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ORTHOGONAL POLYNOMIALS
AND MEASURES WITH END POINT MASSES

T. S. CHIHARA

ABSTRACT. Let a sequence of orthogonal polynomials with respect
to a given measure d¢(x) be explicitly known and let a new measure
d¢*(x) be constructed from d¢(x) by adjoining a positive mass at
one point. When d¢(x) corresponds to one of the classical orthog-
onal polynomials of Jacobi, Hermite or Laguerre, the orthogonal
polynomials relative to d¢*(x) have been found by H. L. Krall and
others. Here we consider general d¢(x) and obtain formulas for
constructing the polynomials associated with d¢*(x). A number of
nonclassical examples are explicitly given.

1. Introduction. There has been a renewal of interest in the question of
orthogonal polynomial solutions to linear differential equations. Much of
the recent work can be considered a continuation of the work of Bochner
[3] and his characterization of the classical orthogonal polynomials as the
only orthogonal polynomials which are eigensolutions of Ly = A,y, where
L is a second order linear differential operator with polynomial coefficients
independent of n. H. L. Krall [11], [12] extended Bochner’s work to the
fourth order case and found three new sequences of orthogonal polyno-
mials. The spectral measures for two of these could be obtained from the
measures for the Laguerre and certain special Jacobi polynomials, re-
spectively, by adjoining mass at one end of the spectral intervals. The
third measure was obtained from the Legendre measure by adjoining
equal masses at each end of the spectral interval. The three sets of poly-
nomials have been studied in some detail by A. M. Krall [10].

Littlejohn [13], [14], [15] has continued this study of Ly = ,y. He has
found a 6th order case which has orthogonal polynomial solutions. These
polynomials are orthogonal with respect to the measure obtained from
the Legendre measure by adjoining unequal masses at each end of the
spectral interval. Koornwinder [9] generalized these results by obtaining
explicitly the polynomials which are orthogonal with respect to the meas-
ure obtained from the most general Jacobi measure by adjoining arbitrary
masses at both ends of the spectral interval. Koornwinder also indicates
that these polynomials satisfy an 8th order case of Ly = A,y. Hendriksen
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and van Rossum [8] have recently studied polynomials of the above types
from the viewpoint of Padé tables and shown they all satisfy certain 2nd
order differential equations. For a general theory of such differential
equations with orthogonal polynomial solutions, see Hahn [7]. See also
(2], (16}, [17], [19].

In this paper, we show that if one begins with a known system of orthog-
onal polynomials (not necessarily a classical one) and if mass is added at
one end of the spectral interval, the corresponding orthogonal polyno-
mials frequently can be found explicitly independently of any differential
equations. We will obtain general formulas which will permit us to obtain
explicitly the orthogonal polynomials for several nonclassical examples.
Our methods also lead to formulas which, in theory, would handle the
case of masses added at both ends of a spectral interval. However, as we
will see, in this case the formulas become so complicated that they hardly
seem useable. A rather interesting example will be that involving the
generalized Stieltjes-Wigert polynomials. This is due to the fact that the
Hamburger moment problem associated with these polynomials is in-
determinate.

2, Preliminaries. Let ¢) be a distribution function with an infinite spec-
trum on an interval [a, b]. Since we wish to add mass at one end of the
spectrum, we take a to be finite and then there is no loss of generality if
we further assume that a = 0. Let {P,(x)} be the sequence of monic
orthogonal polynomials with respect to d¢i(x) on [a, b] and let it satisfy
the three term recurrence relation

(2 ]) Pn(x) = (X - Cn)Pn—l(x) - lnPn—-Z(x), nz l’

’ P_i(x) =0, Po(x) =1, c,real, A, > 0.

Next let {Q,(x)} denote the corresponding sequence of monic kernel
polynomials; that is, the Q,(x) are the monic polynomials that are or-

thogonal over [0, 4] with respect to the measure xd¢(x). Let the corre-
sponding three term recurrence relation be

Qn(x) = (x - dn)Qn—l(x) - vnQn—Z(x)9 n g l’

2.2)
0_1(x) =0, Qy(x) =1, d, real, v, > 0.

