 10568 61019 41965
20939 39567 189788 149302
21078 335 142043 108418
22340 40956 172505 130483
22818 14803 168152 59749
23228 49994 89558 173218
24109 12369 71252 10345
25764 6085 152018 123511
26467 62380 176465 54664
27348 48765 158159 146980
28437 12621 100940 42601
29062 22221 115403 91735
29109 7443 186956 166261
29195 37192 66890 172987
29216 43831 69578 39724
29481 56531 37961 26899
30523 43910 105800 180910
31538 23809 170183 32851
32399 57732 83780 115090
32414 32794 85700 3265
32689 24952 186437 179155
34009 11772 158786 130540
34853 24734 4670 85714
34992 12194 153536 53482
35730 4869 51389 33400
40365 39131 54836 159031
40858 5057 52403 123001

TABLE 2.1. Continued.
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A D a d
41820 19714 44465 98524
42971 62553 60719 142345
44256 56284 159662 60820
44651 12634 79148 175339
44652 48565 13739 55843
44932 31795 180653 72004
45288 45849 95147 166954
45956 10805 49577 72301
46333 56974 163370 149140
46450 57971 178346 14608
46645 10784 6695 69613
48530 20467 182438 194908
49220 12664 74147 179179
49620 27365 59810 29260
50093 31249 185891 2116
51507 63565 104735 9733
52003 25986 102686 180433
54347 2571 140570 132478
55033 46454 97304 113320
55409 4415 79895 40825
56202 6626 115862 127222
56920 25313 142229 159826
56992 14467 151445 16741
57228 64917 50579 51715
57448 31659 13202 120133
57707 61696 177428 163723
57758 13125 183956 107113
58907 18407 134417 62302
58959 20209 75536 161884
59131 33437 32015 20032
59250 54572 112784 169369
59689 17868 103439 124384
60050 40937 84110 193588
60625 568 26636 7168
60777 27145 111629 66637
61691 18656 97547 94174
62129 30871 153611 150343
62723 2704 33032 83965
63436 36991 189833 147259

TasbLE 2.1 Continued.
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A D a d
1865 18079 107648 85855
3243 44253 21884 159277
3399 31202 41852 127174
3797 3190 158333 146173
4506 20736 183548 98266
4591 46718 128891 147112
5921 27870 36983 28363
7056 22573 116726 71254
7994 36434 105716 10426
8300 49705 144834 5152
8584 30358 50162 84679
9771 3301 71024 160381
11353 44490 11372 189613
11885 25408 13931 40912
13013 30512 158315 38854
13587 3138 166250 8443
14053 26777 160361 150607
16444 27676 73187 134605
17342 40166 122594 94900
17862 28481 123617 172108
17886 6569 126689 119926
18090 1865 152801 107647
18433 54632 131168 177049
20123 7819 85340 148852
20492 1252 132572 94720
20573 55923 142940 80149
20985 24078 130139 132820
21335 62003 43865 137482
22804 54928 100823 83863
23751 34286 90965 128704
26206 25838 143057 30415
27634 10312 129230 74734
28203 57264 70988 55186
28212 10165 72140 55918
28288 51529 16331 42013
28325 1846 152141 170752
28924 64656 97739 18307
29880 38021 89033 16951
31322 34420 142535 14782

TABLE 2.2. Solutions (4, D) (mod p) to equation (7) and corresponding
pairs (a, d) (mod 3p), 0 = —1.
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A D a d
31477 12418 31301 147691
31934 5686 24260 72439
31937 9271 24644 138097
31992 44719 162758 153388
32379 25741 15683 83536
32619 33335 46403 6976
32830 41324 7874 46513
33092 29456 172484 100297
33940 8338 149954 18673
34037 49763 96833 143650
35280 62110 190400 20104
35291 58194 60734 174226
35462 17042 82622 84193
36760 25487 117692 182098
37607 15539 160571 88420
37609 62389 29753 55816
38389 60857 129593 187405
38809 39035 183353 146743
38831 9679 120632 190321
39264 1684 110519 150016
40465 35982 2099 83644
40749 13249 103988 57448
41143 42006 88883 68272
41802 18687 42161 32605
41847 18894 47921 59101
43373 39820 112175 116149
43483 54545 191792 165913
43535 58244 132911 49552
45494 2258 187052 157951
47518 43518 118439 65197
47863 40445 162599 130612
48633 32082 130085 174277
50207 10420 3872 88558
50569 21342 115745 175834
51169 2664 192545 144382
52428 8899 26012 90481
53495 7648 31514 126964
53717 18764 59930 107998
54215 13106 123674 170218
54580 38773 39320 178744

