REFLEXIVE ALGEBRAS OF MATRICES

GEORGE PHILLIP BARKER AND JOYCE JABEN CONKLIN

Abstract

We study some sufficient properties for an algebra of matrices to be reflexive. In particular we show that a semismple algebra is reflexive. Commutative algebras are then considered, and it is seen that a commutative algebra of 3×3 matrices is reflexive if either it can be diagonalized or it is of dimension 2. Finally we show that the algebra of all operators which leave invariant every element of a complemented lattice of subspaces forms a semisimple algebra. This is related to a result by Harrison and Longstaff on reflexive lattices of subspaces.

1. Introduction. Let V be a vector space of finite dimension n over the complex number \mathbf{C}. The algebra of all linear operators an V is denoted by Hom V. The algebra of $n \times n$ matrices over \mathbf{C} is denoted by M_{n}.

The set of all subspaces of V is a modular lattice under the operations intersection (meet) and sum (join) of two subspaces. Further, any sublattice of this lattice is again modular.

Let \mathscr{L} be a lattice of subspaces of V and \mathscr{A} a subalgebra of $\operatorname{Hom}(V)$. We define the operations Alg and Lat as follows. Alg \mathscr{L} is the set (necessarily an algebra) of all $A \in \operatorname{Hom} V$ which leave invariant every subspace $W \in \mathscr{L}$. Similarly Lat \mathscr{A} is the lattice of all subsapaces of V which are left invariant by every element of $\mathscr{A} \cdot \mathscr{L}$ (respectively \mathscr{A}) is called reflexive iff Lat $\operatorname{Alg} \mathscr{L}=\mathscr{L}$, (Alg Lat $\mathscr{A}=\mathscr{A}$ respectively). The classification of reflexive algebras and reflexive lattices is far from complete even in finite dimensional spaces, although some progress has been made (cf. [1, 3, 5, $6,11]$). It is worth noting, however, that every finite dimensional algebra is isomorphic to a reflexive one (cf. Brenner and Bulter, J. London Math. Soc. 40 (1965), 183-187). In this paper we shall study reflexivity and give a more algebraic proof of a result due to Harrison and Longstaff [7]. We shall also study some particular types of algebras such as commutative algebras of matrices. We close with a discussion of subspaces lattices which may be useful in generating examples.
In what follows all lattices will contain $\{0\}$ and V, and all algebras will contain the identity, I, except for certain subalgebras of nilpotent matrices.
2. Reflexive Algebras. We begin with some lemmas concerning direct sums.

Lemma 1. If \mathscr{L}_{1} and \mathscr{L}_{2} are subspace lattices of V_{1} and V_{2} respectively, then $\operatorname{Alg}\left(\mathscr{L}_{1} \oplus \mathscr{L}_{2}\right)=\operatorname{Alg} \mathscr{L}_{1} \oplus \operatorname{Alg} \mathscr{L}_{2}$.

The proof is direct and is omitted as is the proof of lemma 2.
Lemma 2. If \mathscr{A}_{1} and \mathscr{A}_{2} are algebras of operators in Hom V_{1} and Hom V_{2} respectively, where for $i=1,2 \operatorname{dim} V_{i}=n_{i}$, then

$$
\text { Lat }\left(\mathscr{A}_{1} \oplus \mathscr{A}_{2}\right)=\text { Lat } \mathscr{A}_{1} \oplus \text { Lat } \mathscr{A}_{2}
$$

Notation. We use $\mathbf{C}[x]$ and $\mathbf{C}[A]$ to denote all polynomials with complex coefficients in x and A.

Remarks. This result is not to be confused with Lemma 1 of [3]. In that paper Brickman and Fillmore are looking at Lat $\left(A_{1} \oplus A_{2}\right)$ where A_{1} and A_{2} are linear transformations. Thus in [3] the algebra under consideration is $\mathbf{C}\left[A_{1} \oplus A_{2}\right]$, while in Lemma 2 we are considering the generally larger algebra $\mathbf{C}\left[A_{1}\right] \oplus \mathbf{C}\left[A_{2}\right]$.