Referring to [4], [5], we now recall some relations among these polyno-
mials.

Relating the coefficients in the two recurrence relations, there are
positive constants 7, (n > 1) such that

(2.3) Cn = Ton—1 + T2m Antl = T2n T2n+1s (r1=0)
1.

v

(2.4) dy = 725 + Tont1s Va1l = Tontl Tont2s n
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The two sequences of orthogonal polynomials are additionally related by

(25) xQn—l(x) = Pn(x) + TZnPn—l(x)
(26) Pn(x) = Qn(x) + T2n+1Qn-—1(x)
and
P,(0)
2.7 = — 2
( ) T2n P”_I(O)
Let || - || denote the L2 norm relative to the measure d¢. From the

recurrence formula (2.1) we have
@3) 1P12 = [ PEIG) = Mtz -+ v
For the norm of Q,(x) relative to xdg(x),
10405 = [ Q300 xdgx) = vy -+ vt
we use (2.5) to get
10ul = § PussCOxdg) + 72 [ PaGOXdg(0)

= Ton+2 ”PnHZ

(2.9)

Finally, we recall that the corresonding sequence {S,(x)} of symmetric
polynomials defined by

(2.10) Son(x) = Py(x?), Szn1(x) = x0Q,(x?)
satisfies the recurrence relation
(211) Sn(x) = XS,,_I(X) - TnSn—Z(x)~

These polynomials are orthogonal over [— /b, 4/ 5] with respect to
dp(x), where

ng(xz) — H(07) x>0
(2.12) ¢(x) = O X = 0
l —(x2) + H(07) x < 0.
We note also that if we set
(213) En = T2n+1> ln = T2nt2> nz0
(A, has different meaning here than in (2.1) of course), then
(2.14) D,(x) = (—1)"[Aehy -+ Apa]™ Po(x)

satisfies the recurrence relation
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(215) —-X Qn(x) = ,un¢n—1(x) - (;{n + ,un)q)n(x) + )'nmn-f-l(x)

corresponding to a birth and death process with reflecting barrier at 0.
On the other hand, if we set

(216) En = T2nt2s /.{n = T2n+3s n 2 0,
then
(2.17) Du(x) = (= D"[popn =+ tn1] Qu(x)

satisfies (2.15) which then corresponds to a birth and death process with
absorption at — 1.

3. Adding mass at 0. Although in some examples, the distribution func-
tion will be continuous at the origin, we will consider others where ¢ has
a jump there. Hence we let J, = 0 denote the jump of ¢ at the origin. We
then consider the measure obtained from d¢ by adding a mass J =2 —J,
at 0.

Let P¥(x) = P}(x;0,J) denote the monic polynomials that are orthog-
onal with respect to the measure

3.1 d*(x; 0, J) = dg(x) + Jo(x)dx, J = —J,.
Let the three term recurrence relation satisfied by the P¥(x) be
(3.2) PY(x) = (x — ¢f)PFy(x) — AFP ().

Now, if Q,(x) still denotes the kernel polynomials of §2, it is clear
they are also the kernel polynomials corresponding to the polynomials
PX¥(x;0,J). Thus, in addition to (2.5) and (2.6), we also have

(3.3) xQ,1(x) = PY(x) + rzP(x)

(3.4) Pr(x) = Q,(x) + 151Qs1(X)

where the coefficients 7} are determined by ¥ = 0 and

(3.5) =T+ The A = Tarten

(cf. (2.3)). They are related to the 7, by means of (2.4) and the relations
(3.6) dy =713 + 130t1s Va1l = T3t Tons2:

Of course, we also have

x _ _ _PrO)
= TP
From (3.3) and (2.6) we also obtain
(37) P:(X) = P,,(X) + AnQn—l(x)9

where
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(38) An = T;‘n—l - 7T2n+1-
Using (2.6), we can rewrite (3.7) in the form
(39) P:(X) = Qn(x) + Tékn—lQn—l(x)-

Next we notice that
(3.10) j 2()d*(x) = jn:(x)dg,’v(x) + Jx(0).
Therefore we obtain from (3.7) and the orthogonality of the P,(x),
jP,T(X)Pn—l(X)d¢*(X) = JPO)P, 1(0) = A,._[Qn_l(X)Pn-l(X)dMX)
= A,|P,1l?