TaBLE 2.2. Continued.
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A D a d
54872 13770 11159 189673
55217 46674 55319 75943
55464 11653 21398 49771
57188 1930 110996 181504
59159 45239 166673 154411
59563 36282 87311 122044
60711 14508 103181 87526
60959 35763 3851 55612
61290 51076 177293 180640
62778 4630 171146 133882
62909 35014 56840 90814
63079 55407 144137 14101
64303 64428 104198 185734
64795 9192 167174 193522
65095 59861 8963 59917

TABLE 2.2. Continued.

A D a d
2998 45089 187199 135307
3100 49881 3644 93313
3569 16084 194750 27202
5717 51105 76472 53374
6021 23495 49847 234829
6265 37588 15542 27160
6333 54619 89783 44407
6369 47781 94391 21124
6715 51323 73142 146815
8908 31302 157235 74533
11740 2770 126509 92509
12074 19442 103724 194878
12352 33357 8234 140962
12355 44536 8618 130060
13148 59767 44585 113518
13435 18997 146858 6844
15755 8051 181670 113107
16107 34341 161189 70303
16188 28812 171557 149035
17070 55067 87842 36214
17374 28918 61217 97066

TABLE 2.3. Solutions (4, D) (mod p) to equation (8) and corresponding
pairs (a, d) (mod 3p), 0 = 1.
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A D a d
18024 53859 13343 12664
18148 15757 160289 181957
19336 25951 115742 110512
20137 11063 21659 105421
20514 33346 135452 74017
20753 54357 34970 76408
21696 27702 90137 6955
22653 26455 16022 175024
26048 59116 122897 30190
26652 14855 134672 964
26847 25363 159632 35248
27632 34113 129038 41119
28647 34317 193421 67231
28786 9146 145676 56656
29231 63122 137099 84199
29306 57884 146699 3568
29649 33536 125066 32800
30410 27579 91400 187822
31339 44028 79238 130573
31819 61083 140678 150892
32711 55262 189317 61174
34963 50362 149888 89344
36952 16923 11258 3520
37089 60270 94331 46828
37317 9998 123515 165712
39240 47024 173048 186376
41411 36734 123251 48922
41419 50531 189812 45439
41530 63708 7409 93670
43619 33676 12653 116257
44211 16457 22892 9409
45408 21828 176108 41527
46719 62000 147305 137194
47244 47814 17894 25348
48118 6 64229 865
48442 60026 105701 81133
48478 16551 110309 152515
48895 10520 163685 35917
50306 27708 82145 7723
51332 9497 16862 101584

TaBLE 2.3. Continued.
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A D a d
52006 27599 168671 59308
52880 35212 18395 116254
52965 21831 160349 41911
53013 35519 166493 90013
54960 15702 22487 43843
55014 8939 29399 30160
55076 7138 102872 61780
55163 33320 114008 5152
57679 55177 108371 115831
58110 2475 32465 120286
59404 33683 132560 51616
59544 60481 19406 8299
60008 37965 144335 140953
60229 37198 41549 173851
60323 15997 184655 16066
61041 44694 14411 19210
63200 60423 159689 66412
64338 11872 43205 77899
64482 34084 61637 168481

TABLE 2.3. Continued.

