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We use the notations of our survey article [1] on locally semialgebraic 
spaces in this volume. We want to indicate that it is possible to develop 
a homotopy theory for locally semialgebraic spaces over an arbitrary real 
closed field R which works as efficiently as the homotopy theory for 
topological spaces. For this purpose we give the basic definitions and 
some results. 

NOTATION. Let M, N be locally semialgebraic spaces over R and Al9 

. . . , Ar resp. Bl9 ..., Br be locally semialgebraic subsets of M resp. N. 
By [(M, Al9 . . . , Ar)9 (N, BÌ9 . . . , Br)] we denote the set of homotopy 
classes of locally semialgebraic maps (M9 Al9 . . . , Ar) -> (N9 Bl9 . . . , Br) 
(cf. [1 Definition 1 in §4]). In the case i? = Rwe denote by [(M9 AÌ9 . . . , Ar)9 

(N, Bl9 . . . , Br)]top the set of continuous homotopy classes of continuous 
maps between the associated systems of topological spaces (Mtop9 Aittop, 
• • • > ATf top), (Ntop, Bit top, ..., Brt top). 

MAIN THEOREM 1. Let R be a real closed field extension of R. Let M be 
an affine semialgebraic space and N be a regular locally semialgebraic space 
over R. For closed semialgebraic subsets Ax, . . ., Ar of M and locally 
semialgebraic subsets 2?l5 . . . , Br of N the natural map [(M, Al9 . . . , Ar), 
(N9 Bl9 . . .,Br)] -> [(M(R)9 A1(R)9 . ..9Ar(K)), (N(R)9 B^S), . . . , Br(R))] 
which maps the class [f] of a map f to the class [f$] of the base extension 
fk off (cf. [1] Example 1.7) is bijective. 

Unfortunately we do not yet know whether Theorem 1 is also true if 
M is not affine semialgebraic. Our proof uses, besides the method of 
simplicial approximation, semialgebraic mapping spaces and Tarski's 
principle, and these techniques are restricted to the affine semialgebraic 
setting. The situation is slightly better when we compare semialgebraic 
homotopy sets with topological homotopy sets in the case R = R. 

MAIN THEOREM 2. Let M9 N be regular locally semialgebraic spaces over 
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R and Al9 . . . , Ar resp. 2?1? . . . , Br be closed locally semialgebraic subsets 
of M resp. N. Assume that either 

i) M is an affine semialgebraic space or 
ii) M and N are paracompact spaces. 

Then the natural map 

[(M, Al9...9 Ar\ (N9 Bl9..., Br)} -> [(M, Al9...9 Ar\ (N9 Bl9...9 Br)]top 

is bijective. 

These two theorems are sufficient to deal with homotopy groups which 
we define in precise analogy to the topological case. 

NOTATION. I denotes the unit interval [0, 1] in R. In = {(tl9 ..., tn)e 
^w|0 S tt S 1, 1 ^ * ^ n) is the «-fold cartesian product of /, Ï» = 
{(tl9 ..., tn) e In | all t{ > 0} its interior, dln = In - ln its boundary and /„ 
is the subset {dln+l - (ïn x {0})) of dln+1(n ^ 1). J0 is simply the one 
point set {1}. 

DEFINITION 1. Let M be a locally semialgebraic space over R and A be 
a locally semialgebraic subset of M. Then we define for every base point 
XQ e A and n ^ 1 

7Un(M9 A9 X0) := [(/*, dl\ /w_i), (M9 A9 {X0})] 

and for every x0e M and n ^ 1 

%n(M9 x0) ••= %n(M9 {x0}9 x0). 

Introducing on %n(M9 A9 x0) for n ^ 2 (resp. on %n(M9 x0) for n ^ 1) the 
multiplication 

lf]-[g] = [f*g] 

with 

/*g(?i, . . . , 0 = 
If(2tl9t29...9tn)for0£t1 ^ i -

g(2^ - l,f2, . . . , O f o r i - ^ fx ^ 1, 

these homotopy sets become groups, called the (semialgebraic) homotopy 
groups of (M, A9 XQ) (resp. the (semialgebraic) homotopy groups of 
(M, *o))-

In the usual way one sees that %n(M9 A9 x0) for n ^ 3 (resp. %n(M9 x0) 
for n ^ 2) is an abelian group. 7zri(M, A, x0) is considered as a set with a 
base point, represented by the constant map from / to x0. By IZQ{M9 XQ) 

we denote the set of components of M with base point the component 
Of XQ. 
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Every path a: [0, 1] -* A (resp. a : [0, 1] -> M) with a(0) = x0 and a(\) = 
*i yields an isomorphism a# from the set with base point %n(M9 A, x0) 
to %n(M9 A, xx) for every n ^ 1 (resp. from %n(M9 x0) to %n(M9 x{) for 
every n ^ 0). <x# is defined in the same way as in topology [5, p. 126ff.] 
and depends only on the homotopy class of a with fixed end points. For 
n ^ 2 (resp. n ^ l) a§ is an isomorphism of groups. In particular the 
fundamental group %X(A9 x0) operates on %n(M9 A, x0) and %\(M9 x0) 
operates on %n(M9 x0). In case n = l the latter operation is just by con­
jugation. 