Let \mathscr{A} be a subalgebra of Hom V, and let $T \in$ Hom V be nonsingular. If $T A T^{-1}=B$, then it is easily shown that $T($ Lat $\mathscr{A})=$ Lat B. We shall make implicit use of this observation subsequently.

Lemma 3. Suppose \mathscr{A}_{1} and \mathscr{A}_{2} are subalgebras of Hom V_{1} and Hom V_{2}, respectively. Then $\mathscr{A}_{1} \oplus \mathscr{A}_{2}$ is a reflexive subalgebra of $\operatorname{Hom}\left(V_{1} \oplus V_{2}\right)$ if and only if \mathscr{A}_{1} and \mathscr{A}_{2} are reflexive.

This is an immediate consequence of Lemmas 1 and 2.
Proposition 4. If \mathscr{A} is a semisimple subalgebra of Hom V, then \mathscr{A} is reflexive.

Proof. It is known (cf. [2, 96]) that by a similarity we may assume

$$
\mathscr{A}=\mathscr{A}_{1} \oplus \cdots \oplus \mathscr{A}_{p}
$$

where each \mathscr{A}_{j} consists of block diagonal matrices $A_{j}=\{\operatorname{diag}(A, \ldots, A) \mid$ $\left.A \in M_{n j}\right\}$. Since $I \in \mathscr{A}$, then \mathscr{A} has no kernel. By proposition 2.2 of [1], each such \mathscr{A}_{j} is reflexive. Then, by Lemma 3 (extended in the obvious way), \mathscr{A} is a slso reflexive.

Let \mathscr{A} be a subalgebra of Hom V. Then \mathscr{A} is a *-subalgebra of Hom V if and only if, for each $A \in \mathscr{A}$, we have $A^{*} \in \mathscr{A}$ as well. [A^{*} is the conjugate transpose matrix.)

The result cited in the preceding proof has been known for sometime. For instance, it was known to T. Molien in 1893 (cf. Math. Ann. 41
(1893), 83-156). The more recent reference is given for the convenience of the reader.

Corollary 5. Let \mathscr{A} be $a{ }^{*}$-subalgebra of Hom V. Then \mathscr{A} is refiexive.
Proof. By Lemma 1 of [2] a *-subalgebra of Hom V is semisimple. Therefore by proposition, $4, \mathscr{A}$ is reflexive.

This is of course the finite dimensional case of a known result on von Neumann algebras (cf. [5]).

If A is a linear transformation then we call A reflexive provided $\mathbf{C}[A]$ is reflexive. If \mathscr{A} is a commutative reflexive algebra then (cf. [5]) each $A \in \mathscr{A}$ is a reflexive operator. There are examples ([1] and [5]) which show that the converse is false. However, we have a simple criterion for the converse.

Notation. If $\mathscr{A}=\mathbf{C}[A]$ we write Lat A for Lat $\mathbf{C}[A]$. Also if $\mathscr{A}_{1}, \ldots, \mathscr{A}_{p}$ are subalgebras of Hom V, then $v_{j=1}^{p} \mathscr{A}_{j}$ denotes the algebra generated by $\mathscr{A}_{1}, \ldots, \mathscr{A}_{p}$.

Ppoposition 6. Let \mathscr{A} be an algebra for which $\mathscr{A} \supset$ Alg Lat A for all $A \in \mathscr{A}$. Then \mathscr{A} is reflexive if and only if for same basis $\left\{T_{1}, \ldots, T_{m}\right\}$ of \mathscr{A} we have

$$
\begin{equation*}
\operatorname{Alg}\left(\bigcap_{j=1}^{m} \operatorname{Lat} T_{j}\right)=v_{j=1}^{m} \operatorname{Alg} \text { Lat } T_{j} . \tag{*}
\end{equation*}
$$

Proof. Note that \cap Lat $T_{j} \supset$ Lat \mathscr{A} for any subset $\left\{T_{1}, \ldots, T_{m}\right\} \subset$ \mathscr{A}. If the set is in fact a basis, then for any $A \in \mathscr{A}$ we have $A=\sum \alpha_{j} T_{j}$ for suitable α_{j}, whence \cap Lat $T_{j}=$ Lat \mathscr{A}.