A D a d
74 14828 140612 194119
1140 60227 14912 106861
2176 25149 81983 73393
2985 28352 54461 155692
3620 56680 4667 111604
3727 30601 83900 115879
5153 37848 4280 125977
5320 25334 91193 162610
7037 22019 48821 131512
8517 12068 172724 37450
10660 34747 184880 56734
10763 10800 132527 6220
13281 4270 192683 87898
13589 59245 101033 46702
13803 21094 62888 78649
13929 37664 79016 167962
14797 12654 124583 46921

TABLE 2.4. Solutions (4, D) (mod p) to equation (8) and corresponding
pairs (a, d) (mod 3p), § = —1.
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A D a d
14887 28618 136103 58666
16103 22987 29603 124342
16321 24538 123044 126259
18346 35169 185633 176287
20892 50368 183836 90112
21676 60679 22040 33643
21895 61415 50072 62314
22651 60980 146840 6634
22977 56069 57494 164470
24302 56939 96020 79219
27913 20034 33932 8506
28127 6264 192398 15445
28616 2407 58379 46045
29520 37763 108554 180634
30248 52318 70664 143101
30814 37114 12038 163099
31022 12290 169736 65866
31865 51029 81029 109183
32415 52532 85892 104956
33757 58056 192131 156658
34987 29568 152960 49192
35914 7478 75005 39763
36908 19892 136700 55867
37841 55752 59513 58357
38443 40712 5495 164884
38565 50857 86648 152704
39010 2486 78071 187231
39175 20724 99191 96826
39352 5412 121847 103000
40277 56278 174710 60148
40394 43840 189686 40972
41029 7754 139892 75091
41408 63983 122867 194407
41953 25504 61553 53296
42060 43792 140786 34828
42702 36823 26351 125851
43519 40808 65390 177172
44294 54692 99053 184825
45914 36668 109802 40474
46016 19905 122858 188605

TaBLE 2.4. Continued.
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A D a d
47388 9395 36326 88528
48200 27638 9188 64300
49946 35803 36065 191902
50542 23196 177890 20020
50678 10238 129761 196432
50681 33448 130145 87073
50961 65454 100448 120547
51689 33018 62558 97570
53663 20576 118619 143419
53914 9491 19673 100816
53972 1634 158171 78175
55426 39564 16598 149014
56291 36648 61781 168988
56397 34970 9812 19741
56424 20439 13268 60346
60158 49623 163535 60289
60288 40801 114638 45202
61291 12543 177485 32713
62864 61804 116681 177643

TABLE. 2.4. Continued.

3. Solution of Equation (1). Here we find all solutions to equation (1)
with p < 499. We begin by handling the cases that follow immediately
from the results of §2. The remaining cases are then handled individually.

LeEMMA 3.1. Equation (1) has solutions (a, b, ¢, d) =

(1)(,0,0,1),t = 0,whenp = 13, 29, 37, 41, 43, 53,61, 73, 89, 97, 101,
103, 109, 113, 137, 139, 149, 151, 157, 163, 173, 181, 193, 197, 199, 211,
229, 233, 241, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 379, 389,
397,401, 409, 421, 433, 439, 449, 457,461, 487, 491 ;

(i) (1,0,0,1),t = 0,and (1, 2, 2,0) whenp = 7,

(iii) (1,0,0,t),t 2 0,(1,1,4,0),(1,4,1,0)and (2,8, 1, 1) whenp = 17,
(iv) (1,0,0,1),t =2 0,(1, 2,4,0) and (1, 4, 2,0) whenp = 19,
V) (t,0,0,t),t = 0,and (1, 4,4,0) whenp = 31;
(i) (¢,0,0,1),t Z 0,and (1, 6, 6,0) whenp = 127; and
(vii) (1,0,0,t),t 20,(1,1,8,0), (1,8, 1,0) and (2, 16, 1, 1) when p =
257.

