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ORTHOGONAL POLYNOMIALS 
AND MEASURES WITH END POINT MASSES 

T. S. CHIHARA 

ABSTRACT. Let a sequence of orthogonal polynomials with respect 
to a given measure d(p(x) be explicitly known and let a new measure 
d<p*(x) be constructed from d(p(x) by adjoining a positive mass at 
one point. When d(p(x) corresponds to one of the classical orthog­
onal polynomials of Jacobi, Hermite or Laguerre, the orthogonal 
polynomials relative to d(/>*(x) have been found by H. L. Krall and 
others. Here we consider general d<ß(x) and obtain formulas for 
constructing the polynomials associated with d<p*(x). A number of 
nonclassical examples are explicitly given. 

1. Introduction. There has been a renewal of interest in the question of 
orthogonal polynomial solutions to linear differential equations. Much of 
the recent work can be considered a continuation of the work of Bochner 
[3] and his characterization of the classical orthogonal polynomials as the 
only orthogonal polynomials which are eigensolutions of Ly = Xny, where 
L is a second order linear differential operator with polynomial coefficients 
independent of n. H. L. Krall [11], [12] extended Bochner's work to the 
fourth order case and found three new sequences of orthogonal polyno­
mials. The spectral measures for two of these could be obtained from the 
measures for the Laguerre and certain special Jacobi polynomials, re­
spectively, by adjoining mass at one end of the spectral intervals. The 
third measure was obtained from the Legendre measure by adjoining 
equal masses at each end of the spectral interval. The three sets of poly­
nomials have been studied in some detail by A. M. Krall [10]. 

Littlejohn [13], [14], [15] has continued this study of Ly = lny. He has 
found a 6th order case which has orthogonal polynomial solutions. These 
polynomials are orthogonal with respect to the measure obtained from 
the Legendre measure by adjoining unequal masses at each end of the 
spectral interval. Koornwinder [9] generalized these results by obtaining 
explicitly the polynomials which are orthogonal with respect to the meas­
ure obtained from the most general Jacobi measure by adjoining arbitrary 
masses at both ends of the spectral interval. Koornwinder also indicates 
that these polynomials satisfy an 8th order case of Ly = A„y. Hendriksen 
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and van Rossum [8] have recently studied polynomials of the above types 
from the viewpoint of Padé tables and shown they all satisfy certain 2nd 
order differential equations. For a general theory of such differential 
equations with orthogonal polynomial solutions, see Hahn [7]. See also 
[2], [16], [17], [19]. 

In this paper, we show that if one begins with a known system of orthog­
onal polynomials (not necessarily a classical one) and if mass is added at 
one end of the spectral interval, the corresponding orthogonal polyno­
mials frequently can be found explicitly independently of any differential 
equations. We will obtain general formulas which will permit us to obtain 
explicitly the orthogonal polynomials for several nonclassical examples. 
Our methods also lead to formulas which, in theory, would handle the 
case of masses added at both ends of a spectral interval. However, as we 
will see, in this case the formulas become so complicated that they hardly 
seem useable. A rather interesting example will be that involving the 
generalized Stieltjes-Wigert polynomials. This is due to the fact that the 
Hamburger moment problem associated with these polynomials is in­
determinate. 

2. Preliminaries. Let 0 be a distribution function with an infinite spec­
trum on an interval [a, b]. Since we wish to add mass at one end of the 
spectrum, we take a to be finite and then there is no loss of generality if 
we further assume that a ^ 0. Let {Pn(x)} be the sequence of monic 
orthogonal polynomials with respect to dc/>(x) on [a, b] and let it satisfy 
the three term recurrence relation 

Pn(x) = (x - cn)Pn_x{x) - AnP„_2(x), / i ^ l , 

P.x(x) = 0, />„(*) = 1, cn real, Xn > 0. 

Next let {Qn{x)} denote the corresponding sequence of monic kernel 
polynomials; that is, the Qn(x) are the monic polynomials that are or­
thogonal over [0, b]. with respect to the measure xd<p(x). Let the corre­
sponding three term recurrence relation be 

QnM = (X - dH)Qn^(x) - VnQn-Ax), H ^ 1, 

Q-i(x) = 0, Q0(x) = 1 , dn real, vn > 0. 

Referring to [4], [5], we now recall some relations among these polyno­
mials. 

