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1, Introduction. Let ZG be the ingegral group ring of a group G. Denote 
by {77(G)}, and {dt{G)} the lower central series, and the derived series of 
G, respectively. Let us denote by D{{G) the ith dimension subgroup 

D,(G) = G n (1 + J'(G)), 

where J(G) is the augmentation ideal of ZG. Suppose that the torsion 
elements of G form a subgroup T = T(G). Then we write Tx = T and 
for / ^ 1 we write 

Ti+l = Ti+l(G) = [G, UG)l 

the group generated by all commutators (g, t) = g~lt~lgt, gtG, te T{, 
Our main result is 

THEOREM A. Suppose that G and H are groups such that the torsion 
elements T(G) and T(H) of G and H respectively form subgroups. Suppose 
ZG ^ 7JH. Then we have 

(1) T,(G)IT,+J(G) Ä T,(H)/Ti+J(H) for l£j£i + 2, 

DAG) H T(G)/Di+J(G) fi T(G) 

Ä D,{H) fi T(H)IDi+i(H) fi T(H) f o r l £ j £ i + 2, 

(3) ri{T(G))lri+J(T(G)) Ä r,(T(H))lrw(T(H)) for 1 ^ y ^ », 

(4) ö,<T(G))l3i+1(nG)) Ä dAT{H))löi+l{T{H)) for all », 

(5) ÖAT{G))/[G, d,{T(G))Y Ä Ö,{T(H))/[G, Ô,{T(H))Y for all i. 

As a special case we have the following result. 

THEOREM B. Suppose that G and H are torsion groups such that ZG m 
ZJH. Then we have 
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(1) UG)lTi+AG) ^ ri(H)lTi+j(H) for 1 g y ^ i + 2, 

(2) Dt{G)IDw(G) * DiWID^H) for 1 g y g i + 2, 

(3) dt{G)ldi+1(G) * 5AH)ldi+l{H) for ail /, 

(4) «G)/[G, « G ) ] ' * «#)/[<?, « / / ) ] ' . 

Furukawa [4] has proved (1) and (2) with 1 g y g /. He also proved 
(3). By taking / = 2 and y = 4 in (1) we have 

COROLLARY. If G and H are torsion groups with D6(G) = 1 and ZG ^ 
Z//, then G' ~ H'. 

This result was proved by Ritter-Sehgal [6] with the further restriction 
that G' is of exponent p. 

For some more notation; we shall write °U(K) and Tûl/(R) for the unit 
group and the set of torsion units of a ring R. We shall denote by J(G, A) 
the kernel of the map Z(7 -• Z(G\A) if A is a normal subgroup of G. 

2. Some torsion free subgroups. It is well known [1] that if A is an abelian 
normal subgroup of a finite group G then ^(1 + J(G, A)2) is torsion free. 
We shall need an extension of this result. 

THEOREM 1. Let A be a nilpotent normal torsion subgroup of a group 
G. Let & be the centre of A. Then 

m(\ + â(A)â{&)ZG) = 1. 

We shall first obtain the next result from which Theorem 1 will easily 
follow. 

THEOREM 2. Let A be a nilpotent p-group of bounded exponent, where 
p is a fixed prime. Let & be a central subgroup of A. Suppose that I is an 
ideal in ZA (written I <\ ZA). Then 

I s A(A)â(&\ pi s IP => / = 0. 

PROOF. Let us first suppose that & is finite. We prove the result in this 
case by induction on the order of 2t. If \2£\ = 1 there is nothing to prove. 
We choose an element z of ^ of order p and conclude by induction that 

/Ç= (1 -.z)ZA = J(A, <z». 

We claim that 

(*) (1 - z)ZA fi â(A)Am = (1 - z)A(A). 

To see this, let a be an element in the intersection. Write a = (1 — z)j-, 
ïovreZA. Then 
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a s c(ì -z) + 5, c e Z , 3 e (1 - z)A(A) 

= (1 - z<) mod(l - z)J(^). 

Since a e A(A)A(&) it follows that 1 - zc e A(A)A(&). We conclude by 
[7, p. 102] that 

1 - z< 6 A{&)2 

and thus by [7, p. 75] 1 - zc = O a s J is abelian. We have proved that 
a e ( l - z)A(A) and (*) is established. Hence 

/ ç A(A)A(&) fi (1 - z)Z^ = (1 - z)A(A). 