ProOF. Part (i) follows immediately from Lemmas 2.2, 2.3, 2.6, 2.7,
2.8 and Theorem 2.9. Parts (ii), (v) and (vi) follow from Theorem 2.5.
Parts (iii) and (vii) follow from Theorem 2.10, and part (iv) follows from
Theorem 2.9.
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LEMMA 3.2. The solutions to equation (I) when p = 3 are (a, b, ¢, d) =
(1,0,0,1),(4,6,1,2),3,4,2,1),3,2,3,1,2,3,1,0),(2, 1, 3,0), (2, 2,
1, and (1,1, 1,0).

PROOF. Let (a, b, c, d) be another solution. Thena = 5.

Case 1. b = 1. Clearly d = 0 and ¢ = 4. Thus 3¢ = | (mod 16) so that
a = 0 (mod 4). But then 2¢ = 0 (mod 5), a contradiction.

Case II. b = 2. Then consideration modulo 9 yields d = 1, 3¢-1 =
1 + 2¢, and we have a contradiction as in case I.

Case I11. b = 3, ¢ = 1. If d = 0 consideration modulo 16 and 5 gives
a contradiction as in case I. Hence d > 0. Considerations modulo 8, 9
and 13 give (a, b, d) = (4, 6, 2) (mod (6, 12, 6)). If d = 2, then 2 = —17
(mod 243), whence b = 114 (mod 162). Hence 32 = 143 (mod 163), so
that @ = 94 (mod 162). Since b = 6 (mod 36) and a = 13 (mod 27) we
now obtain a contradiction modulo 109. Hence we may suppose d > 2.
But then 2¢ = 1 (mod 27), whence b = 0 (mod 18). Thus b = 18 (mod
36). Then consideration mod 37 gives another contradiction.

Case 1V. b = 3, ¢ = 2. Here considerations mod 8 and mod 3 imply
that @ is odd and d > 0. If d = 1 then 2® = —11 (mod 243), whence
b = 40 (mod 162). But then consideration mod 163 gives a = 13 (mod
162), and then consideration mod 13 produces a contradiction. Lastly,
suppose d = 2 so that 26 = 1 (mod 9), b = 0 (mod 6). Then mod 13 gives
a final contradiction.

LEMMA 3.3. The solutions to equation (1) when p = 5 are(a, b, ¢, d) =
(t,0,0,1),t =2 0,(2,4,1,1),(1,2,1,0)and (1, 1, 2, 0).

PROOF. Let (a, b, c, d) be another solution. Consideration mod 4 gives
borcisl.

Case 1. d = 0. Without loss of generality let c =1, 54 =2t + 1,a =
2. Then 22 = —1 (mod 25), so that & = 10 (mod 20). Then we have an
immediate contradiction mod 11.

Casell.d = 1. Here a = 3. Since 2¢ = 1 (mod 5), b = 0 (mod 4), c=
1 and 5¢ = 26 4+ 9. Thus 26 = —9(mod 125), so that b = 64 (mod 100).
Hence 5¢ = 88 (mod 101), so that a = 9 (mod 25). Now we have a con-
tradiction mod 11.

Case 111. d > 1. Since 26 = 1 (mod 25), b = 0 (mod 20) and ¢ = 1.

Hence 5¢ = 2 - 5¢ (mod 1), which is impossible.

LEMMA 3.4. The solutions to equation (1) when p = 11 are (a, b, ¢, d) =
(,0,0,1),t 2 0,(1,3,2,0)and (1, 2, 3, 0).

PROOF. Let (a, b, ¢, d) be another solution so that a > 1. By Lemma 2.1,

borc = 2.
Case 1. d = 0. Without loss of generality, ¢ = 2, 11¢ = 26 + 3. By
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inspection b = 6 and thus 112 = 3 (mod 64) and a = 7 (mod 16). Since
3 = 117 (mod 17), we have 2¢ = 0 (mod 17), a contradiction.

Case 11. d =z 1. Here 2® = 1 (mod 11) so that b = 0 (mod 10). Thus
¢ = 2. Then consideration modulo 5 gives b = 3 (mod 4), a contradiction.

