SYSTEMS OF QUADRATIC FORMS II

ALBRECHT PFISTER

Dedicated to the memory of Gus Efroymson

0. Introduction. This paper is intended to continue the work of the papers [4] of the author and [3] of D. Leep. A system of r quadratic forms in n variables over a field F is replaced by a "quadratic map" $q: V \rightarrow W$ where V, W are F-vector spaces of dimension n resp. r. Section 1 contains some general definitions and properties of quadratic maps. In §2 I introduce the u-invariants $u_{r}(r=1,2, \ldots)$ and prove (or collect) results about these invariants. The main result of the present paper is given in $\S 3$. It concerns invariants u_{r}^{\prime} which I hope are strongly related to u_{r}.

As the whole topic is still in "statu nascendi" it should be no surprise to the reader that there are more remarks, questions and problems than theorems. This paper owes a lot to discussions with D. Leep and D. Shapiro and in particular to a preprint of [3].

1. Generalities. Let F be an arbitrary (commutative) field with char $F \neq 2$, and let V, W be finite-dimensional F-vectorspaces.

Definition 1 . A map $q: V \rightarrow W$ is called quadratic if it has the following two properties:
a) $q(a v)=a^{2} q(v)$ for $a \in F, v \in V$
b) The $\operatorname{map} b: V \times V \rightarrow W$ defined by

$$
b\left(v_{1}, v_{2}\right)=q\left(v_{1}+v_{2}\right)-q\left(v_{1}\right)-q\left(v_{2}\right)
$$

is F-bilinear. It is called the "symmetric bilinear map associated to q ".
Definition 2. Two quadratic maps $q: V \rightarrow W, q^{\prime}: V^{\prime} \rightarrow W^{\prime}$ are called equivalent if there are F-isomorphisms $\sigma: V^{\prime} \rightarrow V, \tau: W \rightarrow W^{\prime}$ with $q^{\prime}\left(v^{\prime}\right)=\tau\left(q\left(\sigma v^{\prime}\right)\right)$. This implies in particular that $\operatorname{dim} V=\operatorname{dim} V^{\prime}$ and $\operatorname{dim} W=\operatorname{dim} W^{\prime}$.

Remark. For $\operatorname{dim} W=1$ this reduces to similarity of the quadratic forms q, q^{\prime} over F, not to ordinary equivalence of q, q^{\prime}.

The radical $\operatorname{Rad} q=\{v \in V \mid b(v, V)=0\}$, regularity of q (i.e., Rad $q=0$) and the (outer) direct sum of quadratic maps $q_{i}: V_{i} \rightarrow W$ are defined in an obvious way. For $q: V \rightarrow W$ the space $V \underbrace{\oplus \cdots \oplus}_{m} V$ is
denoted by $m V$ and the induced quadratic map from $m V$ to W is denoted by $m q$, i.e.,

$$
m q\left(v_{1} \oplus \cdots \oplus v_{m}\right)=q\left(v_{1}\right)+\cdots+q\left(v_{m}\right), v_{i} \in V
$$

Definition 3. A quadratic map $q: V \rightarrow W$ is called isotropic if there exists $v \in V, v \neq 0$ with $q(v)=0$.

Definition 4. A quadratic map $q: V \rightarrow W$ is called hyperbolic if there exists a subspace $U \subset V$ with $\operatorname{dim} U \geqq(1 / 2) \operatorname{dim} V$ and $q(u)=0$ for all $u \in U$. We write $q \sim 0$ for a hyperbolic quadratic map.

Remarks. 1) For $\operatorname{dim} W=1$ the above definitions coincide with the classical definitions for a quadratic form q only if q is regular.
2) The definition of hyperbolic forms is crucial. However, I do not know whether it is best possible. Other possibilities would be the following:
a) $V=U_{1}+U_{2}$ with subspaces U_{i} and $q \mid U_{i}=0(i=1,2)$.
b) All maximal totally isotropic subspaces of V have the same dimension $\geqq(1 / 2) \operatorname{dim} V$.
c) We have b) and any two maximal totally isotropic subspaces of V can be transformed into one another by an element of the orthogonal group $0(q)$ (which is defined in an obvious way).

Definition 5. A quadratic map q has order m if $m q \sim 0 . q$ has finite order if $m q \sim 0$ for some natural number m.