First assume \mathscr{A} is reflexive (in which case $\mathscr{A} \supset \operatorname{Alg}$ Lat A for all $A \in \mathscr{A}$). Then $\mathscr{A}=\operatorname{Alg}$ Lat \mathscr{A}. Since $\bigcap_{j=1}^{m}$ Lat $T_{j} \subset$ Lat T_{k}, for all k, then $\operatorname{Alg}\left(\bigcap_{j=1}^{m} \operatorname{Lat} T_{j}\right) \supset \operatorname{Alg} \operatorname{Lat} T_{k}$, for all k. Hence $\operatorname{Alg}\left(\bigcap_{j=1}^{m} \operatorname{Lat} T_{j}\right)$ $\supset v_{j=1}^{m} \mathrm{Alg}$ Lat T_{j} and we have

$$
\mathscr{A}=\operatorname{Alg} \operatorname{Lat} \mathscr{A}=\operatorname{Alg}\left(\bigcap_{j=1}^{m} \operatorname{Lat} T_{j}\right) \supset v_{j=1}^{m} \operatorname{Alg} \text { Lat } T_{j}=v_{j=1}^{m} \mathbf{C}\left[T_{j}\right]=\mathscr{A}
$$

since $\left\{T_{1}, \ldots, T_{m}\right\}$ is a basis. Therefore equality holds.
Conversely, suppose $\left(^{*}\right)$ holds for the basis $\left\{T_{1}, \ldots, T_{m}\right\}$. Then

$$
\mathscr{A} \subset \operatorname{Alg} \text { Lat } \mathscr{A}=\operatorname{Alg}\left(\bigcap_{j=1}^{m} \operatorname{Lat} T_{j}\right)=v_{j=1}^{m} \operatorname{Alg} \text { Lat } T_{j} \subset \mathscr{A}
$$

since Alg Lat $T_{j} \subset \mathscr{A}$ for each j. Thus \mathscr{A} is reflexive.
Remark. If $\left\{T_{1}, \ldots, T_{m}\right\}$ is a set of generators for \mathscr{A} rather than a
basis (and $\mathscr{A} \supset \operatorname{Alg} \operatorname{Lat} A$ for all A), then the result remains true because we still have \cap Lat $T_{j}=$ Lat \mathscr{A}.
2. Polynomial algebras. We shall consider the case of an algebra generated by a single operator A which is a polynomial in another operator N.

Lemma 7. Let $p(x) \in \mathbf{C}[x]$ with $p^{\prime}(0) \neq 0$, and let $N \in$ Hom V be nilpotent. If $A=p(N)$, then $\mathbf{C}[A]=\mathbf{C}[N]$.

Proof. This is an immediate consequence of the inverse function theorem (cf. [15]) and the fact that for a differentiable function g there is a polynomial q such that $g(A)=q(A)([10], 169)$.

Theorem 8. Let $N \in \operatorname{Hom} V$ be nilpotent, and let $A=p(N)$ for some $p(x) \in \mathbf{C}[x]$. Then A is reflexive if and only if either N is reflexive or $p^{\prime}(0)=0$.

Proof. As we noted earlier, if N is reflexive, then so is A. So suppose $p^{\prime}(0)=0$. Let the elementary divisors of N be of orders $n_{1} \geqq n_{2} \geqq \cdots \geqq$ n_{t}. We have two cases depending upon the last value of k for which $p^{(k)}(0) \neq 0$.

Case 1. Suppose $p^{\prime}(0)=\cdots=p^{(k-1)}(0)=0$ and $p^{(k)}(0) \neq 0$ with $1<k<n_{1}$. Then (cf. [12, p. 126]) A has elemntary divisors $(\lambda-p(0))^{m_{i} ;}$, $i=1, \ldots, t, j=1, \ldots, k$, where $m_{i j}=\left[\left(n_{i}-j\right) / k\right]+1$, and $[x]$ is the greatest integer function.