Relating the coefficients in the two recurrence relations, there are 
positive constants j n (n > 1) such that 

(2.3) cn = r2n_l + 7-2n, xn+i = rzn r2»+i> ( n = °) 

(2.4) dn = f2n + T2n+1, »n+1 = T2n+lT2n+2^ « ^ 1. 
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The two sequences of orthogonal polynomials are additionally related by 

(2-5) *ß„- l (* ) = Pn(x) + T2nPn-lM 

(2.6) Pn{x) = Qn(x) + r2n+ lÔn-lW 

and 

Pn(0) (2.7) r 2 n = 
Pn-l(0) ' 

Let || • || denote the L2 norm relative to the measure d(p. From the 
recurrence formula (2.1) we have 

*n+l-(2.8) ||PJ|2 = J />*(*)#(*) = AiA2 • • • ln 

For the norm of Qn(x) relative to xd(p(x), 

we use (2.5) to get 

( 2 9) l l 0 n U = J Pn+lMx-diP(x) + r2n+2 J W " # ) 

— T2»+2 IIPJI2. 

Finally, we recall that the corresonding sequence {Sn(x)} of symmetric 
polynomials defined by 

(2.10) S2n(x) = PH(x*)9 S2n+1(x) = xQn(x*) 

satisfies the recurrence relation 

(2.11) Sn(x) = xS^ix) - rnSn-2(x). 

These polynomials are orthogonal over [ - ^/~f9 ^/^b] with respect to 
d<p(x), where 

(</;(xZ) - 9HO-) x > 0 

(2.12) <p(x)=l0 x = 0 

{ -<jj(x?) + 0(0-) x < 0 . 

We note also that if we set 

(2.13) fin = r 2 n + 1 , A„ = r2«+2, « ^ 0 

(Xn has different meaning here than in (2.1) of course), then 

(2.14) Qn(x) = ( - l ) W i • • ' V i l " 1 Pn(x) 

satisfies the recurrence relation 



708 T. S. CHIHARA 

( 2 . 1 5 ) -X0n(x) = fiH0n^(x) - (An + MnWnW + kn0n+1(x) 

corresponding to a birth and death process with reflecting barrier at 0. 
On the other hand, if we set 

(2.16) fin = j2n+2, h = T2n+3, " ^ 0, 

then 

(2.17) 0n(x) = ( - l)"[/io/il ' ' ' Pn-l] Qn(x) 

satisfies (2.15) which then corresponds to a birth and death process with 
absorption at — 1. 

3. Adding mass at 0. Although in some examples, the distribution func­
tion will be continuous at the origin, we will consider others where cp has 
a jump there. Hence we let J0 ^ 0 denote the jump of cjj at the origin. We 
then consider the measure obtained from d(J> by adding a mass J i> —JQ 

atO. 
Let P*(x) = P*(x;0, J) denote the monic polynomials that are orthog­

onal with respect to the measure 

(3.1) d<j>*(x; 0, / ) = d<jj{x) + Jö(x)dx, J ^ - / 0 . 

Let the three term recurrence relation satisfied by the P*(x) be 

(3.2) P*(x) = (x - cfiPf^x) - #/>*-!(*). 

Now, if Qn(x) still denotes the kernel polynomials of §2, it is clear 
they are also the kernel polynomials corresponding to the polynomials 
P*(x; 0, J). Thus, in addition to (2.5) and (2.6), we also have 

(3-3) * e „ - i « = P*(x) + r â ^ - i t o 

(3.4) P*(x) = Qn{x) + rl+iQn-i(x) 

where the coefficients y* are determined by yf = 0 and 

(3.5) c* = rìn-i + r&» ^*+i = r2*r*«+i 
(cf. (2.3)). They are related to the yk by means of (2.4) and the relations 

(3.6) dn = r*n + 7fM+1, vn+i = r*n+\ rSi+2-

Of course, we also have 

r* = ^*(0) 

From (3.3) and (2.6) we also obtain 

(3.7) P*(x) = P„(x) + AnQn^(x), 

where 
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(3-8) An = r$„^ - ï2n^. 

Using (2.6), we can rewrite (3.7) in the form 

(3.9) P*(X) = Qn(x) + r?n+lQn-l(xy 

Next we notice that 

(3.10) J n(x)d<I>*(x) = f iz{x)dcp(x) + JTC(0). 

