FUNCTIONS WITH PREASSIGNED LOCAL MAXIMUM POINTS

F. S. CATER

In a recent note [1], Posey and Vaughan gave an elementary example of a continuous real valued function that has a proper local maximum at each point of a preassigned countable dense set. Let A and B be disjoint countable sets, each dense in the open interval $(0,1)$. We will use methods just as elementary as those used in [1] to construct a continuous nowhere differentiable function F on $(0,1)$ such that F has a proper local maximum at each point of A and a proper local minimum at each point of B, and has no other local maximum or minimum points.

By a triadic rational number, we mean a rational number of the form $k 3^{-n}$ where n is a positive integer and k is an integer. We say that $k 3^{-n}$ is even if k is even, and odd if k is odd. We begin with a lemma that is not very original.

Lemma 1. Let A and B be disjoint countable dense subsets of $(0,1)$. Then there is a bijective order preserving mapping g of the set of all triadic rational numbers in $(0,1)$ onto $A \cup B$ such that the odd numbers map to points in A and the even numbers map to points in B.

Proof. Let the sequence $\left(a_{n}\right)$ be an enumeration of A and $\left(b_{n}\right)$ an enumeration of B with $a_{1}<b_{1}$. Let $g(1 / 3)=a_{1}, g(2 / 3)=b_{1}$. Suppose that $g\left(k 3^{1-n}\right)$ has been defined for some $n>1$ and for all $k=1,2, \ldots$, $3^{n-1}-1$, so that g is injective and order preserving on its domain. Let $g\left(3^{-n}\right), g\left(3 \cdot 3^{-n}\right), g\left(5 \cdot 3^{-n}\right), \ldots, g\left(\left(3^{n}-2\right) 3^{-n}\right)$ be the points in $A=$ $\left\{a_{i}\right\}$ with the smallest subscripts that make g still injective and order preserving. Let $g\left(2 \cdot 3^{-n}\right), g\left(4 \cdot 3^{-n}\right), g\left(6 \cdot 3^{-n}\right), \ldots, g\left(\left(3^{n}-1\right) 3^{-n}\right)$ be the points in $B=\left\{b_{i}\right\}$ with the smallest subscripts that make g still injective and order preserving. This completes the induction on n, and g is the required order preserving bijective mapping onto $A \cup B$.

For each $n>0$, we define a piecewise linear function f_{n} on $[0,1]$ as follows. Let

Recieved by the editors July 7, 1983 and in revised form on October 4, 1983.
Subject Classification: 26A27.

$$
\begin{aligned}
f_{n}\left(g\left(3^{-n}\right)\right) & =f_{n}\left(g\left(3 \cdot 3^{-n}\right)\right)=f_{n}\left(g\left(5 \cdot 3^{-n}\right)\right) \\
& =\cdots=f_{n}\left(g\left(\left(3^{n}-2\right) 3^{-n}\right)\right)=f_{n}(1)=1, \\
f_{n}(0) & =f_{n}\left(g\left(2 \cdot 3^{-n}\right)\right)=f_{n}\left(g\left(4 \cdot 3^{-n}\right)\right) \\
& \left.=f_{n}\left(g\left(6 \cdot 3^{-n}\right)\right)=\cdots=f_{n}\left(g\left(3^{n}-1\right) 3^{-n}\right)\right)=0 .
\end{aligned}
$$

Let f_{n} be linear on the intervals $\left[g\left((k-1) 3^{-n}\right), g\left(k 3^{-n}\right)\right](k=1,2, \ldots$, 3^{n}).

We define an increasing sequence $n(j)$ of positive integers as follows. Put $n(1)=1$. Now suppose that $n(1), n(2), \ldots, n(j-1)$ have been chosen. Let $F_{j-1}=2^{-1} f_{n(1)}+2^{-2} f_{n(2)}+\cdots+2^{1-j} f_{n(j-1)}$. Let S denote the maximum of the absolute values of the left and right derivatives of the piecewise linear function F_{j-1}. Now let $n(j)$ be the smallest index $>n(j-1)$ for which the minimum of the absolute values of the left and right derivatives of $2^{-j} f_{n(j)}$ exceeds $S+j$. This completes the induction on j, and $n(j)$ is defined for all $j>0$.

