
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 15, Number 1, Winter 1985 

SOME DISTORTION THEOREMS FOR A CLASS 
OF CONVEX FUNCTIONS 

RICHARD FOURNIER 

1. Introduction. Let A denote the class of analytic functions / in the 
unit disc E = {z\\z\ < 1} with /(0) = f(0) - 1 = 0. For a function 
f(z) = z + Së=2 akzk in A, Ruscheweyh has defined [4] the 5-neighbour-
hood of/as 

oo I oo 

W ) = W) = 2 + E te* 2 *lfl*-** I ^ s}. 
k=2 I k=2 

This paper deals with the following subclasses of A. 

T={feA\ 

T = {feA\ 

zf(z) 
f(z) 

zf"(z) 

- 1 < 1, zeE} 

f'(z) 
< 1, zeE}. 

The functions in f (T) are convex (starlike) univalent functions. The 
following result was proved in [1]. 

THEOREM A. Let gef. Then N8(g) a T for ö = l je. Moreover if for a 
function geT we have sup2S£ | (zg'(z)/g(z)) - 1| = 1, then Nd(g) <£ T 
for any 5 > 0. 

It follows clearly from Theorem A and the compacity of the class f that 

sup 
IzKl 

zg'jz) _ ! 
g(z) 

~p<i 

and therefore we have f a T. 

In this paper we will be mainly concerned with the precise determina
tion of p. Some new distortion theorems for the classes T and f will also 
be obtained. 

2. An estimate for p. It is easily seen from the definitions that 
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gefo g'(z) = ef t^P«, w(z) = ^ g -

(1) 
/ e r ^ / ( z ) = J i 8 ^ * , wl(z) = ^ f - - I-

Here w(z), w^z) are analytic functions in E of modulus bounded by 1. 
By differentiation and substitution we find that f c Tis equivalent to the 
fact that for any function w(z) with w(0) = 0 and |w(z)| < 1 in E the 
differential equation 

<2 ) **> = TT^i) + ^ 

admits a solution w^z) again with Wi(0) = 0 and \wx(z)\ < 1 in E. Ex
plicitly the solution of (2) is given by 

*> T^r-j-r.^-*"^* 
We first show that Iw^z)! < 1 in E. If this was not the case there would 

exist, according to Jack's lemma [2], z\ e E such that 

1 = |W l (n) | = maxl2l=Ull 1^(2)1 and **w f f i =•• * * 1. 

But then it follows from (2) that 

wife) + Wiy~u w&O 1 + wife) 

(*l) + 
Wl(Zl) 

"W - T Ä + "^ " w riffe + " * • > 

Since min,e)=11(£ 4- (fc 4- l))/(f 4- 1)| = (k 4- 2)/2 we then obtain from 
(4) that |w(zi)| ;> (Ä: 4- 2)/2 è 3/2 which contradicts the assumption that 
\w(zi)\ < 1. Therefore |wi(z)| < 1 in E. 

Using a similar technique we can obtain a better bound for |w1(z)|. 
Let again IH^ZJ)! = maxtZ|=|21| \wi(z)\ < 1. According to Jack's lemma 
ziwi(zi)l(wi(zi)) -• k = 1 a n d it follows from (2) that 

(5) w(zi) = zxwjjzx) 1 + j = k + j 
WxCzi) w^Zi) 1 4- wfa) 1 4- WxCzi) 

Taking into account that minie)^r<1 Re(l/(1 4- £)) = 1/(1 4- r) we obtain 
from (5) that 

T>J wi(zi) > 1 . i = 2 4- IH^ZQI 
" V ^ ) = 1 + |Wl(z!)| + 1 + ki(*i)l 

and therefore 
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wifri) i i + ki(*i)| 
w(Zi) 2 2 + |H;1(Z1)| 

from which it follows easily that 

_ 1 1 + Kfa)! 
2 2 + |Wl(z!)| 

W r ^TTÄ a a d M < - 1 + V 5 .618. 

Since Izil is arbitrary it follows that \wx{z)\ < (— 1 + V 5 )/2 for z in is 
and we have proved 

THEOREM 2.faT. In fact g e f => |(zg'0)/g(z)) - 11 < ( - 1 + v / T)/2 , 
z e £ . 

It may also be of some interest to remark that the evaluation of the 
integral in (3) using the Schwarz lemma yields the estimates 

gzT 1 - g(z) 
zg\z) 

^ ' ' ' - ' f l - ' a n d - J j l 
e^ - 1 

zg\z) 
g(z) 

,zeE. 

These estimates are sharp as seen from g(z) = ez — 1 for z < 0. 