(since Q,_i(x) is monic). Thus, by the orthogonality of the P¥(x),

- —JP30)P, 4(0)
" IPpal?

A

Setting x = 0 in (3.7), we then obtain from the last formula,

P,(0)[ P2

3.11 P*0) = .
31D O = B, I, 500,50
This then yields, finally,

(312) An —JPn(O)Pn—I(O)

= TP, 4l% + JP, ,(000,4(0)

Next using (3.7), we obtain
_[P:(x)xnd¢*(x) - jP,,(x)x"dg’;*(x) + A,,j 0, 1(X)x7Lxdg*(x).

Then using (3.10) and (2.9), we can write the appropriate L2 norm of
P¥(x) as

(.13) jWﬂnQJWMﬁn0H=H&W+AJhWPW-

Finally, for the coefficients in the recurrence formula (3.2), we obtain
from (3.8), (3.6) and (2.4),

(314) T;‘n =Ton — Am T‘;n-*-l = T2n+1 + An'
Using (2.7) and (3.12), the first of these can be rewritten

o _ . lPusll2 + JP,_(0)[Q, 1(0) — P, 4(0)]
Ten = T2n [P,1l% + JP,_1(0)0,_1(0) ‘

From (2.8), (2.3) and (2.6), we have
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”Pn—-lllz = “Pn—ZHZTZn—Z T2n-—1q n g 2’
0,40) — P, 1(0) = — 72,.10,2(0).
Therefore, for n = 2,

. 1Py all? + JP, o(0)Q, 4(0)
T = Yoz Vvt Ton B 7 L TP (000, 1(0)

We also have, according to (3.6) and (24). 1.1 = Ver1/752 =
Tont1T2nt2/T3nt2- Thus if we let
(3.15) 0, = P,z + JP,(0)Q,(0),

we can write

75 =71l + J)
Y
(3 16) et T2n0n—1

Bn—l

* _
Ton+2 = = T2n T2nt+1 Tont2 0. n
n

v

1.

The recurrence formula for {P}(x; 0, J)} can now be written using (3.5).
Also, corresponding to (2.10) - (2.12), (3.16) can be used to construct

the related symmetric OPS, while, corresponding to (2.13) - (2.17), the

recurrence relations in birth and death process form can be written.

REMARK. The orthogonal polynomials P}¥(x; 0, J)can also be obtained,
in theory, by considering the parameters of the chain sequence associated
with the kernel polynomials Q,(x). According to [4], if we are given (2.3)
and (2.4) and if we set

(3~18) .Bn = l‘)thl/(dndn-i-l)a n _Z_ l,

then {3,} is a chain sequence that does not determine its parameters
uniquely. That is, there is a maximal initial parameter My > 0 such that
for each Ay, 0 < hy £ M,, there is a corresponding parameter sequence
h = {h,} for which

(3.19) By=( —h,_Dh,, n=123 ..
Corresponding to each hy > 0, the sequence {7} can be defined by
(320) TiIZ'n = hn—ldm Té‘n-H = (l - hn—l)dm nzl

The coefficients in (3.2) can then be defined by (3.5) with 7¥ = ¢& If
h = M = {M,}, then the resulting polynomials P¥(x) defined by (3.2)
will be orthogonal with respect to a measure dj™(x) where ¢M is the
solution of a determined Hamburger moment problem and is continuous
at the origin. For each positive hy < M, the corresponding polynomials
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P(x), defined by (3.2), will then be orthogonal with respect to a measure
of the form (3.1) with ¢y = ¢M. The jump J which is added to ¢ to
obtain ¢* = ¢* is given by

(3.21) J = [¢(0) — ¢(—0)] (Mo — hg)/hq.