Suppose that / £ (1 — z)A(AY, where / is a natural number. Then by 
hypothesis pi c //> c (1 — z)^A(A)p/. Since z has order/? we have 1 = 
(1 - z + z)* = 1 + (4) (1 - z ^ " 1 + • • • 4- (1 - z)*. This implies that 
(1 - z)Pep(\ - z)ZA. We conclude that 

pi <= /?(1 - z)J(A)K 

Thus / ç (1 — z)A(Ay/. Hence / ç A(A)œ, which is zero by a theorem of 
Hartley [5]. This completes the proof of the theorem in the case that & 
is finite. Now suppose that^Tis infinite. But it is a commutative group of 
bounded exponent. Jt follows by [2, p. 88] that«^ is a direct sum of cyclic 
groups. Let Bv be a subgroup of if obtained by dropping a finite number 
of factors. Then applying what we have proved to A/Bv we conclude 
that / ç J(G, Bv). To finish the proof we only have to observe that 
fV(C, Bu) = 0. 

LEMMA 3. Let A be a normal nilpotent subgroup of exponent n contained 
in G. Then <%(\ + A(G, A)) has no torsion elements of order relatively prime 
to n. 

PROOF. Suppose ty(\ + A(G, A)) has a torsion element (1 4- d) with 
(1 + ô)g = 1 where q is a prime not dividing n. It suffices to prove that 
<5 = 0. We use induction on n. If n has at least two distinct prime factors 
we can write A = A1 x A2 where Ax is /7-Sylow subgroup. By induction 
ö e A(G, Ai). Thus we may assume to begin with that A is a/7-group. We 
have 

1 = (1 + s)< = 1 4- qd 4- (î)ô2 4- • • • 4- 5*. 

It follows that <7<5 e J(C, /J)2- Moreover, for any a e A, 

o(a)(\ - a) e J(G, ^ ) 2 . 

Thus there exists m such that pmd e J(G, y4)2. Since (p, q) = 1 we deduce 
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that ô e A(G, A)2. Repeating this argument we conclude that d e A(G, AY 
which is zero by a theorem of Hartley [5]. 

PROOF OF THEOREM 1. Suppose that (1 + d)p = 1 where p is a prime 
and ö= 2 Ï xßi e A(A)A(3?)ZG where <5, e A(A)A{&) and xf- are different 
coset representatives of G/A. Note that 5i, • •., <5W involve a finite subset 
X of elements of A in their supports ; and in their expressions as elements of 
A(A)A(£F) they involve a finite set Y of elements of A. We replace A by the 
normal subgroup generated by (X9 Y}, which is a nilpotent group of 
bounded exponent. This fact is well known and may be deduced from a 
theorem of Schur [7, p. 39]. So we may assume that A is a normal nilpotent 
subgroup of G of bounded exponent. We use induction on the number of 
primes in this exponent. If A = Ax x B where Ax # 1 is a /?-group and 
B i=- 1 is a //-group, we conclude that ô e A(G, B). It follows by Lemma 
3 that ö = 0. Thus we may assume to begin with that A is a p-group. 
Let 7 be the smallest ideal of ZA containing <51? . . . , 5n and invariant under 
conjugation by G. Then I Ç A(A)A(^). We claim that pi c //>. The 
equality (1 + <5)̂  = 1 gives 

/><S + ( 2 ) ^ + ••• + 3* = 0. 

This implies that /?<5 e ôpZG c //>ZG. We have 

Zpx&elPZG. 
i 

Hence, pd( e Ip and /?/ Ç IP as claimed. It follows by Theorem 2 that 
7 = 0 and thus ô{ = 0, <5 = 0. 

3. Some Lemmas. 

LEMMA 4. Lef N be a torsion central subgroup ofG. Then 
(1) T%{\ + J(G, TV)) = TV, and 
(2)7^(1 + A(G)A(N)) = 1. 

PROOF. (1) is contained in [6, p. 34]. To prove the second part observe 
that 1 + A(G)A(N) <= 1 + A(G, TV) and thus TW(l + A(G)A(N)) c TV. 
Therefore, if n - 1 G J(G) A(N) and « G TV we get neiV' [7, p. 102 & 75]. 
Hence n — \. 

As usual we assume, without loss of generality that all group ring 
isomorphisms are augmentation preserving. 