3. The exact value of p. In this section we prove some distortion theorems 
for the classes Tand f and determine the exact value of p. We first need 

LEMMA 3.1. Let g e f. Then for any zeE, R e f - ^ Ü > e!*',7 } . 
\zg\z)) - \z\eìzì 

PROOF. It follows from (1) that 

g(z) __ 
zg\z) 

r.-?J0 U 
M </« G 
»(«), z Jo 

-f^« G 

where u>(0) = 0 and |w(z)| < 1 for z G E. We therefore have 

Using the estimate Re(e") ^ e~lwl valid for |w| < 1 and the Schwarz lemma 
we obtain 

Vzg'O)/ Jo ""Jo |z|el21 

This result is sharp and the inequality is strict unless g(z) = (ea* — I)/a 
for some a with \a\ = 1. Note that it follows from this lemma that 

(6) iM 
*(*) 

kk l2l 

= eui _ ! > 
Z e i s . 

We next prove 

file:///zg/z
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LEMMA 3.2. Let w(z) be an analytic function with w(0) = 0 and |zw'(z)| < 
1 for ze E. Let also r(0 < r < 1) and 0(0 ^ 0 < 2%) be fixed and define 
Er,e = {(rl9 0i)|O <rx^r and 6X + Im(M</,i^)) = 0 4- Im(w(r^0)}. 
77K?/I ^ - R e ^ O * ^ ) ) ^ r - Re(w(reid)) if(rl9 0i) e £ r > 

PROOF. First of all we remark that the set Er>6 is not empty; define the 
function / as/(z) = zew(z). It is clear from (1) that/belongs to Tand is 
therefore a starlike univalent function. This means, given r± with 0 < 
/*! < r, there exists one and only one 6\ such that arg ( / ( r^ 1 ) ) = 
2Lrg(f(retd)), which gives that (rl9 0x)e ErtB. In fact it is clear that ETiQ is a 
Jordan arc joining the origin and reid which intersects each circle with 
center at the origin and radius smaller than r exactly once. 

Put then r*-Re(u>(rV0*)) = max(ri)öl)e£.rjö i^-Re^fae^)). It follows 
from a theorem of Kuhn and Tucker [3] that there exist real numbers X 
and fji such that 

(7) 

(8) 

r*-Re(r V ö V ( r V0*)) - À Im(rVöV(rV**)) - px* = 0 

The theorem of Kuhn and Tucker says further that if fj. ̂  0 then r* = r. 
From (8) we can isolate X and if we substitute the value of A in (7) we obtain 
that 

r* _ ^ _ r*)Re(r*g''*V(r*g**))- | rVgV(rVg*)P _ * ft 
W 1 + Re(rVöV(rVö*)) ** 

Now suppose that ju = 0. It then follows from (9) that 

rV ö V(rV ö *) + 1 " r* 

But from the hypothesis on w we have that 
1 - r* 

rVöV(rVö*) + < r* + 
1 - r* 1 + r* 

at least in the case where zw'(z) Eß e^z for some real f. In that case it 
must then follow that ju ¥" 0 and therefore r* = r. Since 0* is uniquely 
determined by r* we must also have 0* = 0 and the conclusion of Lemma 
3.2 follows. The result for the case zw\z) = e^z follows by continuity. 

We then obtain as a result of Lemma 3.2. 

COROLLARY 3.1. Let / e T and arg(/(w)) = arg(/(v))/or 0 < \u\ < |v| < 
1. Then |/(v)|/|/(w)| ^ (|v|e|v|)/(|w|elwl). This result is sharp as seen for 

f(z) = ze2 with 0 < u < v < 1. 

PROOF. The proof is immediate from Lemma 3.2 since 
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\fiy) _ M .Re(«;(v))-Re(«;(«)) < lvl 7W\-\u\ 

l/(«)l M = M ' 
We now proceed to show a lemma similar to Lemma 3.2. This lemma 

will have an interesting application to the class f. 

LEMMA 3.3. Let w(z) be an analytic function with w(0) = 0 and \zw'(z)\ < 
1 for zeE. Let also r (0 < r < 1) and 6 (0 ^ 0 < 2%) be fixed and define 

Er.9={(ri, 0i)|O <rx£ randaig(J^h<rWdçj) = a r g ( J j V < ^ ) } . 