In practice, however, the above cannot be applied because usually
more than one or two different parameter sequences for a given chain
sequence can not be found explicitly, hence the polynomials correspond-
ing to different jumps cannot be explicitly found. (An exception, cor-
responding to Tchebichef polynomials, is given in [4, p. 7].) However,
when the formulas of this section can be explicitly computed, one can
reverse the above viewpoint and use (3.19), (3.20) to explicitly find all
parameter sequences for {3,}. Also, when the Hamburger moment prob-
lem associated with the original orthogonal polynomial sequence is
indeterminate, these formulas lead to a rather interesting deveiopment
(see the example of the generalized Stieltjes-Wigert polynomials in §6).

4. Adding mass at d = b. The case where the measure is altered by
adding mass at a point d = b can be handled by applying the method of
§3 after a reflection and translation of the interval of orthogonality.
Assume b is finite, d = b, and consider the monic polynomials P}(x;
d, H) that are orthogonal with respect to the measure
4.1 dg*(x; d, H) = d{(x) + Ho(x — d)dx.

Let us now introduce the following notation. We write
(4.2) T(X) ~ dop(x)

to mean {z,(x)} is the sequence of monic orthogonal polynomials with
respect to the distribution do(x). Thus, for example, with this notation we
have
P,(x) ~ d(x), P}(x) ~ d(x) + Jo(x)dx, Q,(x) ~ xd(x),
P*(x; d, H) ~ dj(x) + Ho(x —d)dx

Thus (= 1)*PXd — x; d, H) ~ —d¢(d — x) + Hd(x)dx and, therefore,
if
(4.4) R,(x) ~ (d — x)d(x),

(= DR, (d — x) ~ xd(d — x). So, by (3.7) and (3.11),
then
(=D)P¥d—x;d, H)=(—1)"P(d—x)+B,(—1)""IR,_1(d—x)

PX(x:d, H)=P,(x) — B,R, 1(x),

(4.3)

(4.5)

where
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HP (d)P,_,(d)
(4.6 B, = n n—1 )
) 1,57 + AP, {(d)R,i@d)
Since (— 1)"R,(d — x)is related to(— 1)*P,(d — x) in the same way that
Q,(x) is related to P,(x), formulae corresponding to (2.1) - (2.4) can
easily be written. In particular, we have the recurrence relation

(4'7) Rn(x) = (.X _fn)Rn——l(x) - ann—Z(x)9

where f, = ¢,11 + 020 — O2nt2 and pu41 = A,4102442/02,. Also, corre-
sponding to (2.5), we have

(4.8) (x — d)R,_1(x) = P,(xX) —02,P,1(x),
so that

_ _P,d)
4.9) 0p, = P

Using (4.8), we then obtain
j' (x = Y)RE_(N)d(x) = — 5, an_1<x)R,,_1(x)d¢(x)

hence

(4.10) jR;i(x)(d — )dg(x) = P2 Gpmso.

5. Two additional masses. We now suppose that @ and b are both finite
and adjoin to ¢ a jump J at 0 < ¢ and a jump H at d Z b. Thus we
consider the distribution

5.1 dj*(x; 0,J; d, H) = dj(x) + [Jo(x) + Ho(x — d))dx,
and the corresponding monic orthogonal polynomials
(5.2 Pi(x;0,J;d, H) ~ d?(x; 0, J; d, H).

Since d?(x; 0, J; d, H) = d*(x; 0, J) + Ho(x — d)dx, we have, by
(4.5) and (4.6),

(5.3) Pi(x;0,J;d, H) = Pf(x;0,J) — C,G,_1(x),
where
(5.4) G, (x) ~ (d — x)d*(x) = (d — x)d(x) + dJ 6(x)dx

and

_ _HPY4; 0, H)P},(d; 0, H)
" fia + HPE(A; 0, H)G, (d)

2= j[P::(x; 0, )2dg*(x; 0, J),

C

(5.5)
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and the latter is given by (3.13).
We next let

(5.6) T,(x) ~ x(d — x)d(x)

so that the T,(x) are the kernel polynomials corresponding to the R,(x)
(given by (4.4)). Then, corresponding to (3.7) and (3.12),

(5.7 G, (x) = R}(x;0,dJ)) = R,(x) + D,T,_1(x),
where

D — _ —dJR(O)R, 1(0)
" &+ dJR, 1T, 4(0)

[ B2 @ = x0dgix) = 12,12 002

(5.8)

]

&n

(see (4.10)).