Therefore we obtain from (3.7) and the orthogonality of the Pn(x), 

J ^ * W ^ - i « # * W - /P*(0)/>w_i(0) = An Jön- iW^- iW^W 

= ^Jl^-lll2 

(since Qn-i(x) is monic). Thus, by the orthogonality of the P*(x), 

A, _ -jpjMP^iO) 
\\rn-i\r 

Setting x = 0 in (3.7), we then obtain from the last formula, 

This then yields, finally, 

(3 12) A -JPn(0)Pn-i(0) 
' ' " 11/»—ill2 + //\,-i(0)ö„_i(0) ' 

Next using (3.7), we obtain 

^P*(x)x"d<p*{x) = jV„(x);C^*(*) + An^Q„_l(x)x»-ixd<l)*(x). 

Then using (3.10) and (2.9), we can write the appropriate L2 norm of 
P*(x) as 

(3.13) j[P„*(x; 0, JWd<f,*(x; 0. / ) = ||/>„||2 + AnÏ2n \\Pn_ i n 2 -

Finally, for the coefficients in the recurrence formula (3.2), we obtain 
from (3.8), (3.6) and (2.4), 

( 3 - 1 4 ) r*n = 71» - An, r*»+l = 72n+l + An-

Using (2.7) and (3.12), the first of these can be rewritten 

r * _ r l l f - l II2 + JP„-l(0)[Qn-l(0) - Pn-l(0)i 
7Zn 72n WP^P + JPn^(0)Qr,-l(0) 

From (2.8), (2.3) and (2.6), we have 
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||/>„_ll|2 = \\Pn-2Vr2n-2Ï2n-l, " è 2, 

ÔM_!(0) - Pn_M = - T2n-lQn-2(0). 

Therefore, for n ^ 2, 

r * = r r r l|P„-2ll
2 + -/^-2(0)gB-2(0) 

We also have, according to (3.6) and (2.4), 7"fB+1 = V„+I/Y*„+2 = 
r2n+\T2n+2lr*n+2- ThuS if We let 

(3.15) 

we can write 

(3.16) 

eH = \\P„V + JPH(0)Q, 

r? = r2/d + / ) 

r ? • i = - dn 

T2n+l — Û 
T2nVn-l 

* Vn-\ 
lln+1 — ~ Ï2n Ï2n+l Ï2n+2 tì n ^ 1. 

The recurrence formula for {P%(x; 0, J)} can now be written using (3.5). 
Also, corresponding to (2.10) -(2.12), (3.16) can be used to construct 

the related symmetric OPS, while, corresponding to (2.13) - (2.17), the 
recurrence relations in birth and death process form can be written. 

REMARK. The orthogonal polynomials P*(x; 0, J) can also be obtained, 
in theory, by considering the parameters of the chain sequence associated 
with the kernel polynomials Qn(x). According to [4], if we are given (2.3) 
and (2.4) and if we set 

(3.18) ßn = vn+ll(dndn+l\ n Z 1, 

then {ßn} is a chain sequence that does not determine its parameters 
uniquely. That is, there is a maximal initial parameter M0 > 0 such that 
for each h0, 0 ^ h0 <; M0, there is a corresponding parameter sequence 
h = {hn} for which 

(3.19) ßn = (l -//„_!)/*„, n = 1,2, 3, . . . 

Corresponding to each h0 > 0, the sequence {p*} can be defined by 

(3.20) f2n = hn_xd„ r%n+l = (1 - *„_!)</„, n ^ l . 

The coefficients in (3.2) can then be defined by (3.5) with j * = 7-*. If 
h = M = {Mw}, then the resulting polynomials P^(x) defined by (3.2) 
will be orthogonal with respect to a measure d<JjM(x) where </>M is the 
solution of a determined Hamburger moment problem and is continuous 
at the origin. For each positive /z0 < A/0* the corresponding polynomials 
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P%(x), defined by (3.2), will then be orthogonal with respect to a measure 
of the form (3.1) with $ = cJjM. The jump / which is added to <pM to 
obtain cjjh = cjj* is given by 

(3.21) / = [^(oo) - # - oo)] ( M 0 - A„)/Ao-

In practice, however, the above cannot be applied because usually 
more than one or two different parameter sequences for a given chain 
sequence can not be found explicitly, hence the polynomials correspond­
ing to different jumps cannot be explicitly found. (An exception, cor­
responding to Tchebichef polynomials, is given in [4, p. 7].) However, 
when the formulas of this section can be explicitly computed, one can 
reverse the above viewpoint and use (3.19), (3.20) to explicitly find all 
parameter sequences for {/3„}. Also, when the Hamburger moment prob­
lem associated with the original orthogonal polynomial sequence is 
indeterminate, these formulas lead to a rather interesting development 
(see the example of the generalized Stieltjes-Wigert polynomials in §6). 

