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SYSTEMS OF QUADRATIC FORMS II 
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Dedicated to the memory of Gus Efroymson 

0. Introduction. This paper is intended to continue the work of the 
papers [4] of the author and [3] of D. Leep. A system of r quadratic forms 
in n variables over a field F is replaced by a "quadratic map" q\V-*W 
where V, Ware F-vector spaces of dimension n resp. r. Section 1 contains 
some general definitions and properties of quadratic maps. In §2 I intro
duce the w-invariants ur{r = 1,2, . . . ) and prove (or collect) results about 
these invariants. The main result of the present paper is given in §3. It 
concerns invariants ur which I hope are strongly related to ur. 

As the whole topic is still in "statu nascendi" it should be no surprise 
to the reader that there are more remarks, questions and problems than 
theorems. This paper owes a lot to discussions with D. Leep and D. 
Shapiro and in particular to a preprint of [3]. 

1. Generalities. Let F be an arbitrary (commutative) field with char 
F 7* 2, and let V, W be finite-dimensional F-vectorspaces. 

DEFINITION 1. A map q: V -* Wis called quadratic if it has the following 
two properties : 

a) q(av) = a2q(v) for a G F, v e V 
b) The map b: V x V -* ^defined by 

b(yl9 v2) = ?(V! + v2) - q(vi) - q(v2) 

is F-bilinear. It is called the "symmetric bilinear map associated to q". 

DEFINITION 2. Two quadratic maps q: V -> IV, q': V -> W are called 
equivalent if there are /"-isomorphisms G : V -> V, z : W' -> W with 
q\V) = z{q{oV)). This implies in particular that dim V = dim V and 
dim W = dim W. 

REMARK. For dim W = 1 this reduces to similarity of the quadratic 
forms q, q' over F, not to ordinary equivalence of q, qf. 

The radical Rad q = {ve V\b(v, V) = 0}, regularity of #(i.e., Rad 
q = 0) and the (outer) direct sum of quadratic maps q{ : V{ -* W are 
defined in an obvious way. For q: V -* W the space V ® • • • © V is 

m 
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denoted by m F and the induced quadratic map from mVto Wis denoted 
by mq, i.e., 

mq(vx 0 - . - 0 vm) = q(vx) + • • • + q(vm), v, G V. 

DEFINITION 3. A quadratic map q: V-+ Wis called isotropic if there 
exists V G F , V ^ 0 with q(v) = 0. 

DEFINITION 4. A quadratic map q : V -> 0^ is called hyperbolic if there 
exists a subspace U cz V with dim U ^ (1/2) dim Fand q(u) = 0 for all 
ue U. We write # ~ 0 for a hyperbolic quadratic map. 

REMARKS. 1) For dim W = 1 the above definitions coincide with the 
classical definitions for a quadratic form q only if q is regular. 

2) The definition of hyperbolic forms is crucial. However, I do not 
know whether it is best possible. Other possibilities would be the follow
ing: 

a) V = Ui + U2 with subspaces U{ and q\U{ = 0 (/ = 1, 2). 
b) All maximal totally isotropic subspaces of V have the same 

dimension ^ (1/2) dim V. 
c) We have b) and any two maximal totally isotropic subspaces of V 

can be transformed into one another by an element of the orthogonal 
group 0(q) (which is defined in an obvious way). 

DEFINITION 5. A quadratic map q has order m if mq ~ 0. q has finite 
order if mq ~ 0 for some natural number m. 

REMARKS. 1) It can happen that for instance q <£ 0, 2q ^ 0 but 3q ~ 0 
and Aq ~ 0. 

2) Perhaps only two-powers m= 2v should be allowed in the definition 
of finite order. 

PROPOSITION 1. Let q: V -> W be a quadratic map with radical Rad q. 
Let VQ be any complement of Rad q in V. Then q0 = q\VQ: V0 -• W is 
determined up to equivalence by q and q0 is regular. 

This proposition allows us in many cases to consider only regular maps 

q-

PROPOSITION 2. If F is infinite and if q: V -+ W is anisotropic then q is 
strongly regular, i.e., there exists an F-linear map A: W -> F such that 
the quadratic form X°q is regular. 

PROPOSITION 3. If the maps q(\ V{ -• W are (strongly) regular (i = 1, 
. . . , m) then q = qx® • • • ® qm is (strongly) regular. (Suppose F [infinite) 

PROPOSITION 4. Let F be nonreal with level s = s(F) and let m = 2s. 
Then for any quadratic map q: V -> W we have mq ~ 0. 
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2. The invariants ur(F). 