The T,(x) are related to the R,(x) and the Q,(x) by formulas corres-
ponding to (2.5), (2.6) (and others) and a number of formulas and re-
currence relations could be written. However, since we will not make use of
them, we will omit them and simply note in summary that we now have

(5.9)  Py(x;0,J;d, H)=P,(x) + A,0,(x) = C,R,_1(x) = C,.D, 1T, 5(x)
where 4, and D, are given by (3.11) and (5.8), respectively, and

C = HP}(d; 0, )Py ,(d; 0, J)
(5.10) " fE + HPY(d;0,J) R} (d; 0, dJ)

f;‘Z “Pn“2 - “Pn—IHZAnPn(O)/Pn—l(O)'

In practice, the coefficients 4,, C, and D, will be so complicated that
it is unlikely (5.9) will be of any use. Also, in theory, coefficients for
the recurrence formula for these polynomials could be written but these
are even worse and the dearth of specific examples to which such formulas
could be applied is motivation enough not to inflict these on the reader.

It

6. Examples. We will here present a number of examples. We will main-
tain the generic notation of the preceding sections so that P,(x) denotes
the monic polynomials orthogonal over a subset of [0, co) with respect
to a measure d¢(x). (We will renormalize, if necessary, so as to have total
mass 1). Also Q,(x) will denote the corresponding monic kernel poly-
nomials. We will determine the coefficients 73 (using (3.16)) and obtain
PX(x; 0, J)in the form (3.9). Because of (3.5), the recurrence formulas for
these polynomials are thus known but we will not write them out. In some
cases we will also give the parameters of the chain sequence {3,} (3.18).

A). Laguerre type polynomials. We take in standard notation [20]
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dj(x) = [["(a + D] 1xee~=dx, 0<x<ow
P,(x) = (=Dm!Ly(x), Q,(x) = (=1D)n!L5(x).
Using well known formulas for L2(x), we find
P0) = (=D™a + 1), [IP,l2 =nl(a + 1),

and for the coefficients in the recurrence formula (2.1), we have, cor-
responding to (2.3), ys, = n + a and 7,4 = n, for n = 1. Therefore,
from (3.16), we obtain

=0+ a1 + ),

6.1)
Tékné—l = bn/bn—lv T;‘n+2 = n(n + a+1)bn-—1/bm h g 1

where b, = n! + J(a + 2),. Thus, for the measure
6.2) dj*(x; 0, J) = {[I'(a + D] 1x2e~* + Jo(x)}dx,

the corresponding orthogonal polynomials are

(6.3) PX(x:0,J)=(=1)n! !:L:*‘(x) - ’%Lgi{&)}
which is in agreement with the formula obtained by Koornwinder [9].
The corresponding recurrence formula (3.2) can now be written using the
above and (3.5). (Note that we could also now write formulas for the
polynomials orthogonal with respect to the weight function obtained from
the Hermite weight function by adding mass at the origin.)

Also, referring to the remark at the conclusion of §3, we obtain

_ a+ 1 _(n+a+Dn!'+Jn(a+2), 1]
©4) ho = (a+2)(1+J) hy = (2n+a+2)[n!+J(a+2),j ’

v

1

n

as the non-minimal parameters for the chain sequence {3,}, where

_ nn+a+1)
(6.5) Bn = Cn+a)2n + a +2)°

for each positive iy < My = (a + D/(a + 2).
B). Charlier type polynomials. We take (for notation, see [5])

dg(x) = e-e goz—"!a(x — K)dx
P() = CP) = (= e (x), 0,0 = C(x — 1)

