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REGULARIZED RITZ APPROXIMATIONS FOR 
FREDHOLM EQUATIONS OF THE FIRST KIND 

C. W. GROETSCH AND J. GUACANEME 

ABSTRACT. Some results of Groetsch, King and Murio on a 
general regularized finite element method for Fredholm equations 
of the first kind are improved in this note. A sufficient condition for 
weak convergence of the approximations is also given. Taken 
together, the main results of this paper are exact finite element 
analogues of classical results on Tikhonov regularization in infinite 
dimensional spaces. 

1. Introduction. Suppose K: Hi -• H2 is a compact linear operator 
from a Hilbert space Hx into a Hilbert space H2. It is well known that 
the equation of the first kind 

(1) Kx = g 

is ill-posed if K does not have finite rank. That is, the solution x depends 
discontinuously on the data g (see, e.g., [6]). We assume that g e R(K), 
the range of K, and by solution we mean the minimal norm solution. 

This instability of the inversion process can have dire numerical con
sequences since in practical circumstances the data result from measure
ments and hence only an approximation g8 to g is available which satisfies 

(2) ||£ - «*|| S 3, 

where ô is a known error level. In order to provide a stable solution 
method for (1), Tikhonov took as an approximation to x the minimizer 
xd(a) of the functional Fa(z; g0) ••= \\Kz - g8\\2 + a\\z\\2 (we denote the 
inner product and norm in each of the spaces Hx and H2 by (•, •) and 
|| «II, respectively). Here a is a positive parameter, the regularization 
parameter, whose role is to affect a trade-off between fidelity and re
gularity in the approximate solution. Tikhonov [5, 6] showed that if 
Ciò2 ^ a ^ C2d

2 for some positive constants Cj and C2, then the ap
proximations {x8(a)} converge weakly to x as ö -» 0, while if ö = 
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o(*s/lx) strong convergence results. Weak convergence for a more general 
class of regularization methods in infinite dimensional Hilbert spaces 
was established recently by Engl [1]. In particular, Engl shows that the 
condition d= 0(^/~a) is sufficient to guarantee the weak convergence of 
xô(a) to x. 

The approximations x5(a) above are minimizers of Fa( • ; g
0) over the 

infinite dimensional space Hi and hence are not effectively computable. 
Our aim in this note is to discuss the convergence of certain computable, 
i.e., finite dimensional, approximations to x. 

2. Results. Suppose that Vx c V2 <= • • • is an expanding sequence of 
finite dimensional subspaces of Hi whose union is dense in H^ We will 
denote the minimizer of Fa( • ; g) over Hi by x(a). The minimizers of 
Fa(> ; g)and Fa(- ; g0) over Vm will be denoted by xm(a) and xô

m(a), respec
tively. It is easy to see that x(a) is characterized by 

(3) (Kx(a) - s, Ky) + a(x(a% y) = 0 

for all y e Hi, or equivalently 

(4) x(a) = (K*K + aiylK*g 

where K* is the adjoint of K. The approximations of x\a) have the same 
characterization with g replaced by g0. The finite dimensional approxima
tion xm{a) e Vm is characterized by the equation in (3) holding for all 
y e Vm and xô

m(a) satisfies the corresponding condition with g replaced 
byg8. 

The analysis will be intimately connected with the degree to which the 
subspaces Vm support the operator K, that is, on the number 

rw:= \\K(I -PJI I = | |(/-Otf*||, 

where Pm is the orthogonal projector of Hx onto Vm. Note that the 
assumptions of {Vm} imply that the continuous functions fm{z) = 
||(/ — Pm)z\\ converge pointwise and monotonically to zero on H^ Since 
K is compact, it follows that {/m} converges uniformly to zero on K*(B)9 

where B is the unit ball in H2, i.e., ym -• 0 as m -> oo. 
We now suppose that a is related to m, say a = am, in such a way that 

am -> 0 as m -> oo. The following result is proved in [2]. 

LEMMA 1. If ym = 0(\/aM), then xm(am) -> x as m -> oo. In fact, 
\\xm(am) - x\\ = 0(||(/ - Pm)x(aJ\\). 

Our next result is a stronger version of a stability estimate which ap
pears in [2]. 

LEMMA 2. \\xm(a) - x§
m{a)\\ ^ öl^~ä. 
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PROOF. From (3) 

(Kxm(a) - g, Ky) + a(xja)9 y) = 0 

and 

(Kx>M(a) - g*, Ky) + a(xi(a\ y) = 0 

for all >> G Vm. We then have 

(5) (Kxm(a) - Ä*i(a), A » + a(xm(a) - *i(a), y) = (g - g3, Ky) 

for all y e Vm. In particular, setting y = xm(a) — ^m(a\ we have 

\\xm(a) - xi(a)\\2 ^(g-g0, K(xm(a) - *£(a)))/er. 

However, 

tf(xm(cr) - xi(a)) = * W ( * Ä 4- aT)-^K*(g - g*) 

= KmK*(KmK* + a/)-!(g - «0 

where Km is the restriction of AT to Vm9 and ||J£WJ£*(J^WJ£* + a/)_1 | | ^ 1. 
Therefore ||xm(a) - xö

m(a)\\2 ^ ö2/a. 

Hereafter we suppose that the parameters m, a and 7- depend on ö in 
such a way that m = m§ -+ co as 5 -> 0 and a = amô-> 0 as 5 -> 0. 
For simplicity of notation we will write a and 7*, respectively, for am 

and 7^. From Lemmas 1 and 2 we immediately obtain the following. 