Since $n_{1} \geqq n_{2} \geqq \cdots \geqq n_{t}$ we have $m_{i 1} \geqq m_{i 2} \geqq \cdots \geqq m_{i k}$ and $m_{11} \geqq$ $m_{21} \geqq \cdots \geqq m_{t 1}$. Since either m_{12} or m_{21} is the degree of the second largest elementary divisor of A, then by the result of Deddens and Fillmore [5] A is reflexive if $m_{11}-m_{12} \leqq 1$. But $k>1$ so that

$$
\begin{aligned}
0 \leqq m_{11}-m_{12} & =\left[\frac{n_{1}-1}{k}\right]+1-\left[\frac{n_{1}-2}{k}\right]-1 \\
& \leqq\left(\frac{n_{1}-1}{k}\right)-\left(\frac{n_{1}-2}{k}\right)+1 \leqq 1+1 / k
\end{aligned}
$$

Since $m_{11}-m_{12}$ is an integer we have the desired inequality.
Case 2. If $p^{\prime}(0)=\cdots=p^{(k-1)}(0)=0$ and $p^{(k)}(0) \neq 0$ for $k \geqq n$, then $A=p(N)=0$ which is reflexive.

For the converse, if A is reflexive and $p^{\prime}(0) \neq 0$, then by Lemma 7 we have $N \in \mathbf{C}[A]$, and so N is reflexive.

It is now straightforward to translate this result to the case $A=p(C)$ where C is a general linear transformation. Essentially one considers the decomposition of C into its primary summands as in [3] or [5] and the induced decomposition of A. This we leave to the reader.
3. Commutative algebras. There are examples (see [1, p. 825]) of com-
mutative algebras \mathscr{A} each element of which is reflexive but such that \mathscr{A} is not reflexive. The first such example occurs for $n=4$, so we shall examine the cases $n=2$ and $n=3$ as the case $n=1$ is trivial.

Let \mathscr{A} be a commutative algebra of 2×2 matrices each element of which is reflexive. Then (cf. [14]) \mathscr{A} can be simultaneously triangularized. If each $A \in \mathscr{A}$ has a single eigenvalue, then since each A is reflexive, we must have $A=\alpha I$ for some $\alpha \in C$. Therefore $\mathscr{A}=\{\alpha I \mid \alpha \in C\}$ and is reflexive. The other possibility is that some $A \in \mathscr{A}$ has (is similar to) the form $\left[\begin{array}{c}\alpha \\ 0 \\ 0\end{array}\right]$ with $\alpha \neq \beta$.
Then

$$
A-\alpha I=\left[\begin{array}{ll}
0 & 0 \\
0 & \beta-\alpha
\end{array}\right] \in \mathscr{A}
$$

whence $\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right] \in \mathscr{A}$. Similarly, $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \in \mathscr{A}$. In this case, then,

$$
\mathscr{A}=\left[\left[\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right]: \alpha, \beta \in C\right] .
$$

So $\operatorname{dim} \mathscr{A}=2$. There are clearly $2=n^{2}-\operatorname{dim} \mathscr{A}$ linearly independent rank 1 annihilators of \mathscr{A}, so by Longstaff's criterion ([11]) \mathscr{A} is reflexive. Thus any algebra of 2×2 matrices each element of which is reflexive is a reflexive algebra.

Theorem 9. Let \mathscr{A} be a commutative algebra of 3×3 matrices. Assume each $A \in \mathscr{A}$ is reflexive. Then \mathscr{A} is reflexive iff and only if all $A \in \mathscr{A}$ can be simultaneously diagonalized or $\operatorname{dim} \mathscr{A}=2$.

Proof. Recall that we are assuming $I \in \mathscr{A}$. Thus if $\operatorname{dim} \mathscr{A}=2$ there is an $A \in \mathscr{A}$ such that $\{I, A\}$ is a basis for \mathscr{A}. Then $\mathscr{A}=\mathbf{C}[A]$ is reflexive.

Suppose \mathscr{A} can be diagonalized. We assume all $A \in \mathscr{A}$ to be diagonal and note that $\operatorname{dim} \mathscr{A} \leqq 3$. The cases $\operatorname{dim} \mathscr{A}=1$ or 2 are trivial, so we assume $\operatorname{dim} \mathscr{A}=3$. Then there are $6=3^{2}-\operatorname{dim} \mathscr{A}$ linearly independent rank 1 annihilators of \mathscr{A}, whence \mathscr{A} is reflexive.