4. Adding mass at d ^ b. The case where the measure is altered by 
adding mass at a point d ^ b can be handled by applying the method of 
§3 after a reflection and translation of the interval of orthogonality. 
Assume b is finite, d ^ b, and consider the monic polynomials P*(x; 
d, H) that are orthogonal with respect to the measure 

(4.1) </0*(x; d, H) = d(Jj{x) + Hö(x - d)dx. 

Let us now introduce the following notation. We write 

(4.2) 7un(x) ~ d<p(x) 

to mean {izn{x)} is the sequence of monic orthogonal polynomials with 
respect to the distribution d<p(x). Thus, for example, with this notation we 
have 

Pn{x) ~ d</>(x\ P*n(x) ~ dftx) + Jô(x)dx, Qn{x) ~ xdc*j{x\ 

P$(x- d, H) - d(Jj{x) + Hö(x-d)dx 

Thus (-l)»P*(d - x; d, H) d<jj{d - x) + H5(x)dx and, therefore, 
if 

(4.4) RH(x) ~ (rf - *)#(*) , 

(-l)»RH(d - x) ~ xdcj;(d - x). So, by (3.7) and (3.11), 
then 

(-iyPÏ(d-x;d,H) = (-\)»Pn(d-x) + Bn(-iy-iRn_1(d-x) 

P*(x;d9H) = PH(x) - BHRH^(x)9 

where 
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(46) B HP^P^jd) 
• } n \\Pn.^ + HPn_x{d)Rn^{d) ' 

Since ( - \)nRn(d - x) is related to ( - l)nPn(d - x) in the same way that 
Qn(x) is related to Pn(x)9 formulae corresponding to (2.1)-(2.4) can 
easily be written. In particular, we have the recurrence relation 

(4.7) Rn(x) = (x -fn)Rn-i(x) - PnK-2(x\ 

where fn = cn+1 + 52n ~ d2n+2 and pn+l = A„+i<S2„W<Î2«- Also, corre­
sponding to (2.5), we have 

(4.8) (x - d)Rn_1(x) = Pn(x) -ô2nPn-1(x), 

so that 

Using (4.8), we then obtain 

^(x-y)RU{x)dcJ;{x) = - d2n ^Pn-i{x)Rn.x(x)dclj(x) 

hence 

(4.10) j Rl(x)(d - x)d<lAx) = || Pn || 2 Ô2n+2. 

5. Two additional masses. We now suppose that a and b are both finite 
and adjoin to 0 a jump / at 0 g a and a jump H at d 2: b. Thus we 
consider the distribution 

(5.1) d<J>*(x; 0, J; d, H) = d<jj{x) + [Jö(x) + Hö(x - d)]dx, 

and the corresponding monic orthogonal polynomials 

(5.2) Pi{x; 0, J; d, H) ~ d^x; 0, / ; d, H). 

Since d<p*(x; 0, / ; d, H) = # * ( x ; 0, 7) + Hd(x - d)dx, we have, by 
(4.5) and (4.6), 

(5.3) P*(x; 0, / ; d, H) = P*(x; 0, / ) - Q G ^ W , 

where 

(5.4) Gn(x) ~{d- x)d<J)*(x) = (d - x )# (x ) + dJ ô(x)dx 

and 

(5.5) 

r = HP*(d; 0, H)PtSd; 0, # ) 
C " /?_! + ///>„*_,(</; 0. H)G„-i(d) 

fn2 = J[P*(*;0,/)]?#*(*; 0,/), 
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and the latter is given by (3.13). 
We next let 

(5.6) Tn(x) ~ x(d - x)d^x) 

so that the Tn(x) are the kernel polynomials corresponding to the Rn(x) 
(given by (4.4)). Then, corresponding to (3.7) and (3.12), 