LEMMA 3.5. The solutions to equation (1) when p = 23 are (a, b, ¢, d) =
(t,0,0,t),t 20,(1,3,4,0)and (1, 4, 3, 0).

PROOF. Let (a, b, ¢, d) be another solution.

Case 1. d = 0. Without loss of generality suppose b = ¢. By Lemma
24 (a, b, c) =(0,0,0), (1,0, 1) or (1, 1, 0) (mod 2). Thus consideration
mod 16 gives ¢ = 3, b =2 4 and a odd. Hence b = 5 so that 23¢ = 7
(mod 32), and hence a = 3 (mod 4). Then 2? = 0 (mod 5), a contradiction.

Case 1l. d = 1. Here 22 = | (mod 23), so that & = 0 (mod 11). Thus
23 = 2¢234 (mod 89), so that a = 8¢ + d (mod 88). Hence by Lemma
24,(a,b,c,d)=(0,0,0,0),(1,0,0,1)or (1, 1, 1, 1) (mod 2). Now con-
sideration mod 16 gives ¢ = 3. Also 22 = 5(mod 11), whence b = 4 (mod
10). This contradicts b = ¢ (mod 2).

LEMMA 3.6. The solutions to equation (1) when p = 47 are (a, b, ¢, d) =
(t,0,0,1),t 20,(1,5,4,0)and (1, 4, 5, 0).

PROOF. Let (a, b, c, d) be another solution.

Case 1. d = 0. Without loss of generality let » = ¢. By Lemma 2.4
(a, b, c) =(0,0,0), (1,0, 1) or (1, 1, 0) (mod 2). Consideration mod 32
implies that g is odd, ¢ = 4 and b = 5. Then consideration mod 64 gives
a = 3 (mod 4). But then 2 = 6 (mod 17), a contradiction.

Case 11. d Z 1. Here 22 = 1 (mod 47) so that b = 0 (mod 23). Thus
472 = 2¢474 (mod 178481), whence a = 11(7760)c + d (mod 178480).
In particular a = d (mod 4). From Lemma 2.4 we have (q, b, ¢, d) =
(0,0,0,0),(1,0,0, 1) or (1, 1, 1, 1) (mod 2). Now considerations mod 64
and mod 17 give a contradiction.

LEMMA 3.7. Equation (1) has only the trivial solutions (t, 0, 0, t), t = 0
when p = 59, 83, 107, 167, 179, 223, 227, 239, 251, 283, 307, 311, 331, 347,
359, 367, 419, 431, 443, 463, 467, 479 and 499.

PRrOOF. In each case we assume that (a, b, ¢, d) is another solution and
then obtain a contradiction.

(p = 59). By Lemma 2.1, b or cis 2. Whend = 0 let ¢ = 2. Then 2t =
56 (mod 59) so that b = 21 (mod 58). In particular b is odd. Then con-
siderations mod 32 and mod 17 give a contradiction. Whend = 1, 2¢ =
1 (mod 59), so that b = 0 (mod 58). Thus b is even and ¢ = 2. But then
2t = —2(mod 29), so that b = 15 (mod 28), another contradiction.

(p = 83). By Lemma 2.1, bor cis2. Whend = 0, let ¢ = 2. Then 2¢ =
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80 (mod 83) so that b = 31 (mod 82) and b is odd. Now considerations
mod 32 and 17 yield a contradiction. When d = 1, 2 = 1 (mod 83), so
that b = 0 (mod 82), ¢ = 2. Also 28 = —2 (mod 41) so that b = 11
(mod 20), a contradiction.

(p = 107). By Lemma 2.1, b or ¢ is 2. When d = 0 let ¢ = 2. Here
considerations mod 16 and 5 give a contradiction. When d = 1, 26 = |
(mod 107), so that b = 0 (mod 106). Now we get an immediate con-
tradiction mod 53.