Conversely suppose \mathscr{A} is reflexive. Since \mathscr{A} is commutative, the algebra can be simultaneously triangularized and block diagonalized with a single eigenvalue in each block [14, p. 4]. Assume \mathscr{A} is in this form. We shall argue on the number of distinct eigenvalues possible for an $A \in \mathscr{A}$. If some $A \in \mathscr{A}$ has three distinct eigenvalues, then it has three diagonal blocks and so must every other matrix in \mathscr{A}. That is, \mathscr{A} is in diagonal form. If no element of \mathscr{A} has three distinct eigenvalues but same $A \in \mathscr{A}$ has two, then A must be of the form

$$
\left[\begin{array}{ll}
\alpha & \beta \\
0 & \alpha
\end{array}\right] \oplus[\gamma],[\alpha] \oplus\left[\begin{array}{ll}
\gamma & \beta \\
0 & \gamma
\end{array}\right] \text {, or } \operatorname{diag}(\alpha, \alpha, \gamma)
$$

where $C \oplus D$ is the direct sum of matrices $C \oplus D=\left[\begin{array}{c}C \\ 0 \\ 0\end{array}\right]$. But each $A \in \mathscr{A}$ is reflexive so $\beta=0$ and \mathscr{A} is again in diagonal form.

Finally suppose each $A \in \mathscr{A}$ has only one eigenvalue. Since \mathscr{A} is triangular, $\operatorname{dim} \mathscr{A} \leqq 4$. If $\operatorname{dim} \mathscr{A}=1$, then $\mathscr{A}=\{\alpha I \mid \alpha \in C\}$, and if $\operatorname{dim} \mathscr{A}=2$ the conclusion is satisfied. We shall show that dimensions 3 and 4 are not possible. Let

$$
E_{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad E_{2}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad E_{3}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] .
$$

Then $\mathscr{A} \subseteq \operatorname{span}\left\{I, E_{1}, E_{2}, E_{3}\right\}$. If $\operatorname{dim} \mathscr{A}=4$, equality holds and $E_{1}+$ $E_{3} \in \mathscr{A}$. But $E_{1}+E_{3}$ is not reflexive. Now suppose $\operatorname{dim} \mathscr{A}=3$. Then any $A \in \mathscr{A}$ is of the form

$$
A=\left[\begin{array}{lll}
\lambda & \alpha & \beta \tag{*}\\
0 & \lambda & \gamma \\
0 & 0 & \lambda
\end{array}\right]
$$

I $\alpha \gamma \neq 0$, then $(A-\lambda I)^{2} \neq 0$, so \mathscr{A} is spanned by I, B, and E_{2} where

$$
B=\left[\begin{array}{lll}
0 & \alpha & 0 \\
0 & 0 & \gamma \\
0 & 0 & 0
\end{array}\right]
$$

In fact, $\mathscr{A}=\mathbf{C}[B]$. But the elementary divisor of B is of degree 3, whence B is not reflexive, a contradiction. Thus either $\alpha=0$ or $\gamma=0$. Without loss of generality we assume $\gamma=0$. Since $3=\operatorname{dim} \mathscr{A}=\operatorname{dim} \operatorname{span}\{I$, $\left.E_{1}, E_{2}\right\}$, then $\mathscr{A}=\operatorname{span}\left\{I, E_{1}, E_{2}\right\}$. (It is easily checked that the set of all matrices of the form (${ }^{*}$) with $\gamma=0$ is closed under addition and multiplication.) Since for any $A \in \mathscr{A}, A-\lambda I$ with λ the eigenvalue of A is nilpotent of order two, then the elementary divisors of A are of degrees 2 and 1 . Thus each $A \in \mathscr{A}$ is reflexive. We establish that \mathscr{A} is not reflexive by showing it does not have $6=n^{2}-\operatorname{dim} \mathscr{A}$ linearly independent rank one annihilators. We can immediately find five. Let $E_{i j}$ be the matrix with a 1 in position (i, j) and zeros elsewhere and let

$$
E=\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

Then $\mathscr{R}=\left\{E_{21}, E_{23}, E_{31}, E_{32}, E\right\}$ is a set of linearly independent rank 1 annihilators of \mathscr{A} under the inner product $\langle A, B\rangle=\operatorname{tr} A^{*} B$. Suppose there were a sixth, say $R=\left[r_{i j}\right]$. If we use the facts that rank $R=1$ and that $0=\left\langle E_{1}, R\right\rangle=\left\langle E_{2}, R\right\rangle=\langle I, R\rangle$, then a direct computation shows
that R is a linear combination of the elements of \mathscr{R}. Thus \mathscr{A} is not refiexive and the result is established.