Again copying classical arguments [5, p. H5ff.)], we obtain for every 
pair (M9 A) of locally semialgebraic spaces and every x0 e A a long 
exact homotopy sequence, as in the topological theory 

n . -> 7Cn(A, x0) -> %n{M, XQ) -+ 7T„(M, 4 , x0)--*7z;M_i04, x0) -> • 

The fundamental group 7Ci(A9 x0) operates on this sequence equivariantly. 

THEOREM 4. Let M be a regular locally semialgebraic space over R and 
A be a locally semialgebraic subset of M. Then for every xQe A (resp. 
XQ G M) the natural homomorphisms 

%n(M9 A9 XQ) -» iu„(M, A9 x0)top(n è 2) (resp. %n(M9 x0) -> 7Cn(M9 x^)top(n â 0) 

from the semialgebraic homotopy groups to the topological homotopy 
groups are isomorphisms. 

PROOF. The absolute case and, if A is closed in M, also the relative 
case are covered by Theorem 2. If A is not closed in M a comparison 
between the semialgebraic and the topological long exact homotopy 
sequence of the pair (M9 A) yields the result. 

THEOREM 5. ("Whitehead's theorem"). Let f: M -+ N be a locally 
semialgebraic map between connected paracompact regular locally semi­
algebraic spaces over R. Assume that f is a weak homotopy equivalence, 
i.e., f induces for one point x0 e M (and then for every x0 G M) isomor­
phisms 

/ * : %n(M9 x0) 2* 7Un(N9f(x0)) (n ^ l ) . 

Then f is a locally semialgebraic homotopy equivalence. 

EXAMPLE 6. Let M be a locally complete semialgebraic space. Assume 
that the base field R contains a sequence (en\n G N) of positive elements 
converging to zero. Then the partially complete locally semialgebraic 
space Mloc is paracompact [1, Example 2.1]. Obviously Mloc has the same 
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homotopy groups as M. Thus the map g: Mloc -• M, x *-* x, is a homotopy 
equivalence. 

Since in Theorem 1 the domain is required to be semialgebraic we 
cannot deduce Theorem 5 by transfer from the well known topological 
case. We will indicate a direct proof because an interesting phenomenon 
appears at this point. 

Both spaces M, N can be triangulated, thus we can assume that they 
are simplicial complexes. But then, as in the affine semialgebraic case, 
(cf. [3, 2.5]) the biggest closed subcomplex M0 (resp. N0) of M (resp. N) 
is a strong deformation retract of M (resp. N), provided we have chosen 
a "good triangulation" [loc. cit.]. Hence replacing M by M0, N by iVo 
we can assume that M, N are partially complete spaces. Now if M is a 
locally semialgebraic subset of N a n d / i s the inclusion map then Theorem 
5 can be proved in exactly the same way as in the topological case (cf., 
e.g., [6, 7.5.2]). 

To handle the general case we need the mapping cylinder Z(f) of / 
(because then we could replace / by the inclusion M c Z(f)). Unfortu­
nately this mapping cylinder in general is not a locally semialgebraic 
space. For example it is easily seen that the mapping cylinder Z(g) of a 
locally semialgebraic map g: M -> N between a partially complete space 
M and a complete semialgebraic space N cannot exist as a locally semi­
algebraic space if M is not a semialgebraic space. In particular, let us 
again consider Example 6. If M is not complete and r: M -* M0 is a 
retraction from M onto a complete strong deformation retract of M, 
then Z(rog) is not a locally semialgebraic space. 

At this point we are forced to leave the category of locally semialgebraic 
spaces, and to work with weak polytopes. A weak polytope X over R 
essentially is a ringed space over R (cf. [1 §1]) which is an inductive limit 
lim Xa °f complete semialgebraic spaces Xa over jR in the category of 
ringed spaces over R. (It is assumed that the canonical maps Xa -> X 
are injective. Some more technical properties must be fulfilled). Every 
partially complete locally semialgebraic space is the inductive limit of 
its complete semialgebraic subsets, hence is a weak polytope. More 
precisely : The category of partially complete locally semialgebraic spaces 
over R is a full subcategory of the category of weak polytopes over R. 

This new category has a great advantage: You can attach spaces as 
you like. Whenever/: A -+ Fis a morphism between weak polytopes and 
A is a closed "admissible" subset of a polytope X, then X [}A,fY is again 
a weak polytope and the map X U Y-> X \JA,fr is a quotient in the 
category of weak polytopes. In particular the mapping cylinder Z(g) of 
an arbitrary morphism g: X -^ F between weak polytopes exists in this 
category. 

