ON COMPLETE INTERSECTION REAL CURVES

M. G. MARINARI AND M. RAIMONDO.

Dedicated to the memory of Gus Eforymson

Let $C \subset \mathbb{R}^n$ be an embedded smooth real algebraic curve. Let $\mathbb{R}[C]$ (resp. $\Gamma_C = \Gamma(C, \mathcal{O}_C)$) denote the ring of real polynomial functions (resp. of global regular functions) on C. If I_C (resp. J_C) is the ideal of C in $\mathbb{R}[X_1, \ldots, X_n]$ (resp. in $\Gamma_{\mathbb{R}^n} = \Gamma(\mathbb{R}^n, \mathcal{O}_{\mathbb{R}^n})$), then we have $\Gamma_C \simeq \Gamma_{\mathbb{R}^n}/J_c \simeq N^{-1}\mathbb{R}[C]$ where $N = \{s \in \mathbb{R}[C] \mid s(x) \neq 0 \ \forall x \in C\}$ and $\mathbb{R}[C] \simeq \mathbb{R}[X_1, \ldots, X_n]/I_C$.

Let $\mathscr C$ be the abstract curve of which C is a realization; to each embedding $\varphi\colon\mathscr C\to\mathbf R^N$ corresponds a f.g. $\mathbf R$ -algebra $P=\mathbf R[\varphi(\mathscr C)]=\mathbf R[X_1,\ldots,X_N]/I_{\varphi(\mathscr C)}$ which is called an affine respresentation of $\mathscr C$ and has the property that $\Gamma_\mathscr C\simeq N_P^{-1}P$ where $N_P=\{s\in P|s(x)\neq 0 \text{ for each } x\in \varphi(\mathscr C)\}$. The various affine representations of $\mathscr C$ can be compared by introducing on the set of isomorphism classes of affine representations of $\mathscr C$ the following ordering relation $\prec\colon$ "given two affine representations P,Q of $\mathscr C$ then $P\prec Q$ if there exists a homomorphism if $\mathbf R$ -algebras $P\hookrightarrow Q$ which extends to an isomorphism $\Gamma_\mathscr C\simeq N_P^{-1}P\simeq N_Q^{-1}Q\simeq \Gamma_\mathscr C$. We assume that all the affine representations that we consider are regular as schemes (this is always possible). We say that P is "the canonical" affine representation if $P\prec Q$, for every other Q. Since to each affine representation corresponds a complexification (uniquely, up to isomorphism), we mix up the two notions. So, given two complexifications $\widetilde C'$, $\widetilde C''$, we say that $\widetilde C' \prec \widetilde C''$ if there is a real open immersion $\widetilde C'' \hookrightarrow \widetilde C'$.

In this setting the main result we know is the following (cf. [3]).

THEOREM 1. A smooth affine real curve $\mathscr C$ has a canonical complexification if and only if it is either rational or embeddable as a non-compact subspace of $\mathbb R^3$.

The above machinery can be used in order to find some results on the problem of complete intersection. We recall the following definition (cf. [2]): "an integral domain R which is a f.g. algebra over a field k, is called an abstract complete intersection (ACI) if there exists a polynomial ring

 $S = k[X_1, ..., X_N]$ such that R is an epimorphic image of S with kernel a complete intersection ideal".

For a real smooth affine real curve \mathscr{C} , we prove the following theorem.

THEOREM 2. If \mathscr{C} has an embedding $\varphi: \mathscr{C} \to \mathbb{R}^n$ such that $J_{\varphi(\mathscr{C})}$ is a complete intersection ideal in $\lceil_{\mathbb{R}^n}$, then there exists an affine representation which is an ACI.

If \mathscr{C} is an affine real curve, we say that \mathscr{C} is an ACI if there exists an embedding $\phi: \mathscr{C} \to \mathbb{R}^n$ such that $\Gamma_{\mathscr{C}} \simeq N^{-1}P$ with P an ACI in the sense of [M. K.].

THEOREM 3. An affine real curve \mathscr{C} is an ACI if and only if the module of 1-differentials $\Omega^1_{\Gamma_{\mathscr{C}}/\mathbb{R}}$ has a free resolution of length ≤ 1 . If \mathscr{C} is smooth and ACI then any embedding in \mathbb{R}^n , $n \geq 4$ is a complete intersection.

Finally we have the following examples related to a question posed in [1].

EXAMPLE 1. A smooth real affine curve (of genus 2) whose canonical complexification is not a complete intersection.

EXAMPLE 2. A smooth compact real affine curve (of genus 3) which has a complexification which is a complete intersection and another which is not.

REFERENCES

- 1. J. Bochnak and W. Kucharz, (manuscript).
- 2. N. M. Kumar, Complete intersections, J. Math. Kyoto Univ. 17 (1977), 533-538.
- 3. M. G. Marinari, F. Odetti and M. Raimondo, Affine curves over an algebraically non-closed field, Pacific J. of Math. 107 (1983), 179-188.
- 4. A Tognoli, Algebraic geometry and nash functions, Institutiones Math III. Academic Press, London-New York, 1978.

INSTITUTO MATEMATICO, UNIVERSITA DI GENOVA, GENOVA, ITALY