LEMMA 5. Suppose that ZG ~d ZH. Suppose that A and B are normal 
torsion subgroups of G and H respectively with 6A(G, A) — A(H, B). Then 
6A(G, [G, A]) = A(H, [H, B]). 

PROOF. We first observe that 
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J(G, [G, A]) s J(G)J(G9 A) + A(G, A)A(G). 

This follows because for g e G, A e A, g~la~lga — 1 = g~la~l[(g — 1) 
.(Û - 1) - (a - 1) (g - 1)]. Let « e [G, ^ ] . Then a - 1 e J(G)J(G, ^) + 
J(G, ^) J(G). Applying 0 we get 0(a) 6 1 + A(H)A{H9 B) + A(H9 B)A(H). 
Factoring by [H, B] we conclude 

0(5) e 1 + A(H)A(H9 B\ [H9 B] = 1. 

It follows by Lemma 4 that 0(ß) = 1. Thus 

6(a) e 1 + zf(//, [H9 5]) 

and 

0 J(G, [G, A]) s J ( / / , [//, 5]). 

The reverse inclusion follows by symmetry, proving the lemma. 

The next result is due to Furukawa [3]. 

LEMMA 6. Suppose that ZG ~ e ZH. Suppose that Gx and H1 are sub­
groups of G and H respectively. Suppose that I <\ ZG such that 0(GX(1 4- /)) 
= # x( l + 0(7)). Then 

G1IG1 fi (1 + /) * HJH, fi (1 + 0(/)). 

PROOF. Define r: Gx -» H1/H1 f] (1 + 0(/)) = H1 by 

rtei) = Aiif »fei) = *i0 + ö(0), si e Gl5 *! e jyl9 i e L 
It is easy to check that y is an homomorphism with kernel Gx f] (1 + / ) . 

LEMMA 7. Suppose that ZG ~ ö Zi/. Suppose that Ax g i 2 ^ ^ ^ i = ^2 
Are normal torsion subgroups of G and H respectively. Suppose that 
0J(G, At) = A(H9 Bt)for i = 1,2. Further suppose that A2\AX and B2/B1 

are nilpotent. Then 

0A(G9 [Al9 A2]) = A(H9 [Bl9 B2]). 

PROOF. From the fact [Al9 A2] ç 1 + J(G, AX)A(G9 A2) + J(G, ^2) 
• J(G, Ax), it follows, for a 6 [Al9 A2]9 that 

0(a) e 1 + A(H9 BX)A(H9 B2) + A(H9 B2)A(H9 Bx). 

Factoring by [Bl9 B2] we conclude d(a) e 1 + A(H9 B^)A(H9 B2). Since 
2?2/^i is nilpotent, so is B2/[BÌ9 B2] = B2. Applying Theorem 1 we deduce 
that 0(0) = 1. Thus 

0{a) e 1 + A(H9 [Bl9 B2]). 

The lemma is proved due to symmetry. 
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The next lemma is a crucial result from which our Theorem A will 
follow easily. 

LEMMA 8. Suppose that ZG ^dZH. Suppose that A ^ N and B 3 M 
are normal subgroups of G and H respectively. Further suppose that 

(1) A/N, B/M are torsion, 
(2) [[A, G], [A, G]] c N, [[B, H], [B, H]] £ M, and 
(3) 6A(G, N) = A(H, M), 6A(G, À) = A(H, B). 

Then A/N ^ B/M. 

PROOF. Write Gx = G/N, Hx = H/M. Then ZGX ^ ZHX with A1 = 
A/N, Bx = B/M, and dA{Gx, Ax) = A(Hh Bx). Let ax e Av Then 0(a{) e 
1 + A(HU Bx). Factoring by [Hl9 Bx] we have fifa) e 1 + A(Hh B^. But 
Bx is central in H\. It follows by Lemma 4 that 0(ÖI) e Bv Thus 0(a{) = 
b0(\ + Ö), for Ö e A{HX, [Hx, B{\) and b0 e j ^ . It follows by a well known 
argument of Whitcomb [7, p. 103] that 1 + d = b2 mod ^ ( / / ^ ( [ i / ! , 
2?d) for some b2e[Hx, Bx]. Thus 0(ax) = b^l + 5i), bx = b0b2 e #i, 
di e J(//!)zJ([i/i, £J) . We have seen that 

ö^x) £ B1(i + A{HX)A(HX, [Hl9 ÄJ)). 

