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THE COEFFICIENTS OF THE INVERSE 
OF AN ODD CONVEX FUNCTION 

RICHARD J. LIBERA AND ELIGIUSZ J. ZLOTKIEWICZ 

1. Background information, ^ i s the class of functions regular and with 
positive real part in the open unit disk J , J = {z e C: \z\ < 1}, having a 
series representation 

(1.2) P(z) = 1 + CYZ + C2Z* + . . . , ZG J . 

The family J T of regular convex functions of the form 

(1.3) f(z) = z + a2z* + a^ + . . . 

is defined by the condition 

(1.4) i T W + i G ^ 

(see [4], for example). 
In recent years the peculiar behavior of the coefficients of inverses 

of functions in JT and in similar classes has attracted attention [1, 2, 7, 
8, 10, 11]. If the inverse off(z) in JT is 

(1.5) f(w) = w + A2w2 + A3w
3 

then it has been shown ([1, 10]) that \Ak\ ^ 1, k = 2, 3, . . ., 8, but that 
there are members of JT for which \Al0\ > 1, [7]. The exact bound for 
\A9\ appears to be unknown at this time. 

The purpose of the present work is to examine the coefficients of (1.5) 
when/(z) is an odd function in X. Suppose then that 

(1.6) /(Z) = z + ^ 3 + Ä5Z5 + . . . 

is an odd member of jf\ Then its inverse 

(1.7) f(w) = w + B3w* + £5w
5 + . . . 

is likewise odd. In this case we may write (1.4) as 
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(18) 1 + i £ M = _ i _ . 
U } f'{z) Q(z) ' 

or, using the relations/(/(w)) = w, f'(f(w))f'(w) = 1 and f"(f(w)) f\w)2 

+ A / ( w ) ) / > ' ) = 0, as 

H9Ì 1 _ / W » - — J 
^ ' J / » 2 ß(/(w» ' 

5(z) being necessarily an even function in 0> of the form 

(1.10) ß(z) = 1 + d2z* + ^ 4 + ••• • 

The right sides of (1.8) and (1.9) are expressed as reciprocals as an aid in 
computation, i.e., the representations for the coefficients Bk have more 
tractable representations when these forms are used. 

2. Conclusions and Proofs. 

THEOREM 1. Iff(z) is an odd function in K and f(w) = w + B3w
3 + . . ., 

then 

(2.1) |2?3| g -J-, |/?5| g j | , \B7\ è - ^ - a n d |*9| g 

and these bounds are best possible. 

17 
360 ' 

THEOREM 2. ///(z) w a« odd function in K and f(w) = w + i?3w
3 + . . . , 

/ 7 / ' 2 * + 1 

(2.2) l Ä ^ I g — — - — - ^ ^ 

for all k. 

The proof of the first theorem begins with the substitution of forms 
(1.7) and (1.10) into (1.9), from which, after considerable computation, 
one obtains 

(2.3) 

(V.B3 = d2, 

51B5 = 6dA + dl 

7\B7 = 120 </6 + 6d2di + rff, and 

l9!£9 = 5040 rf8 + 9 6 0 ^ 6 + 132rf|rf4 - 1764 ^ + d\. 

The bounds for \B3\, |2?5| and |2?7| are obtained directly from the first three 
of these equations, along with an application of the triangle inequality 
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and Caratheodory's inequalities, \dk\ ^ 2, all k [4]. These bounds are made 
sharp by the function 

/i(*) = ilog(-{ 1 + iz 

which is obtained from (1.4) by letting P(z) be (1 + z)2/(l - z)2 and for 
which the inverse is 

/ i O ) = tan vv 

, vv3 , 2vv5 , 17u'7 , 
= W + -^- + —i-=- "f 3 15 315 ' 

with the coefficients being the Bernoulli numbers ß2 = 1/6, /34 = —1/30, 
j86= 1/42, /38= -1/30, /310 = 5/66, etc. 

The derivation of the bound for |Z?9| requires a little more effort. If we 
let P(z) = Q(<y/Y'), in (1.10), then we obtain a new member of ^ , say 
P(z) = 1 + Ciz 4- C2z2 -f . . ., where Ck = d2k, k = 1, 2, 3, . . . . Using 
this transformation, the last equation in (2.3) may be written 

(2.4) 9\B9 = 5040C4 + 960CXC3 4- 132C2C2 - 1764Q2 4- Cf. 

To maximize the magnitude of B9, we now need to consider only the 
first four coefficients of P(z) over the whole class &>. Because |C4| ^ 2, we 
may write 

(2.5) 9!|£9| ^ (5040) (2) + max \C{ 4- 132C2C2 + 96OQC3 - 1764C||. 

To compute an upper bound on the second term in (2.5) we appeal to 
another result of Caratheodory, which, stated in a form due to Toeplitz, 
appears in [5]. 

LEMMA. The power series for P(z) given in (1.2) converges in A to a func
tion in &> if and only if the Toeplitz determinants 

J 2 C\ C2 • • • Cn j 

(2.6) D = I C~1 2 C} '" Crl ' « = 1, 2, 3, . . ., 

C_„ C_„^i C_n+2 • • • 2 

and C_k = Ck, are all nonnegative. They are strictly positive except for 
P(z) = 2? = 1 pkPo(eü»z), pk > 0, l9k = 1, P0(z) = (1 + z)/(l - z), f, real 
and tk # / ; for k ^ j \ in this case Dn > 0 for n < m — 1 ÛAIC/ Z)n = 0 
/or n ^ m. 