(p = 167). When d = 0, considerations mod 16 and mod 7 give a con-
tradiction. When d = 1, consideration mod 16 gives ¢ = 1 with a, d even,
or ¢ = 3 with @ odd. When ¢ = | we have a contradiction mod 7, and
when ¢ = 3 we get a contradiction using the moduli 7, 3 and 83.

(p = 179). Here consideration mod 89 gives b = ¢ =0 (mod 11)
contradicting Lemma 2.1.

(p = 223). There are no non-trivial solutions in this case by [4].

(p = 227). By Lemma 2.1, b or ¢ is 2. When d = 0 considerations
modulo 8, 5 and 113 give a contradiction. When d = 1 considerations
mod 227 and 113 give a contradiction.

(p = 239). Consideration mod 7 gives b = ¢ = 0 (mod 3). Then con-
siderations mod 32 and mod 239 yield a contradiction.

(p = 25]). By Lemma 2.1, b or ¢ is 2. When d = 0 let ¢ = 2. Then
considerations modulo 8, 9 and 7 give a contradiction. When 4 > 0
considerations modulo 251 and 5 give a contradiction.

(p = 283). Here Lemma 2.1 implies without loss of generality, that
¢ = 2. Thus 2¢ = 45 (mod 47), an impossibility.

(p = 307). Here Lemma 2.1 implies that a is odd and (without loss of
generality) ¢ = 2. Then considerations mod 17 and mod 307 give a
contradiction.

(p = 311). Here we use the moduli 31 and 16 to obtain a contradiction.

(p = 33]). Here Lemma 2.1 gives ¢ = 2, without loss of generality.
When d = 0 mod 331 gives a contradiction; when d > 0 considerations
mod 331 and 11 give a contradiction.

(p = 347). Again Lemma 2.1 implies ¢ = 2. When d = 0 we obtain a
contradiction using mod 16 and mod 5; whend > 0 we have a contradic-
tion from the moduli 347 and 173.

(p = 359). Let d = 0. If a is even, we get a contradiction mod 16 and
mod 359. When a is odd, considerations mod 16, 3 and 5 give a contradic-
tion. Thus d > 0. Then 2¢ = 1 (mod 359) so that b = 0 (mod 179). If a4
is even, mod 16 gives ¢ = 1, d even, a contradiction to Lemma 2.4. Sim-
ilarly, if a is odd we conclude ¢ = 3, 2 = —6 (mod 179), and b = 20
(mod 178). Thus by Lemma 2.4, b and d are even and we have an im-
mediate contradiction modulo 5.

(p = 367). Here consideration mod 32 implies min (b, ¢) = 1 or 4 when
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a is even or odd, respectively. Without loss of generality let ¢ = min
(b, ¢). When ¢ = 1 we have an immediate contradictoin modulo 3. Thus
a is odd and ¢ = 4. When d = 0 we have a contradiction modulo 23.
When d > 0 considerations mod 367 and mod 61 imply a contradiction.

(p = 419). Here Lemma 2.1 implies that a is odd and (without loss of
generality) ¢ = 2. When d = 0 we obtain a contradiction modulo 16, 5 and
3. When d > 0, considerations mod 419, 3, 7 and 19 give a contradiction.

(p = 431). When a is even, using mod 32 we find that min(b, ¢) = 1.
Without loss of generality let ¢ = 1. Then 2¢ = 0 (mod 5), an absurdity.
Similarly, when a is odd, mod 32 gives min (b, ¢) = 4. Let ¢ = 4. Then
26 = — 14 (mod 43), another absurdity.

(p = 443). Here, from Lemma 2.1, ¢ = 2. Considerations mod 13 and
mod 17 yield a contradiction.

(p = 463). Here mod 7 gives b = ¢ = 0 (mod 3). But then, from mod
32 we have min (b, ¢) = 1 or 4, a contradiction.

(p = 467). Here from Lemma 2.1 we may suppose that a is odd and
¢ = 2. When d = 0, considerations mod 9 and mod 13 imply a contradic-
tion. When d > 0, considerations mod 467, 9, 13 and 5 produce an
absurdity.