Then 

\n(en_ i ) _ ReAn( p - " 1 e " ^ rff)) g ln(é?'- 1) - Re( ln(J" '*•<*> rff^ 

PROOF. Define the function g as g'{z) = ewU) and g(0) = 0. This func
tion belongs to the class f and in particular is a starlike univalent function. 
It follows therefore that Ert6 is a Jordan arc joining the origin and re*e 

intersecting each circle with center at the origin and radius smaller than 
r exactly once. Put then 

l n ( ^ - 1) - Re(\nttr*et6\*w dA) 

= max TlnC î - 1) - Re(W P ' ^ ^ Y f L 
(n,di)ŒEr,eL \ \Jo //J 

As in the case of Lemma 3.2 there must exist real numbers X and ß 
such that 

<10) ^?r ~ Retö - *Im(ö * ^r* = °' 
(11) Im(Ö - ARefê) = 0 

and if /* # 0, then r* = r. Here f = (r*eïdy(r*eid*))/(g(r*eid*)) 
Now suppose that ju = 0; to substitute A = Im(£)/Re(£) in (10) will 

mean that |£|2 - (r*er*)/(er* - l)Re{£} = 0, which is equivalent to 
Re{l/£} = (er* — l)/(r*er*)- In view of Lemma 3.1, this is impossible if 
zW{z) ^ e^z for some real 7-. In that case it must follow that ^ ^ 0 and 
/•* = r. Also 0* = 6 and the conclusion of Lemma 3.3 is then shown. 
The result for the case w(z) = e'fz follows by continuity. 

From Lemma 3.3 it is now easy to show (the proof is omitted). 

COROLLARY 3.2. Let g e f andarg(g(w)) = zrg(g(v))for0 < \u\ < \v\ < 
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1. Then \g(v)/g(u)\ ^ (e]vi - \)/(eM - 1). This result is sharp as seen for 
g(z) = ez — 1 with 0 < u < v < 1. 

We are now ready to show the main result of this paper. 

THEOREM 3. Let get. Then \(zg'(z)/g(z)) - 1| ^ (1 - (1 - \z\)eìzì)/ 
(eìzì — 1), z G E. This result is sharp as seen for g(z) = ez — 1 with z > 0. 

PROOF. It is readily seen from (1) that 

*H , «-M-.M l'.wa* fôIV(M fr«*P« 
g(z) g(z) g(z) g(z) g(z) 

where w(0) = 0 and \w(z)\ < 1 if z e E. In the last expression we perform 
the change of variable v = g(f) to obtain 

zg(z) _ J = J_Q 
g(z) g(z) 

And since we can integrate on the segment [0, g(z)] (because the function 
g is starlike), we have 

l̂ f" ' |= | Jo w f e _ 1 ( ^ z ) ) ) A | = fog-KtgizWt. (12) 

It follows from Corollary 3.2 that for t > 0, we have 

g(z) 
tg{z) 

1 
= ei£-1(te(2))i _ i ' 

i.e., \g-\tg(z))\ ^ ln(l + t(eìzì - 1)), and the substitution of the last 
estimate in (12) yields the conclusion of Theorem 3. It also follows that 
f c Tandp = l/(e- 1). 

4. Some distortion theorems for f. The following inequalities were first 
obtained by Singh [7] : 

g e f => 1 - e-M < \g(z)\ < eìzì - 1 
(13) - " 

and e-'21 ^ \g\z)\ S e]zì, zeE 

(14) fe T => \z\e~^ ^ \f(z)\ ^ \z\e'z\ zeE. 

In this section we would like to point out some generalizations of these 
inequalities. 

Let S0 designate the subset of A consisting of the starlike univalent 
functions in E and let M be defined as 

M = {fe A | ^ * g ^ ^ 0 for any g e SQ and z e E}. 
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Here "*" denotes the Hadamard product of two functions in A. A very 
important subset of M is 

x= Wz) = T T i F ( i r ^ + / ' T ^ ) i f e R a n d W * »>• 

Ruscheweyh and Singh have shown [5] 

THEOREM B. Letfe M and g e f. Thenf*g e S0 and 

(15) maxlzl<1 \f*g(z)\ ^ V T maxi2l<1 \zg\z)\. 

Furthermore they conjectured that factor ^/T in (15) may be lowered to 
1. 

First we disprove the conjecture. Define the function g0 as gQ(z) = 
z(l 4- cz)'. It is easy to check that for positive and small enough c the 
function go is analytic in Ë and belongs to the class f. Moreover if |gó(w)l = 
max,Ät=1 \g'o(z)\ and \u\ = 1 some calculations will show that (ugfoi))/ 
(go(u)) is not a real number. Therefore it follows that there must exist 
r 0 e R such that 

m(u) 
go(u) 

< 
^ ( f + n, 

1 + it0 

this implies that 

max \zg'0(z)\ = \ug'0(u)\ < m(u)+it0g0(u) 
l + itQ 

< mas 
\Z\<1 

zg'(z) + it0go(z) 
1+1*0 

Since ( zg^) + itogo(z)W + i/o) = (1/(1 + *'o))((*/(l - *)2) + «ote/O - z))) 
* g0(z) it follows that the conjecture cannot hold. Next we prove 

THEOREM 4. LetfeMandgef. Then 

(16) \z\e-M g \f*g(z)\ ^ \z\e", 2 G £ . 