If we assume Ci ^ 0, computation and careful arrangement of terms 
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reduces the relation D2 ^ 0 to 8 + 2 Re {C{ C2} - 2|C2|2 - AC\ ^ 0, 
or 

(2.7) 2C2 = C\ 4- 4 4 - Cf), for some JC, |x| ^ 1 ; 

and the condition D3 ^ 0 is the same as 

|(4C3 - 4CXC2 4- C?) (4 - CD + Ci(2C2 - C2)2| 

^ 2(4 - C2)2 - 2|2C2 - C2|2, 

which, using (2.7), can be shown to be equivalent to 

(2.8) 4C3 = C\ + 2(4 - C f ) d * - d (4 - C?)x2 + 2(4 - C2)0 - M2)z, 

fora number z, |z| g 1. 
Now, (2.7) and (2.8) enable us to rewrite the expression in (2.5) to be 

maximized as 

<ß(d) = - 134C4 - 336C2(4 - Cf) x 
(2.9) Y 

- (4 - Cf)( 1764 - 201 C\)x 4- 480C2(4 - C?)( 1 - |x|2)z. 

Let \x\ = p. Then 

Md)\ ^ 134C} + 336Cf(4 - C\)p + (4 - Cf)(1764 - 201C?>2 

+ 480d(4 - Cf)(l - p2) 

(2.10) ^ Max{[134C4 4- 480Q(4 - Cf)] 4- 336Cf(4 - Cj)p 

+ (4 - Cf) (201) (2 - d ) ( d + - ^ P 2 } 

= 4(1764) - 1224Cf - C\ 

S 4(1764), 

and this is the bound for |i?9| given in (2.1). The inequalities in (2.10) 
are rendered sharp by a function for which d = 0, i.e., one of the form 
P\(z) = 1 + 2z2 4- 2z4 4- . . . and for which the corresponding member 
(1.10) of ^ is ßi(z) = 1 + 2z4 + . . . . The odd member of X related to 
Qi(z) is the function F(z) mapping J onto a square and its inverse is of the 
form F(w) = w 4- A3w

3 4- A^w5 4- A7w
7 + 17/360 w9 + . . . . This con

cludes our discussion of Theorem 1. 
If f(z) is an odd convex function, then it is starlike of order 1/2 and 

has a Stieltjes integral representation of the form 

(2.11) f(z) = z e x p { - i - J** log(l - z*e~")df*(0)}, 
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whith fi(d) non-decreasing and chosen so that J§* d//(ö) = 1, (see [4], for 
example). The coefficients of f(w) have the representation 

(112) *« = »L ,7§P 
Combining (2.11) and (2.12) gives 

Inn \Bn\ ^ r» J jexp{-^ J ^ l o g (1 - z*e-")dfi(0)}\\dz\ 

= r^1 f2% jexp f2K log |1 - ^ 2 ^ - ^ | " / 2 dft(0)\dt 

J J |1 - r*e2ite-id\»/2dfi(0) dt < rn~l 

*J; 2;r 1 _^2«7|n/2rfr 

0 

J7" sin"/2 = 2w/2-2 I sinw/2 fc/r 

/ , T + 1 

Here we have used the integral generalization of the inequality between 
the arithmetic and geometric means (see [12, p. 110], for example) and 
standard tables ([13], see [8] for a similar argument). Re-indexing (2.13) 
gives (2.2). 

3. Some Observations, (i) Are the coefficients of/(w) for odd/(z) in JT 
bounded? Functions of the form 

f(z) = f dz 
0 (1 + Z2)«(l - z2)l-« ' 

for sufficiently small positive a, map J onto rhombi with two vertices 
inside J ; the Cauchy-Hadamard formula applied to the coefficients of 
/ ( H ) guarantees that these coefficients cannot be bounded, 

(ii) Functions of the form 

«« - J; dt ^ -
n ^ 3, (1 - tn)*'n ' 

map A onto a regular polygon with vertices outside A. Consequently, each 
such function is bi-univalent [12]; this is more generally the case for 
any function in JT mapping J onto a polygonal region whose sides are 
segments or circular arcs and all of whose vertices lie outside J . 

(iii) Clunie [2] showed that if Mn = maxfl/IJ: f(z) e j f } , then Mn = 
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O (log n • n~3 - 2n), as n -> oo, which improves the earlier estimate Mn = 
0(n~3/2 • 2n), n -* oo, supplied by Kirwan and Schober [7]. Our estimate 
(2.2) shows that, for odd members of JT, Mn = 0(^/2" • n~3), as « -> oo 
and assuming n is odd. This is a better estimate than that of Clunie for the 
whole class and appears quite natural when compared to that of Kirwan 
and Schober. To justify our conclusion, we apply properties of the r 
function (see [6], for example) to (2.13) and obtain 

\A I < l ~2r\2/ - - 8 - V^/ 

"(MT))'"" !^) 

The last term is asymptotic to 1. 
(iv) Earlier, Krzyz, Libera and ZIotkiewicz, [8] showed that if f(z) 

is starlike of order 1/2, then 

\A | < X Un + 1) 

A computation like that above shows that this estimate is of higher order 
than the one given in (2.2), but is of the same order as that of Kirwan 
and Schober. 
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