Put $F=\lim _{j \rightarrow \infty} F_{j}$. Then $F=\sum_{j=1}^{\infty} 2^{-j} f_{n(j)}$ and F is continuous on $(0,1)$. We claim that F has all the desired properties.

1. Choose any $x \in(0,1)$ and any number $q>0$. There is an index j so large that $g\left((k-1) 3^{-n(j)}\right) \leqq x<g\left((k+1) 3^{-n(j)}\right)$ where $k>1, k$ is odd, and $g\left((k+1) 3^{-n(j)}\right)-g\left((k-1) 3^{-n(j)}\right)<q$. Put $a=g\left(\left(k 3^{-n(j)}\right) \in\right.$ $A, b=g\left((k-1) 3^{-n(j)}\right) \in B, c=g\left((k+1) 3^{-n(j)}\right) \in B$. It follows from the definitions of $n(j)$ and $f_{n(j)}$, that the left and right derivatives of the piecewise linear function $F_{j}=2^{-j} f_{n(j)}+F_{j-1}$ exceed j on (b, a) and are exceeded by $-j$ on (a, c). Thus

$$
\begin{equation*}
\left(F_{j}(a)-F_{j}(b)\right)(a-b)^{-1}>j,\left(F_{j}(c)-F_{j}(a)\right)(c-a)^{-1}<-j \tag{1}
\end{equation*}
$$

If follows from (1) that $F_{j}(a)>F_{j}(b)$ and $F_{j}(a)>F_{j}(c)$. But $f_{n(t)}(a)=$ 1 and $f_{n(t)}(b)=f_{n(t)}(c)=0$ for $t>j$. Since $F=F_{j}+\sum_{t=j+1}^{\infty} 2^{-t} f_{n(t)}$, it follows from (1) that

$$
(F(a)-F(b))(a-b)^{-1}>j,(F(c)-F(a))(c-a)^{-1}<-j
$$

Either $b \leqq x \leqq a$ or $a \leqq x \leqq c$. We conclude that there are sequences $\left(u_{j}\right),\left(v_{j}\right) \subseteq A \cup B$ such that $u_{j} \leqq x \leqq v_{j}$ for all $j, v_{j}-u_{j} \rightarrow 0$ and

$$
\mid\left(F\left(v_{j}\right)-F\left(u_{j}\right)\left(v_{j}-u_{j}\right)^{-1} \mid \rightarrow \infty\right.
$$

If F were differentiable at x, we would have

$$
\mid\left(F\left(v_{j}\right)-F\left(u_{j}\right)\left(v_{j}-u_{j}\right)^{-1}|\rightarrow| F^{\prime}(x) \mid\right.
$$

which is impossible. So F is nowhere differentiable on $(0,1)$.
2. Suppose $x \in A$. Choose j and k as in paragraph 1 with j so large that $x=a$. Then F_{j} has a proper maximum at x on the interval (b, c) and
$f_{n(t)}(x)=1$ for $t>j$. It follows that F has a proper maximum at x on the interval (b, c).
3. Suppose $x \in(0,1) \backslash A$. Choose j and k as in paragraph 1. Then $b \leqq$ $x<c$, and just as in paragraph $2, F$ has a proper maximum at a on the interval $[b, c]$. So $F(x)<F(a)$ and F does not have a maximum at x in $[b, c] \subseteq(x-q, x+q)$. Finally, F does not have a local maximum at x.

The proof that F has a proper local minimum at points in B and at no other points is analogous to the paragraphs 1,2 and 3 with k even.

Note that the sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ completely determine the functions g and F. Some modification of our arguments would insure that F has no left or right derivative at any point in $(0,1)$, but we will not include that here.

Reference

1. E.E. Posey \& J.E. Baughan, Functions with a proper local maximum in each interval, Amer. Math. Monthly 90 \#4 (1983) 281-282.

Department of Mathematics, Portland State University, Portland, OR 97207