(5.7) Gn(x) = R*(x; 0, dJ) = Rn(x) + DnTn_x(x\ 

where 

- dJRH(0)Rn-i(0) 
gU + dJR^T^iO) 

JRl(x) (d - x)d</;(x) = \\PnPÔ2n+2 

(see (4.10)). 
The Tn(x) are related to the Rn(x) and the Qn(x) by formulas corres­

ponding to (2.5), (2.6) (and others) and a number of formulas and re­
currence relations could be written. However, since we will not make use of 
them, we will omit them and simply note in summary that we now have 

(5.9) Pn(x; 0, / ; d, H) = Pn{x) + AnQn(x) - CnRn^(x) - CnDn^Tn_2{x) 

where An and Dn are given by (3.11) and (5.8), respectively, and 

r HP^d; 0, J)PU(d\ 0, J) 
(5.10) n fn2-i + HP^idfi, J) RU(d', 0, dJ) 

fl = \\Pn\\2 - \\Pn-lW2AnPn(0)IPn-l(0). 

In practice, the coefficients Ani Cn and Dn will be so complicated that 
it is unlikely (5.9) will be of any use. Also, in theory, coefficients for 
the recurrence formula for these polynomials could be written but these 
are even worse and the dearth of specific examples to which such formulas 
could be applied is motivation enough not to inflict these on the reader. 

6. Examples. We will here present a number of examples. We will main­
tain the generic notation of the preceding sections so that Pn(x) denotes 
the monic polynomials orthogonal over a subset of [0, oo) with respect 
to a measure dc/>(x). (We will renormalize, if necessary, so as to have total 
mass 1). Also Qn(x) will denote the corresponding monic kernel poly­
nomials. We will determine the coefficients y* (using (3.16)) and obtain 
P*(x; 0, / ) in the form (3.9). Because of (3.5), the recurrence formulas for 
these polynomials are thus known but we will not write them out. In some 
cases we will also give the parameters of the chain sequence {ßn} (3.18). 

A). Laguerre type polynomials. We take in standard notation [20] 

(5.8) 

gì 
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d(jj{x) = [r(a + l)]-1xae-xdx, 0 ^ x < oo 

/>,(*) = ( - \Yn\L%(xl Qn{x) = (-\yn\L<?\x). 

Using well known formulas for L%(x), we find 

Pn(0) = (-\)»(a + l)w, \\PnP = n\(a + 1)M, 

and for the coefficients in the recurrence formula (2.1), we have, cor­
responding to (2.3), f2n = n + <* a n d r2n+i = «, for w g: 1. Therefore, 
from (3.16), we obtain 

r* = 0 + «)/(! + A 
(0.1) 

72* +i = *»/6»- i , 7*11+2 = *(" + a + l ) é f f - i / i B , « ^ 1 

where bn — n\ + / ( a + 2)„. Thus, for the measure 

(6.2) d^(x; 0, J) = {[T7^ + l)]-1*«*-* + /JWjrfx, 

the corresponding orthogonal polynomials are 
(6.3) P:(x:0,J) = (-l)»n\ 

. ^ W n ! + / n ( a + 2)l(_i w ~ l W 

which is in agreement with the formula obtained by Koornwinder [9]. 
The corresponding recurrence formula (3.2) can now be written using the 
above and (3.5). (Note that we could also now write formulas for the 
polynomials orthogonal with respect to the weight function obtained from 
the Hermite weight function by adding mass at the origin.) 

Also, referring to the remark at the conclusion of §3, we obtain 

(fs A\ h - a + 1 h - (n + a+\)[n\-¥Jn{a + 2)n^{\ > 1 

^ } ° (a + 2 ) ( l + / ) ' n» (2/i + a + 2)[/i!+/(a + 2)J ' = 

as the non-minimal parameters for the chain sequence {ßn}, where 

(6.5) ßn - n(n + a + 1) 
(In + a)(2n + a + 2) ' 

for each positive h0 ^ MQ = (a + l)/(a + 2). 

B). Charlier type polynomials. We take (for notation, see [5]) 

d<p(x) = e-°jr^ô(x -k)dx 
*=o k\ 

PJLx) = C£\x) = ( - l ) w W ( x ) , ß , W = CW(x - 1). 