It follows by Lemma 5 that 

0(/*i(l + J((?i)J(C?i, [Gl9 ^]))) £ ^ ( 1 + AiH^AiHj, [Hx, Bx})). 

By symmetry we get equality. Now we deduce by Lemma 6 that 

A1/Al n (1 + J(<?i)J(Gi, [Cl5 ^J)) * B1IB1 fi (1 + J ( # i ) J ( # i , [#1,2*1])). 

It follows by (2) of the hypothesis and [7, p. 75] that ^ ~ ^ . 

4. Proof of Theorem A. (l)ZG/A(G, T(G)) ~ Z(G/T(G)) has no torsion 
units [7, p. 176] and A(G, T(G)) is the smallest ideal I such that W(ZG/I) 
is torsion free. Thus we conclude that 

dA(G, T(G)) = A(H, T(H)). 

It follows by Lemma 5 that 0A(G, T{(G)) = A(H, Tt(H)). We shall apply 
Lemma 8. Write 

A = UG), N = Ti+j(G), 

B = T{{H), M = Ti+j{H), lSJûi + 2. 

Then [[T{(G), G], [T((G), G]] <= T2i+2{G) <= N. The hypothesis of Lemma 8 
is satisfied. Thus A/N ~ B/M. 

(2) We wish to prove that (D{fi) f] T(G))/(Di+J(G) f] T(G)) with 1 ^ 
j ^ / 4- 2 is an isomorphism invariant. We shall apply Lemma 8. We 
shall first prove that 
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0J(G, Dt{G) n T(G)) = A{H9Dt{H) fi T{H)). 

We use induction on /. For / = 1, this simply says 0A(G9 T(G)) = J(H, 
T(H)) which we know is true. Now, let / ^ 1 and conclude by induction 
that 

(*) 0j(c Di+l(G) n ne)) <= j(7/, A( / / ) n r(/o) n j ' + w 
Factoring by Di+l{H) f] ? W ) we conclude 

d(Dt+1(G) n Ä(O) s î + J (Ä, WHYTvnH)) n J< + I (#) . 
But /),<//) fi 3T(//) »s central modulo Di+1(H) fi 7ÏJ/). It follows by 
Lemma 4 that 

6(Dt+1(G) fi 7XG)) e }>,(//) n r ( / / ) . 

Thus if £ e A-+i(G) fi n<^), then 0(g) = h{\ + 5), for h e D{(H) fi r ( / / ) , 
and Ö e J ( / / , Z),+1(//) fi T(H)). We know by (*) that 6(g) e 1 + J»+i(//). 
Thus h{\ + <5) e 1 + J '+ 1(J/) . It follows that A e Di+l{H). Hence 

0 J(G, A+1(G) fl T(G)) s J(/f, A-+i(^) fi 7T/0). 

Equality follows by symmetry. Now apply Lemma 8 by taking 

A = Dt{G) fi 7TG), JV = A+y(G) D T(G)9 1 g y £ / + 2. 

Then p , G], [^ G]] s (A+i(G) fi T(G))' e Z W G ) fl 7\G) s M 
Hence Df-(G) f] T(G)/Dt+J(G) fl ^(G) is preserved as desired. 

(3) We wish to prove that ri(T(G))/Ti+J(T(G)), where ì èj è U is 
preserved. We take 

A = Ti(T(G)l N = Ti+AT(G)\ l ^ ; g i. 

We know 0J(G, r(G)) = J ( / / , T{H)). Suppose that 0J(G, Tm(T(G))) = 
zJ(//, Tm{T(H))). Now apply Lemma 7, using the fact that T(G)/rJT(G)) 
is nilpotent, to conclude that 

0 J ( C rm+i(nG)) = J ( # , rm+l{T(H)). 

Notice that [[4, G], [/*, G]] s T2t{T(G)) £ TV. The hypotheses of Lemma 
8 are satisfied. The result follows. 

(4) We wish to prove that ô;(T(G))/di+i(T(G)) is an isomorphism in­
variant. By Lemma 7 we know that 

0J(G, dt{T(G))) = J ( # , ^<r(//))). 

Moreover, take A = di(T(G))9 N = 5,+1(:T(G)) so that 

P , G], M, G]] £ MT(G))9 ô>(T(G))] £ M 

It follows that A/N is an isomorphism invariant. 
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(5) Now take A = 3t{T(G))9 N = [G, 8t{T(G))]'. Then [A, G]f s N 
and the result follows as above. 
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