DEFINITION 6. ur{F) = Max{rc | there exists a quadratic map q: V -> W 
with the following properties: dim V = n, dim W = r, q anisotropic, q 
has finite order}. 

REMARKS. 1) For r = 1 this is the w-invariant of Elman-Lam [2]. 
2) For a nonreal field F this is the "w-invariant for systems" of Leep 

[3], since Prop. 4 implies that the condition "q has finite order" is auto
matically fulfilled. 

3) One can ask whether the condition "q has finite order" may be 
replaced by weaker conditions such as "q is indefinite with respect to 
any ordering of F". However, the following examples show that then 
Max{«| • • •} tends to be oo. 

4) Example with r = 1 (well-known): F = R(jc, y\ q = <1, . . ., 1, x, 

y, — xy} is anisotropic for any n ^ 3, but totally indefinite. 
5) Example with r = 3 [1] : F = R, x = (xl9 . . ., xn), qx(x) = x\ - jcf, 

foi*) = *i*2> q$(x) = xj + x% — (2/n — 2)(x§ + • • • + x£). The system 
q = {̂ !, #2, #3} is anisotropic for any n ^ 3 though every form in the 
pencil defined by ql9 q2, q$ has trace zero (when considered as a sym
metric n x «-matrix) and hence is indefinite. 

6) I conjecture that ur(F) as defined in Def. 6 turns out to be finite for 
all r and many classical fields F though up to now I cannot prove this 
for a single real field F. See however §3. 

PROPOSITION 5. Let EjFbe a finite field extension of degree I. Let q: V -• 
W be a quadratic map over E with dim^F = «, dim^ W = r. By reducing 
constants from E to F we get a quadratic map qF: VF -> WF over F with 
dimFKF = nl, dimFWF = ri (VF = V, WF = W as sets, qF(v) = q(v) 
for ve V) We have : 

a) q isotropic {over E) <=> qF isotropic (over F) 
b) mq ~ 0 (over E) o mqF ~ 0 (over F) 

COROLLARY. ur(E) ^ (\/l)url(F) 

REMARKS. 1) It is desirable to prove similar going-up results for the 
cases E — F(t) (purely transcendental extension) and E = field with a 
complete discrete valuation v and residue field F. For r > 1 even the 
nonreal case seems to be difficult. There is however the following known 
result [4]: 

2) If F is nonreal and ur(F) ^ 2<>(i.e., F is a C% - field) then ur(E) ^ 
2'*+V for E = F(t) and for E = F((t)). 

3) Question: Does 2) remain true for real fields Fl 
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3. The invariants u (̂F). 

DEFINITION 7. u'r(F) = Max{« | there exists a quadratic map q: V -> W 
with the following properties : dim V = n, dim W = r, q anisotropic, 
2q ~ 0}. 

REMARK. For r = 1 this invariant appears in the paper of Elman and 
Lam [2] where it is denoted by A^. The important fact is an inequality 
u[ ^ ui < 2u[ whenever 0 < u[ < oo. 

PROPOSITION 6. Let s(F) < oo. Then ur(F) ^ 2ru'r(F). 

REMARK. This result is never better than Leep's result [3] ur(F) ^ 
(r(r H- l)/2)ui(F). The only interest of Prop. 6 is the possibility that the 
assumption s(F) < oo may be unnecessary. 

We come to the main result of this paper. 

THEOREM. For F = R u'r(R) is an even number and satisfies the inequality 
2[2r/3] ^ u'r(R) < 2r for every r ^ 1. 

IDEA OF PROOF. Let q: V = Rn -> Rr be anisotropic with n = ^(R) 
and 2q ~ 0. Show successively: 

1) There exists Te GL(V) with q(Tv) = -q(v) for v e V. 
2) \T\2 = ( - \)n, hence n = 2m is even. 
3) The only eigenvalues of Tin C are ±i . 
4) T2 = - £ . 
5) V allows a complex structure defined by iv = Tv. 
6) As a complex vector space of dimension m, V carries a quadratic 

map <p: V -> C r such that # = Im#) is the "imaginary part" of cp. 
7) n ^ 2r implies # isotropic: contradiction. 
8) Let r = 3, m = 2, <px = 2zxz2, <P2 = zî — zh <Pz = Kzl + zi) a n d 

qj = Im )̂y for y = 1, 2, 3. Then the system q = {qh q2, <73} is anisotropic 
over R with 2q ~ 0, n = 4. This shows ^(R) ^ 4. 

9) Together with the trivial estimate u'r+s ^ur + us the lower bound 
u'r è 2[2r/3] follows. 
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