Using known formulas for the Charlier polynomials, we find 
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Pn(0) = (-a)", \\P„P = a"n\, Q„(0) = ( - \)"n\en(ä), 

(6-6) e„ = en(a)=£a*/kl 

Tin = a, T2n+i = n. 

Note that the jump of cp at 0 is e~a. We obtain, from (3.16), 

(6.7) r* = a/(\ + / ) , r2*«+i = nbjbn-i> ït+2 = <*>n_x\bn, 

where bn = 1 + /<?„, / ^ — e_fl. Thus corresponding to the measure 
dcp*(x; 0, / ) , we have the orthogonal polynomials 

(6.8) P*(x; 0, / ) = CP(X - 1) + f * V ° C&ix - 1). 

Corresponding to the chain sequence {ßn} = {an/[(n + a)(n + a + 1)]}, 
we have the noniminimal parameters 

( 6-9 ) h ^ { n f a t m Ì j e n y » ^ 0 , ^ = 0 , / ^ - e - . 

The An become maximal parameters when / = — e~a (i.e., when the 
corresponding distribution function is continuous at 0). 

C). Meixner polynomials of the first kind. With the notation of [5], 
we take 

# t o = ( l - c ) * f ] i^k-ô(x)dx 

PnM = (-aymn(x;ß,c),Qn(x) = (-^n^n(x-l; ß + l,c),a = c/(l -c). 

From the known formulas for mn(x; /3, c), we find 

PH(0) = (-a)»(ß)H9 \\PH\\2=a*»c-"n\(ß)H, Qn(0) = (-a)"c-*nlfn9 

where 

^ (/3),c* 

(6.10) / w Ö) *! ' 

r2„ = a{n + /3 - 1), r2«+i = flw/c. 

For the polynomials corresponding to d</>*(x; 0, / ) , we then obtain 

(6.11) ri = aßl(\ + / ) , rÏH+i^bnKch-i), rM = <*fl + ß)1>n-ilbn 

where, referring to (6.10), 6n = 1 + / / „ , / ^ - ( 1 - e)-". 

/>*(*; 0, / ) 

= ( - f l ) | m „ ( x - 1 ; /3+ 1, c ) - c y +
+

y ^ m ^ j c - 1 ; /3 + 1, c) 
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Corresponding to 

r 6 n x n cn(n + ]3) 
W'I» Pn [ ( 1 + c)n + c{ß _ 1 ) ] [ ( 1 + c){n+[) + ^ _ 1 } ] > 

we have the parameters 

(6 14) h = C(n + ß) - 1 + fa-i f 1 = o 
y } n (1 +c)n + c/3 + 1 1 + . / / „ ' / _ 1 ' 
with the maximal parameters occuring when / = — (1 — c)~K 

D). Generalized Stieltjes-Wigert type polynomials. The generalized 
Stieltjes-Wigert polynomials [5] are also known as g-Laguerre polynomi­
als (see [1], [18]). This is, in many respects, our most interesting example 
because the associated Hamburger and Stieltjes moment problems are 
both indeterminate. Thus there are infinitely many nonequivalent meas­
ures on [0, oo) with respect to which these polynomials are orthogonal 
and many of these are explicitly known [1], [6], [18]. However, referring 
to the remarks at the conclusion of §3, we also know that there exists a 
distribution function <pM which is the solution of a determined Hamburger 
moment problem and such that the generalized Stieltjes-Wigert polynomi­
als are orthogonal with respect to 

(6.15) dtftx) = d<IF(x) + J05(x)dx, 

for some positive jump J0. Although cpM is unknown, we will describe the 
polynomials P%(x; 0, J) relative to the polynomials orthogonal with 
respect to d</>M(x). 

With the notation of [5, p. 174], we have 

Pnix) = Sn(x; p, q), QH(x) = q~nSn(qx; pq, q) 

\\Pn\\2 = lpUgU-2n(n+l\ 

where [a]H = (a; q)n = (1 - a) (1 - aq) • • • (1 - aqn~l). 
Also, from the recurrence formula, we have y2w = (1 — pqn~l)q-2n+l/2, 
T2n+i = (1 - qn)q~2n/2, whence 

rî = 0 - />)<r3/2/0 + J) 
( 6 1 6 ) b b , 

r L l = f 2 W " 1 / 2 A , r ? n + 2 = ( l -pqn){\-qn)q-2n-V2^=l 

where bn — [q]n 4- J[pq]n. The polynomials which are orthogonal with 
respect to 

(6.17) d<fi*(x ; 0, / ) = d<p{x) + Jô(x)dx = d$M{x) + (/ + J0)d(x)dx 
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are thus 

(6.18) P*(x; 0, J) = q-"[Sn(qx; pq, q) + (bJb^q-^^S^iqx; pq9 q)]. 