Remarks. 1) It can happen that for instance $q \nsim 0,2 q \nsim 0$ but $3 q \sim 0$ and $4 q \sim 0$.
2) Perhaps only two-powers $m=2^{\mu}$ should be allowed in the definition of finite order.

Proposition 1. Let $q: V \rightarrow W$ be a quadratic map with radical $\operatorname{Rad} q$. Let V_{0} be any complement of $\operatorname{Rad} q$ in V. Then $q_{0}=q \mid V_{0}: V_{0} \rightarrow W$ is determined up to equivalence by q and q_{0} is regular.

This proposition allows us in many cases to consider only regular maps q.

Proposition 2. If F is infinite and if $q: V \rightarrow W$ is anisotropic then q is strongly regular, i.e., there exists an F-linear map $\lambda: W \rightarrow F$ such that the quadratic form $\lambda \circ q$ is regular.

Proposition 3. If the maps $q_{i}: V_{i} \rightarrow W$ are (strongly) regular $(i=1$, $\ldots, m)$ then $q=q_{1} \oplus \cdots \oplus q_{m}$ is (strongly) regular. (Suppose F linfinite)

Proposition 4. Let F be nonreal with level $s=s(F)$ and let $m=2 s$. Then for any quadratic map $q: V \rightarrow W$ we have $m q \sim 0$.

2. The invariants $u_{r}(\mathbf{F})$.

Definition 6. $u_{r}(F)=\operatorname{Max}\{n \mid$ there exists a quadratic map $q: V \rightarrow W$ with the following properties: $\operatorname{dim} V=n, \operatorname{dim} W=r, q$ anisotropic, q has finite order $\}$.

Remarks. 1) For $r=1$ this is the u-invariant of Elman-Lam [2].
2) For a nonreal field F this is the " u-invariant for systems" of Leep [3], since Prop. 4 implies that the condition " q has finite order" is automatically fulfilled.
3) One can ask whether the condition " q has finite order" may be replaced by weaker conditions such as " q is indefinite with respect to any ordering of F ". However, the following examples show that then $\operatorname{Max}\{n \mid \cdots\}$ tends to be ∞.
4) Example with $r=1$ (well-known): $F=\mathbf{R}(x, y), q=\langle\underbrace{1, \ldots, 1}_{n-3}, x$, $y,-x y>$ is anisotropic for any $n \geqq 3$, but totally indefinite.
5) Example with $r=3[1]: F=\mathbf{R}, x=\left(x_{1}, \ldots, x_{n}\right), q_{1}(x)=x_{1}^{2}-x_{2}^{2}$, $q_{2}(x)=x_{1} x_{2}, q_{3}(x)=x_{1}^{2}+x_{2}^{2}-(2 / n-2)\left(x_{3}^{2}+\cdots+x_{n}^{2}\right)$. The system $q=\left\{q_{1}, q_{2}, q_{3}\right\}$ is anisotropic for any $n \geqq 3$ though every form in the pencil defined by q_{1}, q_{2}, q_{3} has trace zero (when considered as a symmetric $n \times n$-matrix) and hence is indefinite.
6) I conjecture that $u_{r}(F)$ as defined in Def. 6 turns out to be finite for all r and many classical fields F though up to now I cannot prove this for a single real field F. See however $\S 3$.

Proposition 5. Let E / F be a finite field extension of degree l. Let $q: V \rightarrow$ W be a quadratic map over E with $\operatorname{dim}_{E} V=n, \operatorname{dim}_{E} W=r$. By reducing constants from E to F we get a quadratic map $q_{F}: V_{F} \rightarrow W_{F}$ over F with $\operatorname{dim}_{F} V_{F}=n l, \operatorname{dim}_{F} W_{F}=r l .\left(V_{F}=V, W_{F}=W\right.$ as sets, $q_{F}(v)=q(v)$ for $v \in V$) We have:
a) q isotropic (over E) $\Leftrightarrow q_{F}$ isotropic (over F)
b) $m q \sim 0($ over $E) \Leftrightarrow m q_{F} \sim 0($ over $F)$

Corollary. $u_{r}(E) \leqq(1 / l) u_{r l}(F)$
Remarks. 1) It is desirable to prove similar going-up results for the cases $E=F(t)$ (purely transcendental extension) and $E=$ field with a complete discrete valuation v and residue field F. For $r>1$ even the nonreal case seems to be difficult. There is however the following known result [4]:
2) If F is nonreal and $u_{r}(F) \leqq 2^{i} r\left(\right.$ i.e., F is a $C_{z}^{q}-$ field $)$ then $u_{r}(E) \leqq$ $2^{i+1} r$ for $E=F(t)$ and for $E=F((t))$.
3) Question: Does 2) remain true for real fields F ?