Using known formulas for the Charlier polynomials, we find
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P,0) =(=a), [P,l2=an!, Q,0)=(-1)nle,a),
(6.6) e, = e (a) = 3] at/k!
k=0
Ton = a4, Tou+t1 = N.
Note that the jump of ¢ at 0 is e~s. We obtain, from (3.16),
(67) Tg‘ = a/(l + J)’ T;‘rH—l = nbn/bn—l’ Tékn+2 = abn—l/bm

where b, =1 + Je,, J = —e o Thus corresponding to the measure
d*(x; 0, J), we have the orthogonal polynomials

*(y- = C@(y — n(l + Je,) @ _
68)  Prxi 0, J) = Cox = 1) + 57 Coyx — ).

Corresponding to the chain sequence {8,} = {an/[(n + a)(n + a + 1)]},
we have the noniminimal parameters

_a(l 4+ Je, ) S C 07> e
6.9 4, wrat ) +7e) nz0,e_;,=0,J2—e

The 4, become maximal parameters when J = —e™2 (i.e., when the
corresponding distribution function is continuous at 0).

C). Meixner polynomials of the first kind. With the notation of [5],
we take

dg(x) = (1 — 3 B 500dx

=
P,(x)=(—a)"m,(x;B,¢), Q,(x)=(—a)y"m,(x—1; +1,0),a=c/(1-0).
From the known formulas for m,(x; 3, ¢), we find
P,0)=(—a)*(B), |P,lIZ=a?cn\(B),, Q.0)=(—a)c™n!f,

where

_ ¢ (B)ec*
(6.10) f”_,,z:lo k!

Ton = a(n + B — 1), 72,41 = anc.
For the polynomials corresponding to d¢*(x; 0, J), we then obtain
(6.11)  7¥=af/(1 +J), 1,1 =anb,/(cb,_1), r5,-2=a(n+ )b, /b,
where, referring to (6.10), b, = 1 + Jf,,J = —(1 — ¢)74.
P¥(x;0,J)
(6.12)

=(=ay{me=1; p+1.0= ZEED i e-1: 5410,
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Corresponding to

_ cn(n + f)
S N (T T ) (F D ET IR

we have the parameters

— C(n+«8) . 1 +an—1 =0
O+on+cf+1 1+J, " -1

6.14)  h,

with the maximal parameters occuring when J = —(1—¢)~4.

D). Generalized Stieltjes-Wigert type polynomials. The generalized
Stieltjes-Wigert polynomials [S] are also known as g-Laguerre polynomi-
als (see [1], [18]). This is, in many respects, our most interesting example
because the associated Hamburger and Stieltjes moment problems are
both indeterminate. Thus there are infinitely many nonequivalent meas-
ures on [0, o) with respect to which these polynomials are orthogonal
and many of these are explicitly known [1], [6], [18]. However, referring
to the remarks at the conclusion of §3, we also know that there exists a
distribution function ¢»¥ which is the solution of a determined Hamburger
moment problem and such that the generalized Stieltjes-Wigert polynomi-
als are orthogonal with respect to

(6.15) dg(x) = dpM(x) + Joo(x)dx,

for some positive jump Jy. Although ¢ is unknown, we will describe the
polynomials PX(x; 0, J) relative to the polynomials orthogonal with
respect to dgM(x).

With the notation of [5, p. 174], we have
Py(x) = S.(x;p,q), Qu(x) = q7"S,(9x: pq, q)
P,(0)= (=g 2pl - Q,(0) =(—1rg=" 232 pq],
IP4l12 = [plalgl.g~2»*0,

where [d], = (a;9), = (1 — @) (1 — aq) --- (1 — aq").
Also, from the recurrence formula, we have y,, = (1 — pgr-l)g-2n+1/2,
T2n+1 = (1 — g7)g~2"'2, whence

18 =1 —pg=¥31 +J)
b,

b —
TH1 = q—2n—1/2b n k=1 —pg(1- qn)q—Zn—B/Z_lz;__

’
n—1 n

(6.16)

where b, = [q], + J[pq]l,. The polynomials which are orthogonal with
respect to

(6.17)  dg*(x; 0, J) = dip(x) + Jo(x)dx = dPM(x) + (J + J)o(x)dx
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are thus
(6.18)  P¥(x;0,J)=g""[S,(gx; pq, q) +(b,/b,_1)g~2"1/2S, _1(gx; pq,q)).