THEOREM 1. If y = 0(V~cc) and ö = o(^/~ä), then xô
m(a)-+x as <?-»0. 

It is well known (see, e.g., [4]) that if xeR(K*) then ||JC - x(a)\\ = 
0(Vo"). Also if x = tf*w, then JC(O:J = (#**: + aJ^K*KK*w = 
* * ( * * * + ctmI)-iKK*w and hence | | ( / - P J x ( a J | | ^ r » N I -

Combining this with Lemmas 1 and 2 we have the following corollary. 

COROLLARY 1. IfxeR(K*\ a = CO, and y = 0(V"^), then ||x - *&(<*) || 

In a similar way, using the fact that x e R(K*K) implies \\x - x(a)\\ = 
0(a) we obtain the next corrollary. 

COROLLARY 2. / / x e R(K*K\ a = CÖ2/S and y = 0(52/3), then \\x -
xi(a)\\ = 0(52/3). 

We now investigate weak convergence of the approximations, beginning 
with some preliminary results. 

LEMMA 3. If y e Vkfor some k, then (xm(a) - xô
m(a)9 K*Ky) -> 0 as d -» 0. 

PROOF. Since Vk a Vm for m ^ À;, we have by (5) and Lemma 2 
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\(xm(a) - xt(a), K*Ky)\ tk a\ (xi(a) - xm(a\ y)\ + \(g - **, Ky)\ 

Hô(V~ô + IRIDIMI. 
LEMMA 4.Ifj- = 0(<sJ~a~X ô = 0(^/~â)andzGN(K)(thenullspaceof K), 

then (xm(a) — x^ià), z) -• 0 as ö -» 0. 

PROOF. Note that, as in (4), xm(a) has the representation. xm(a) = 
(K*Km + aI)~lK*g where Km is the restriction of K to Fm and x^cc) 
has a similar representation with g replaced by gô. Since (v, K*y) = (Kv, y) 
for v G H1 and j> G i/2

 a n d (v, AjjO = (^wv, y) for v G Fw and j> G H2 

we have (v, K*y - K*y) = 0 for all yeH2 and v G Vm9 that is, # * = 
PmK* where Pw is the orthogonal projection of Hi onto Vm. We therefore 
have 

(xm(a) - xi(al z) = (PmK*(KmK% + «/)-!(* - «9, z) 

= ((/ - Pm)K*(KmK* + a / ) - i ( ^ - g), z) 

since z G Af(AT). But, 

|((7 - Pm)K*(KmK* + aI)-Kgô - g), z)\ 

= !((*„** + aiYKg* - g), * ( / - PJz)\ 

^ Ola \\K(I - Pm?z\\ 

^ (òrice) W - Pm)z\\ -+ 0 as m = md - oo. 

Consider now the situation of a sequence {g8»} of increasingly accurate 
data satisfying \\g — g3»]] ^ dn -> 0 as n -• oo. For each « we suppose 
that Fa(- ; g5*) is minimized over a subspace Kw where m = m(ôn) -» oo 
and a = aw(5w) -> 0 as n -> oo. For simplicity of notation we will dispense 
with some of the subscripts and seek conditions which insure that 

*fe(a) := ^(ôn)(
am(dn)) -^Uxasn-+ co. 

THEOREM2.1fy = 0(^/~a) andò = 0(<\/~a\ thenx^(a) converges weakly 
to x as n -> oo. 

PROOF. In light of Lemma 1, it is enough to show that the sequence 
{xm(a) — ^(a)} converges weakly to zero as n -» oo. 

Since ô = 0(^/~cc), we see from Lemma 2 that the sequence {xm(a) — 
jc^(a)} is uniformly bounded, say \\xm(a) — ^ ( a ) | | ^ M. Therefore by 
the Banach-Steinhaus Theorem it is sufficient to show that 

(6) (xm(a) - xfe(a), z) -» 0 as n -+ oo 

for all z in a dense subspace of i /^ From Lemma 4 we see that (6) cer
tainly holds for all z G N(K) = N(K*K) = R(K*Ky. 

Suppose then that z = K*Kw. Given e > 0 there is a A: and a y e Yk 

such that M\\K\\2 \\y - w\\ < e. Therefore, for m ^ k, 
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\(xm(a) - x « a ) , 2)| ^ |(xm(a) - j&a), z - M t f l 

+ \(xm(a) - J&a\ K*Ky)\ 

< e + \{xjfl) - *&(«), K*Ky)\. 

But (xw(a) — *^(a), K*Ky) -> 0 by Lemma 3. Therefore we find that 
(xm(a) — x^ia), z) -• 0 for each z in the dense subspace R(K*K) + 
R(K*Ky, and hence x*»(a) -ÜU x. 

3. Remarks. A weaker version of Lemma 2, with correspondingly weaker 
convergence results, is proved in [2]. We note that the main results of this 
paper, namely Theorems 1 and 2 are the exact analogues of the classical 
infinite dimensional results on Tikhonov regularization. The new feature 
is the extra condition y = 0(^~cc) relating the regularization parameter 
to the degree of support of the operator by the finite dimensional sub-
spaces. It should also be pointed out that the asymptotic convergence 
rate of 0(d2/s) established in Corollary 2 is in fact optimal even for the 
classical infinite dimensional Tikhonov approximations (see [3]). 
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