If \mathscr{A} is an algebra of $n \times n$ matrices, the commutant (or centralizer) of \mathscr{A} is the algebra

$$
\mathscr{A}^{\prime}=\{B \mid A B=B A \text { for all } A \in \mathscr{A}\} .
$$

If $\mathscr{A}=\mathscr{A}^{\prime}$ we call \mathscr{A} a maximal commutative algebra. In order for a maximal commutative algebra to be reflexive it must in some sense be relatively spare. To make this precise we first introduce some terms. If \mathscr{A} is a commutative subalgebra of Hom V, then there is a decomposition of V into \mathscr{A} indecomposable subspaces $V=V_{1} \oplus \cdots \oplus V_{r}$ of dimensions n_{1}, \ldots, n_{r}, respectively, with respect to which \mathscr{A} has a representation $\mathscr{A} \cong \mathscr{T}_{1} \oplus \cdots \oplus \mathscr{T}_{r}$ where the elements $T_{j} \in \mathscr{T}_{j}$ are $n_{j} \times n_{j}$ upper triangular matrices with constant diagonal. We shall call the ideals \mathscr{T}_{j} the indecomposable components of \mathscr{A}. If N is a nilpotent matrix we say that N is nilpotent of class p if $N^{p}=0$ but $N^{p-1} \neq 0$. If \mathscr{N} is an algebra of nilpotent matrices we say \mathscr{N} is nilpotent of class p if p is the largest nilpotency class of the elements of \mathscr{N}. If \mathscr{T} is an algebra of upper triangular matrices (as in the preceding) of the form $\mathbf{C} I+\mathcal{N}$ where \mathscr{N} is the subalgebra of \mathscr{T} of nilpotent matrices, we call p the nilpotency class of \mathscr{T} if \mathscr{N} is of class p.

Theorem 10. Let \mathscr{A} be a maximal commutative algebra of $n \times n$ matrices with indecomposable $\mathscr{T}_{1}, \ldots, \mathscr{T}_{r}$ of orders n_{1}, \ldots, n_{r} respectively. If some \mathscr{T}_{j} is nilpotent of class n_{j}, where $n_{j}>1, \mathscr{A}$ is not reflexive. Further, if some \mathscr{T}_{k} is nilpotent of class $n_{k}-1$ with $n_{k}>3$, then \mathscr{A} is not reflexive.

Proof. If $\mathscr{A}=\mathscr{T}_{1} \oplus \cdots \oplus \mathscr{T}_{r}$, then \mathscr{A} is reflexive iff and only if each \mathscr{T}_{k} is reflexive. Further if $\mathscr{T}=\mathscr{A}$, then, for each $k, \mathscr{T}_{k}=\mathscr{T}_{k}^{\prime}\left(\right.$ in $\left.M_{n_{k}}\right)$. So it suffices to show that if some \mathscr{T}_{j} is of nilpotency class $n_{j}>1$ or $n_{j}-1>2$, then \mathscr{T}_{j} contains a nonreflexive element.

First suppose \mathscr{T}_{j} is of nilpotency class $n_{j}>1$. Then \mathscr{T}_{j} is similar to the algebra $\mathbf{C} I+\mathscr{N}$ where \mathscr{N} is generated by

$$
U=\left[\begin{array}{llllll}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
0 & 0 & 0 & \ldots & 0 & 1 \\
0 & 0 & 0 & \ldots & 0 & 0
\end{array}\right]
$$

(cf. [16], Theorem 8, p. 51). But the elementary divisor of U is of degree $n_{j}>1$, so U is not reflexive.