Of course, these polynomials are also orthogonal with respect to the 
measure obtained by adding mass J at the origin to any of the other 
measures known for the generalized Stieltjes-Wigert polynomials. 

For the corresponding chain sequence {ßn}, 

(6.19) ß = (1 - pq")(\ - q")q 
' Pn [1 + q - (1 + P)q*] [1 + q ~ (1 + p)q»+l] ' 

we obtain the parameters 

where bn = [#]M + 7 [ ^ ] n . Now {ß„} converges to q{\ + #)~2 < 
1/4(0 < # < 1) so all nonmaximal parameter sequences converge to 
#/0 + q) while the maximal parameter sequence converges to 1/(1 -f q) 
[5, pp. 102, 103]. Thus we will obtain the maximal parameters if we choose 

(6.21) J = -j0= - f e u r w L . 
In other words, if J is given by (6.21), then the corresponding polynomials 
(6.18) are orthogonal with respect to a measure that corresponds to a 
determined Hamburger moment problem. Since the coefficients in the 
recurrence formula are known (via (6.16)), one might hope that this 
measure could be recovered but the complicated nature of these coefficients 
does not seem to offer much real hope. 

E). Jacobi type polynomials. Using the standard notation [20], we have 

</#*) = 2- ( ^ i . 7 g 2 L + A + ^ ) ( 2 - xy.xß dx, 0 | , ^ 2 

(6.22) 

pn(x)=2f"+ypyp^Hx-i) 

Qn(x)=ifn +a + ß + iylp^'Hx -1) 

H{) {a + ß + \)Z ' yA) (cc + ß + 2)„ 
| | p (|2 22««!(a + i)„(ß + \)„{a + ß + 1)„ 
11 "" (a + ß + 1)2„(« + ß + 2)2, 

A = 2J(ß + l)„(a + ß + 2)B_1 

" (a + ß + 2n)bZi 

where bn = (a + \)nn\ + J(ß + 2)„(a + ß + 2)„. 
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Beginning with the recurrence formula for the monic form of the Jacobi 
polynomials (e.g., see [5, p. 153]), we find 

2(/3 + n)(a + ß + n) 2n(n + a) 
T2n (a + ß + 2n-l)(a + ß + 2ny T2n+1 (a + ß + 2n) (a + ß + 2n+!)• 

For the P*(x; 0, J) we then obtain 

(6.23) 

» _ (2/3 + 1) * 2K 
72 (a + ß + 2)(l+jy r2n^ (a + ß + 2n)(a + ß + 2n+l)b„_1 

* = 2n(a + n)(ß + n + 1)(« + ß + n + l)fe„_x 
T2n+2 (a + ß + 2« + l)(a + ß + 2« + 2)Z>„ 

/»•Oc; 0, / ) = 2»(2" + « + i3 + l\-i 

(6.24) 
p(a.ß-tl) (x_ ] \ j ** P ( « J T 1 ) ( X _ 1\ 

i X ^ + „ ( n + a + /3 + l)6„_i ' ( . 

If we next consider adding a jump / / at x = 2, we find that, for the 
coefficients in (5.9), A„ is given by (6.22), D„ is obtained from An by 
replacing J by 2 / and a by a + 1. To compute C„ in (5.10), we obtain 

p*n. e n - 2"(a + l)„-i(tt + ß + IV» 
(a + ß + l ) 2 A - i 

where 

c„ = (a + l)w(/i - 1)! + J(ß + 2)„_1(cr + ß + 2)„ 

_ 22»(g + l)n_x(ß + l)„(a + j3 + !).(* - l)lbn 
Jn (a + /3 + l)2n(a + j3 + 1)2„+1 *„_i 

and Ä*(2; 0, 2J) is obtained from P*(2; 0, 27) by replacing a by a + 1. 
These are so complicated, it is not worth pursuing the calculation of Cn 

to the bitter end. It is also pointless in view of the elegent 4F3 representa­
tion Koornwinder [9] has given for these polynomials. 
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