(p = 479). Here considerations mod 64, 239 and 479 give a contradic-
tion.

(p = 499). Here Lemma 2.1 implies that a is odd and (without loss of
generality) ¢ = 2. Whend = 0 we have a contradiction modulo 5 and 17.
When d > 0 clearly b = 5. Thus we obtain a contradiction from consid-
erations mod 3, 5, 32, 17 and 13.

LeMMA 3.8. The solutions to equation (1) other than (t, 0, 0, t), t =2 0,
are(a, b, c,d) =
(i) (4, 6, 2,0) and (I, 2, 6,
(i) (1, 6, 3,0) and (I, 3, 6,
(i) (1, 6, 4, 0) and (1, 4, 6, 0) when p = 79,
,0)and (1, 2, 7, 0) when p = 131,
6
3

) when p = 67,

0
0) when p = 71,

6
6
6
av) (1, 7,2 7
v({,7,6,0)and (4, 6, 7,0) when p = 191,
(vi) (1, 8, 3,0) and (1, 3, 8, 0) when p = 263,
(vii) (1, 8, 4, 0) and (/, 4, 8, 0) when p = 271, and
(ix) (1, 8, 7,0) and (1, 7, 8, 0) when p = 383.

PROOF. In each case suppose that (a, b, ¢, d) is another solution.

(1). (p = 67). Here, by Lemma 2.1, we may suppose that a is odd and
¢ = 2. Then mod 3 implies that b is even. When d = 0, considerations
mod 256 and 257 yield an absurdity. When d > 0 considerations mod
67 and 89 yield b = 0 (mod 66) and @ = 10 + d (mod 11). But then we
have a contradiction mod 23.
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(i)). (p = 71). When d = 0, without loss of generality, let b = c. By
Lemma 2.4, (a, b, ¢) = (0, 0, 0), (1, 0, 1) or (1, 1, 0) (mod 2). Then con-
sideration mod 16 implies that a is odd, ¢ =3 and b = 4. Thus b = 7
so that, using the moduli 128 and 17 we have a contradiction. Whend > 0
we have 2¢ = 1 (mod 71), whence b = 0 (mod 35). Consider the prime
g = 122921, a divisor of 235 — 1. Since 71¢ = 7142¢ (mod ¢q) and since
714756 21 = 2 (mod ¢), we have a = (1756) (27¢) + d (mod 61460). In
particular, a = d (mod 4). Thus from Lemma 2.4 and the modulus 16
we conclude that a is odd, b = ¢ (mod 2), and, in fact, ¢ = 3, so that b
is odd. But then we have a contradiction mod 5.

(iii). (p = 79). Here using mod 3 we find that b and ¢ are even. When
d = 0 we conclude that ¢ is odd and ¢ = 4 from mod 32. Thus b = 8.
Now, we obtain our contradiction from considerations mod 256 and 17.
When d > 0 we have 2¢ = | (mod 79) so that b = 0(mod 39). Thus b = 0
(mod 78). Consideration mod 32 implies that a is odd and ¢ = 4. We
then obtain a contradiction using the moduli 79 and 3121. Note that
ord31212 = 156 and ord312179 = 4.

(iv). (p = 131). Here by Lemma 2.1 we may suppose that a is odd and
¢ = 2. If d = 0 we have a contradiction using the moduli 256, 17 and
257. When d > 0, 26 = 1 (mod 131), whence b = 0 (mod 130). We then
have a contradiction mod 5.

(V). (p = 191). When a is even considerations modulo 8 and 5 yield a
contradiction. When a is odd, using mod 128 we conclude that min
(b, ¢) = 6. When d = 0 the moduli 256, 17 and 5 produce an absurdity.
When d > 0, 26 = 1 (mod 191), so that & = 0 (mod 95). Then considera-
tions mod 5 and mod 31 give a contradiction.