Of course, these polynomials are also orthogonal with respect to the
measure obtained by adding mass J at the origin to any of the other
measures known for the generalized Stieltjes-Wigert polynomials.

For the corresponding chain sequence {3,},

_ (1 = pgn(1 = g™)q
©19) B = (l+g-0+pg]ll +q~0+pg=i]”’

we obtain the parameters

I —p)g (1 =pg")(1 —q")gb,_

(620) hy=-L=pPd __, _ =l gz

) = Tig=d+pa "= Trg-(+pam b,

where b, = [q], + J[pql,. Now {B,} converges to ¢(l + ¢)2 <
1/4(0 < g < 1) so all nonmaximal parameter sequences converge to
g/(1 + g) while the maximal parameter sequence converges to 1/(1 + g)
[S, pp. 102, 103]. Thus we will obtain the maximal parameters if we choose

(6.21) J = —-Jy = —[ql../lpql...

In other words, if J is given by (6.21), then the corresponding polynomials
(6.18) are orthogonal with respect to a measure that corresponds to a
determined Hamburger moment problem. Since the coefficients in the
recurrence formula are known (via (6.16)), one might hope that this
measure could be recovered but the complicated nature of these coefficients
does not seem to offer much real hope.

E). Jacobi type polynomials. Using the standard notation [20], we have

. a+p+1) _ " —_ axh 0 <x =
dgu(X) 2~ ¢ )f( 1)[’(,8 ])(2 x) X dx, X 2

P =2 X B e =

0= @ F BN psigy — )

(6.22)

(D@ Dat B D o (= D+ et f+D),
PO=—C T F+ 1, 20 @+ 8+,

22 + DB + Da+ B8+ 1),
(a + ﬁ + l)Zn(a + ;B + 2)2n

_2J(B + Dula + 8+ 2py
? (¢ + 8+ 2m)b,

where b, = (« + D)yn! + J(B + Dula + 8 + 2),.

I1PalI2 =

A
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Beginning with the recurrence formula for the monic form of the Jacobi
polynomials (e.g., see [5, p. 153]), we find

_ 2B+ n(a+B+n) _ 2n(n + «)
Ten = (qx fron—I)a+B+2n) 121 (a+B+2n) (a+B+2n+1)

For the PX(x; 0, J) we then obtain

L @B+ . 2,
T2 = Gr g+ +J) 71~ (@+p+2n)(a+p+2n+ Db,

¢ _2ma+nmB+n+Ya+B+n+ Db,
T2 = (¥ B+ 2n + Da + B+ 2n + 2)b,

P(x: 0, J) = 2,,<2n + an+ B + 1)—1

(6.23)

(6.24) b

nn+a+ BT Db,

[P,ﬁ“’r’*ﬂ) (x—1) + P@f ) (x — 1)}.

If we next consider adding a jump H at x = 2, we find that, for the
coefficients in (5.9), 4, is given by (6.22), D, is obtained from A4, by
replacing J by 2J and @ by a + 1. To compute C,, in (5.10), we obtain

2"(“ + l)n—l(a + ﬁ + 1),,('”

* . —_—
PR 0 0) = =+ Dok

)

where
Cp=(a+ Dyn—-D'+JB + 2),4(a +  + 2),

1= 22 + 1), (8 + Dula + § + D,(n — 1)b,
" (a + ;8 + l)2n(a + .B + l)2»‘#—1 bn—l

and RX(2; 0, 2J) is obtained from P}(2; 0, 2J) by replacing a by a + 1.
These are so complicated, it is not worth pursuing the calculation of C,
to the bitter end. It is also pointless in view of the elegent 4F representa-
tion Koornwinder [9] has given for these polynomials.

>
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