Next suppose \mathscr{T}_{j} is of class $n_{j}-1>2$. Again from [16, Theorem 1, p. 100] the nilpotent sublagebra of \mathscr{T}_{j} contains the matrix $N=E_{21}+$ $\cdots+E_{n_{j}-1 n_{j}-2}$, which is not reflexive.

For an algebra \mathscr{A} we let \mathscr{J} denote the (Jacobson) radical of \mathscr{A}. When
\mathscr{A} is commutative we draw attention to this assumption by using \mathscr{W} to denote the radical which consists of all nilpotent elements of \mathscr{A}. For any algebra \mathscr{A} we have $\mathscr{A}=\mathscr{J} \oplus \mathscr{S}$ where \mathscr{S} is a semisimple subalgebra and the sum is a vector space sum. It is easy to see that Let $\mathscr{A}=$ Lat $\mathscr{J} \cap$ Lat \mathscr{P}. So if \mathscr{A} is reflexive, then

$$
\mathscr{A}=\text { Alg Lat } \mathscr{A} \supseteq \operatorname{Alg} \text { Lat } \mathscr{J} \vee \operatorname{Alg} \text { Lat } \mathscr{S}=\operatorname{Alg} \text { Lat } \mathscr{J} \vee \mathscr{S} \supseteq \mathscr{A}
$$

Thus $\mathscr{A} \supseteq$ Alg Lat \mathscr{J}. An open question is whether this condition is also sufficient for reflexivity. In the commutative case it is.

Proposition 11. Let \mathscr{A} be a commutative algebra with radical \mathscr{W}, and suppose that $\mathscr{A} \supseteq \operatorname{Alg}$ Lat \mathscr{W}. Then \mathscr{A} is reflexive.

Proof. Since \mathscr{A} is commutative, we can simultaneously block triangularize \mathscr{A} so that $\mathscr{A}=\mathscr{A}_{1} \oplus \cdots \oplus \mathscr{A}_{p}$ where, for each j, we have

$$
\left.\mathscr{A}_{j}=\left\{\begin{array}{lll}
\rho & * & \\
& \ddots & \\
0 & & \rho
\end{array}\right]: \rho \in \mathbf{C}\right\}
$$

(cf. [8] page 134 or [14]). Let \mathscr{S}_{j} and \mathscr{W}_{j} be the semisimple subalgebra and the radical of \mathscr{A}_{j} respectively. If $\mathscr{A} \supseteq \operatorname{Alg}$ Lat \mathscr{W}, then $\mathscr{A}_{j} \supseteq \operatorname{Alg}$ Lat \mathscr{W}_{j}. Clearly Lat $\mathscr{W}_{j} \cap$ Lat $\mathscr{S}_{j}=$ Lat \mathscr{W}_{j}, so we have

$$
\text { Alg Lat } \mathscr{A}_{j}=\mathrm{Alg}\left(\text { Lat } \mathscr{W}_{j} \cap \text { Lat } \mathscr{S}_{j}\right)=\operatorname{Alg} \text { Lat } \mathscr{W}_{j} \subseteq \mathscr{A}_{j}
$$

Thus each \mathscr{A}_{j} is reflexive and the proof is finished by Lemma 3.
4. Subspace Lattices. In [7] Harrison and Longstaff showed that a complemented subspace lattice which satisfies an additional condition is reflexive. Their proof involves continuous geometries. Here we consider the algebraic implications of the assumption on the lattice.

Theorem 12. Let \mathscr{L} be a complemented lattice of subspaces. Then $\mathscr{A}=$ $\mathrm{Alg} \mathscr{L}$ is semisimple.