3. The invariants $\mathbf{u}_{\mathrm{r}}^{\prime}(\mathbf{F})$.

Definition 7. $u_{r}^{\prime}(F)=\operatorname{Max}\{n \mid$ there exists a quadratic map $q: V \rightarrow W$ with the following properties: $\operatorname{dim} V=n$, $\operatorname{dim} W=r, q$ anisotropic, $2 q \sim 0\}$.

Remark. For $r=1$ this invariant appears in the paper of Elman and Lam [2] where it is denoted by N_{1}. The important fact is an inequality $u_{1}^{\prime} \leqq u_{1}<2 u_{1}^{\prime}$ whenever $0<u_{1}^{\prime}<\infty$.

Proposition 6. Let $s(F)<\infty$. Then $u_{r}(F) \leqq 2 r u_{r}^{\prime}(F)$.
Remark. This result is never better than Leep's result [3] $u_{r}(F) \leqq$ $(r(r+1) / 2) u_{1}(F)$. The only interest of Prop. 6 is the possibility that the assumption $s(F)<\infty$ may be unnecessary.

We come to the main result of this paper.
Theorem. For $F=\mathbf{R} u_{r}^{\prime}(\mathbf{R})$ is an even number and satisfies the inequality $2[2 r / 3] \leqq u_{r}^{\prime}(\mathbf{R})<2 r$ for every $r \geqq 1$.

Idea of proof. Let $q: V=\mathbf{R}^{n} \rightarrow \mathbf{R}^{r}$ be anisotropic with $n=u_{r}^{\prime}(\mathbf{R})$ and $2 q \sim 0$. Show successively:

1) There exists $T \in G L(V)$ with $q(T v)=-q(v)$ for $v \in V$.
2) $|T|^{2}=(-1)^{n}$, hence $n=2 m$ is even.
3) The only eigenvalues of T in \mathbf{C} are \pm.
4) $T^{2}=-E$.
5) V allows a complex structure defined by $i v=T v$.
6) As a complex vector space of dimension m, V carries a quadratic map $\varphi: V \rightarrow \mathbf{C}^{r}$ such that $q=\operatorname{Im} \varphi$ is the "imaginary part" of φ.
7) $n \geqq 2 r$ implies q isotropic: contradiction.
8) Let $r=3, m=2, \varphi_{1}=2 z_{1} z_{2}, \varphi_{2}=z_{1}^{2}-z_{2}^{2}, \varphi_{3}=i\left(z_{1}^{2}+z_{2}^{2}\right)$ and $q_{j}=\operatorname{Im} \varphi_{j}$ for $j=1,2,3$. Then the system $q=\left\{q_{1}, q_{2}, q_{3}\right\}$ is anisotropic over \mathbf{R} with $2 q \sim 0, n=4$. This shows $u_{3}^{\prime}(\mathbf{R}) \geqq 4$.
9) Together with the trivial estimate $u_{r+s}^{\prime} \geqq u_{r}^{\prime}+u_{s}^{\prime}$ the lower bound $u_{r}^{\prime} \geqq 2[2 r / 3]$ follows.

References

1. E. Calabi, Linear systems of real quadratic forms, Proc. Amer. Math. Soc. 15 (1964), 844-846.
2. R. Elman and T. Y. Lam, Quadratic forms and the u-invariant I, Math. Z. 131 (1973), 283-304.
3. D. Leep, Systems of quadratic forms, to appear.
4. A. Pfister, Systems of quadratic forms, Bull. Soc. Math. France, Memoire 59 (1979), 115-123.

Fachbereich Mathematik Johannes Gutenberg-Universität Saarstr. 21 D 6500 Mainz, West Germany