(vi). (p = 263). When d = 0, without loss of generality, let b6 = ¢. If
a is even, mod 16 gives ¢ = 1. Thus 2¢ = 0 (mod 11), an impossibility.
If a is odd, from mod 16, ¢ = 3. Clearly b > 12. Then considerations
mod 2048 and mod 257 give a contradiction. If d > 0 then 2% = | (mod
263) so that b = 0 (mod 131). If a is even, mod 16 gives ¢ = 1 and d is
even, and we again have a contradiction mod 11. Thus a is odd. Now from
mod 16 we conclude that ¢ = 3. Consideration mod 131 implies that b = 8
(mod 130). Hence b = 0 (mod 262). Thus 2632 = 8.2634(mod 1049), and
hence a = 244 + d(mod 1048). Thus a = d (mod 2), an impossibility by
Lemma 2.4.

(vi). (p = 271). When d = 0, without loss of generality, let b = c.
Consideration mod 32 gives ¢ = 1 or 4. When ¢ = | we have a contradic-
tion mod 271. When ¢ = 4, 271¢ = 15 (mod 512) so that ¢ = 17 (mod
32). We then obtain 2¢ = 5 (mod 97) which is impossible. When d > 0,
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2b = 1 (mod 271), whence b = 0(mod 135). Also b = 135. Hence 52¢ =
2¢524 (mod 73). Thus 53¢ = 58¢+34 (mod 73) so that 3a = 8¢ + 3d (mod
72). Thus ¢ = 0 (mod 3). But, since 2 = 2¢ + 2¢ (mod 3), we have ¢ =0
(mod 2). Hence ¢ = 0(mod 6), ¢ = 6. We now have a contradiction mod
32.

(viii). (p = 383). When d = 0 considerations mod 256, 3, 512 and 5
give a contradiction. When d > 0 we have 26 = 65 (mod 191) so that
b = 8 (mod 95). Also, since 2¢ = | (mod 383), we have b = 0 (mod 191),
b = 191. When a is even mod 256 implies that ¢ = 1 and d is even, a
contradiction to Lemma 2.4. When a is odd, mod 256 and Lemma 2.4
yield ¢ = 7, b = d (mod 2). Then consideration mod 512 gives (a, b, d)
= (1,1, 1) or (3,0, 0) (mod (4, 2, 2)). Then mod S gives(a, b,d) = (1, 3, 3)
or (3, 0, 2) (mod 4). Then using mod 17, we have (a, b, d) = (1, 7, 7),
5,3,7,@3,0,2) or (7,0, 6) (mod 8). Now we obtain contradictions in
each case from consideration mod 41.

We now summarize our results in Table 3.1. The table gives the solu-
tions to equation (1) with p < 499 other than the trivial solutions (¢, 0, 0,
t), t an arbitrary integer.

Prime p Non-Trivial Solutions to equation (1)
3 4,6,1,2),3,4,2,1),(3,2,3,1),(2,3,1,0),
2,1,3,0),2,2,1,1),(1,1,1,0)
5 2,4,1,1),(1,2,1,0), (1, 1, 2, 0)
7 (1,2,2,0)
11 (1,3,2,0),(1,2,3,0
17 (1,1,4,0),(1,4,1,0), (2,8, 1, 1)
19 (1,2,4,0),(1,4,2,0)
23 (1,3,4,0),(1,4,3,0)
31 (1, 4,4,0
47 (1,5,4,0),(1,4,5,0
67 (1,6, 2,0), (1, 2,6, 0)
71 (1,6, 3,0),(,3,6,0)
79 (1,6,4,0),(,4,6,0)
127 (1,6, 6,0)
131 (1,7,2,0),(1,2,7,0)
191 (1,7,6,0), (1, 6,7, 0)
257 (1,1,8,0),(1,8,1,0), (2,16, 1, 1)
263 (1,8, 3,0),(1, 3,8, 0)
271 (1,8,4,0),(1, 4, 8,0
383 (1,8,7,0),(1,7,8,0)

TaBLE 3.1. Non-trivial solutions to equation (1).
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