Proof. Since every complemented modular lattice is relatively complemented ([4], 31], then \mathscr{L} is both relatively complemented and atomic. Thus we can find atoms H_{1}, \ldots, H_{m} of \mathscr{L} such that no one of them is contained in the sum of the remaining and such that if $V_{j}=H_{1} \oplus \cdots \oplus$ H_{j}, then $\{0\}=V_{0} \subset V_{1} \subset \cdots \subset V_{m}=V$ is a composition series for V as a (right) \mathscr{A} module where $\mathscr{A}=$ Alg. \mathscr{L}. Since each V_{j} has an invariant complement, we obtain a block diagonal form for \mathscr{A} : if $A \in \mathscr{A}$, then $A=A_{1} \oplus \cdots \oplus A_{m}$. Let \mathscr{A}_{j} be the restriction of \mathscr{A} to H_{j}. By Burnisde's theorem (e.g., [8] p. 276) \mathscr{A}_{i} is isomorphic to $M_{n_{i}}$ where $n_{i}=\operatorname{dim} H_{i}$. Using standard techniques (cf. [17 pp. 4-5]) we can write $\mathscr{A}=\mathscr{B}_{1} \oplus$
$\cdots \oplus \mathscr{B}_{t}$ where each \mathscr{B}_{j} is of the form $\mathscr{B}_{j}=\left\{B_{j} \oplus \cdots \oplus B_{j}: B_{j} \in M_{n_{j}}\right\}$. Thus \mathscr{A} is semisimple.

Remark. By Lemmas 1 and 2

$$
\text { Lat } \operatorname{Alg} \mathscr{L}=\text { Lat } \mathscr{B}_{1} \oplus \cdots \oplus \text { Lat } \mathscr{B}_{t} .
$$

Thus \mathscr{L} is reflexive if it contains the direct sum of the lattices of the \mathscr{B}_{j}. However, the sets Lat \mathscr{B}_{j} are well known. Their atoms are the graph subspaces of the corresponding vector spaces (cf. [6 pp. 261-2] or [7 p. 1023]). The result of Harrison and Longstaff [7] now follows by a direct argument from the representation of Alg \mathscr{L} obtained in Theorem 12.

Bibliography

1. E.A. Azoff, K-Reflexivity in finite dimensional spaces, Duke Math. J. 40 (1973), 821-830.
2. G.P. Barker, L.Q. Eifler, and T.P. Kezlan, A non-commutative spectral theorem, Linear Algebra and its Appl. 20 (1978), 95-100.
3. L. Brickman and P.A. Fillmore, The invariant subspace lattice of a linear transformation, Canad. J. Math. 19 (1967), 810-822.
4. P. Crawley and R.P. Dilworth. Algebraic Theory of Lattices. Prentice Hall, Inc. Inglewood Cliffs, N.J., 1973.
5. J.A. Deddens and P.A. Fillmore, Reflexive linear transformations, Linear Algebra and its Appl. 10 (1975), 89-93.
6. P.R. Halmos, Reflexive lattices of subspaces, J. London Math. Soc., 4 (1971), 257263.
7. K.J. Harrison and W.E. Longstaff, Reflexive subspace lattices in finite dimensional Hilbert spaces, Indiana U. Math. J. 26 (1977), 1010-1025.
8. N. Jacobson. Lectures in Abstract Algebra, Vol. II. D. Van Nostrand Co., Inc. Princeton, N.J., 1953.
9. R.E. Johnson, Distinguished rings of linear transformations, Trans. Amer. Math. Soc. III, (1964), 400-412.
10. P. Lancaster. Theory of Matrices. Academic Press, New York, 1969.
11. W.E. Longstaff, On the operation Alg Lat in finite dimensions, Linear Algebra and its Appl. 27 (1979), 27-29.
12. A.I. Mal'cev. Foundations of Linear Algebra. W.H. Freeman and Company, New York, 1963.
13. M. Marcus and H. Minc. Introduction to Linear Algebra. Macmillan Company, New York, 1965.
14. M. Rosenlicht, Initial results in the theory of linear algebraic groups, in M.A.A. Studies in Mathematics. vol. 20: Studies in Algebraic Geometry, Washington, D.C., 1980.
15. W. Rudin. Principles of Mathematical Analysis. McGraw-Hill Book Company, New York, 1964.
16. D.A. Suprunenko and R.I. Tyshkevich. Commutative Matrices. Academic Press, New York, 1968.
17. J.F. Watters, Block triangularization of algebras of matrices, Linear Algebra and its Appl., 32 (1980), 3-7.

University of Missouri-K.C., Kansas City, Missouri 64110 and North Carolina State University, Raleigh, North Carolina 27650
University of Missouri-K.C., Kansas City, Missouri 64110