PROOF. In view of Ruscheweyh's Duality Theorem [6] it is enough to 
prove Theorem 4 forfè X cz M. Let g e T. Since, for any real t and fixed 
zeE, (zg'(z) + itg(z))/(l + if) belongs to the disc of radius \{zg'{z) — 
g(z))/2| and center (zg'(z) + g(z))/29 we obtain 

| / *g( z ) | ^ te'fr)+gfr)l + te'fr)-g(*)l 

- I*(s)l 

£!*(*) I 

(MH + 2 + 
\zg'(z) 

- 1 

1 + \zg\z) 
I giz) 

- 1 

file:///z/e-M
file:///zg/z
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Using then the result of Theorem 3 we obtain, for 0 ^ r < 1, 

max |/*g(z)| ^ rer max|g(z)l, 
IzlSr e r — I izisr 

and the right hand side of (16) follows from (13). 
To prove the left-hand side of (16), we remark that, for f(z) = 

(1/(1 + it)) ((Z/(1 - Z)2) + it(z/(l - Z))), 

\f*g(z)'\ = 1̂ (2)1 T T T F ^ H * " « » ^ 
zg\z) 
g'iz) 

^ e~lzl(l - |z|), z e £ . 

Here we have used (13) and the definition of T. Since we know from 
Theorem B that/*g is univalent we can integrate (17) to obtain 

\f*g(z)\ ^ J 7 ^ 0 -£>/£ = M*-'" 

and this complete the proof of Theorem 4. 
In view of (16) and (14) it is interesting to remark that, f o r / e M and 

g e f it does not follow necessarily that /*g belongs to T. Ruscheweyh 
and Singh [5] have shown that for h G f it is true that h'(z) is subordinated 
to ez\ this result is clearly equivalent to the fact that for h e T we have 
that (h(z))/z is subordinated to ez. 

Choose/(z) = (1/(1 4- it)) ((z/(l - zf) + it(z/(l - z))) in M and g(z) = 
ez — 1 in 7\ Then for the function h(z) = f(z)*g(z) we have 

<18> *(*) , c . 1 + t f ~ T ~ 
z 1 + if 

Choose also £ = /. It follows from elementary geometric consideration 
that, for any real number c different from 1, ce^ does not belong to 
D, where D = {ez\z G E}. Also, since (1 — e~9/? is not a real number 
and Re((l - e~*)/£) ^ 1» there must exist a real number f0 such that 

i _L v 1 - ^ 
H9Ì 1 + ^ o — - g 
v ' 1 • -, is r e a l and different from 1. 

1 + it0 

Clearly it follows from (18) and (19) that *(£)/£ $ £ for our choice of t0, 
i.e., (h(z))/z is not subordinated to e2 and/*g does not belong to T. 

Finally we would like to point out the following for the class f: 

(20) g G f => e~M - é>-|v| ^ |g(w) - g(v)\ if w, v G £, |w| < |v| ; 
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g e T =s> \g(u) - g(v) | ^ em - eM if M, v e E, \u\ < \v\ 

and arg(g(H» = arg(g(v)); 

(22) g e f => |g'(«) - S'(v)| ^ |g(«) - g(v)\ if w, v e £ ; and 

# e f =>|z|<?-|2! + |zg'(z) - sOOl 

^|g(z)|^|z|^-|zg'(2)-f(z)|, ze£. 

(21) 

(23) 

The estimate (20) can be obtained as an application of a standard tech
nique and (21) is a consequence of Corollary 3.2. It is also easy to show 
from (6) that (21) holds if we assume arg(w) = arg(v) instead of arg(g(t/)) 
= arg(g(v)). To obtain (22) it is enough to remark that, for g e f, 

(24) (g-Ttë) ^ 1 if f belongs to the range of g. 

The integration of (24) will then give (22). The left-hand side of (23) was 
proved in [1] and the right-hand side is a consequence of the fact that, for 
g G f, we have 

|z*'(z)-*(*)!= I P & W e l ^ T | z | 2 ^ ' A = l - ( l - | z | y , 
I Jo I Jo zeE. 

As a conclusion we would like to mention that many results from this 
paper are also consequences of more general results established by Ru-
scheweyh and Singh [5]. For example they were able to show that, for g e 
f, (zg'(z))/(g(z)) is subordinate to (zez)/(ez — 1), but we were unable to 
use that result to establish Theorem 3 directly. 
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