The proof of Theorem 5 is now easy. The mapping cylinder Z(f) is a 
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weak polytope which is homotopy equivalent to TV by the obvious pro­
jection map Z(f) -• N. Thus it suffices to prove that the inclusion map 
M -> Z( / ) is a homotopy equivalence. But the proof of Theorem 5 for 
inclusion maps works equally well when the target space is merely a 
weak polytope instead of a locally semialgebraic space. 

The importance of weak polytopes in semialgebraic homotopy theory 
is also indicated by the following example. 

EXAMPLE 7. (Existence of Eilenberg-MacLane spaces) Let % be an 
abelian group and n be a natural number. Then there exists a weak 
polytope K(%9 n) over R such that izn(K(n9 n)) ^ % and 7Ck(K(n9 n)) = 0 
for every k # n. 

We close this section with a discussion of the "Huréwicz-homomor-
phisms" from semialgebraic homotopy to semialgebraic homology 
groups. For M a regular paracompact locally semialgebraic space, A a 
locally semialgebraic subset of M, G an abelian group, we can define 
homology groups Hn(M, A, G) by the same procedure as described in 
[3, §3] in the affine semialgebraic case (cf. [2] for the details), using the 
triangulation theorem and sheaf cohomology. Every locally semialgebraic 
map/ : (M, A) -• (N, B) induces group homomorphisms /* : Hn (M, A, G) 
-* Hn{N9 B9 G), which only depend on the homotopy class of/. The 
analogues of our main theorems l and 2 remain true in homology : If R 
is a real closed overfield of R9 then the group Hn(M(R)9 A(R)9 G) is "the 
same" as Hn(M9 A, G). If R = R, the group Hn(M9 A, G) coincides with 
the singular homology group Hn{Mtop9 Atop, G) of the pair (Mtop, Atop) 
of topological spaces (cf. [3, Th. 3.7 and §4] for the affine semialgebraic 
case). 

The group HJJn
9 dln, Z) is isomorphic to Z. As in the topological 

case we choose a standard generator an of this group, cf., e.g., [7, Chap. 
7, §4]. We choose a base point x0 in A and define the Huréwicz map <p : 
icH(M9 A9 x0) -> H„(M9 A9 Z) for every n ^ 1 by mapping the homotopy 
class [/] of a semialgebraic map/from (/w, dln

9 /w_i) to (M, A, x0) to the 
element f*(an) in Hn(M9 A9 Z). The map <p has the same properties as 
listed in [7, loc. cit.] in the topological case, and this can be seen by the 
same arguments as in topology (without using a transfer principle). In 
particular, cp is a group homomorphism for n ^ 2, compatible with the 
action of the fundamental group %i(A9 x0). Here we decree that 7U\(A9 x0) 
acts trivially on Hn(M9 A9 Z). The quotient %'n{M9 A, x0) of the group 
icn(M, A, XQ) with respect to the action of %\(A9 x0) is an abelian 
group also for n = 2, and cp induces a Huréwicz-homomorphism cp'': 
iz'n(M9 A, XQ) -> Hn(M9 A9 Z) for every « ^ 2. Clearly cpf is compatible 
with extension of the base field R to any real closed overfield R. Also, in 
case R = R, <p' coincides with the topological Huréwicz homomorphism. 
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THEOREM 8. ("Relative Huréwicz theorem"). Let M be a connected 
regular paracompact locally semialgebraic space. Let A be a locally semi-
algebraic subset of M and x0 be some point in A. Assume that n ^ 2 and 
7Uq(M, A, XQ) = Ofor 0 < q < n. Then 

<p': 7u'n(M, A, x0) -> Hn(M, A, Z) 

is an isomorphism. 

PROOF. The theorem holds in the case R = R as a consequence of the 
topological Huréwicz theorem. In general, by the triangulation theorem, 
(M, A) is isomorphic to a pair (X, Y) consisting of a strictly locally finite 
simplicial complex Zand a subcomplex Y of X. Thus (M, A) is isomorphic 
to a pair (MQ(R), A0(R)) with M0 a regular paracompact space over the 
field R0 of real algebraic numbers and A0 a locally semialgebraic subset 
of M0. We may choose the base point x0 of A in A0. Since the Huréwicz 
homomorphisms behave well with respect to base extension it suffices 
to prove that the Huréwicz homomorphism 

<poi IS'H(MQ, A0, X0) -> Hn(MQ, A09 Z ) 

is bijective. Now 7uq(MQ, A0, x0) = 0 for 0 < q < n. Thus also 7cq(M0(R), 
AQ(R), x0) = 0, and we know from the case R = R that the Huréwicz 
homomorphism 

<p'R: <(M0(R), A0(R), x0) - //„(M0(R), A0(R), Z) 

is bijective. But <p'R is essentially the same map as (p'Q. So also ^ is bijective. 

By the same transfer method we obtain a semialgebraic version of the 
absolute Huréwicz theorem. In particular, for any connected regular 
paracompact space M, the group H^M, Z) is canonically isomorphic to 
the factor commutator group of %\(M, x0). 

REFERENCES 

1. H. Delfs and M. Knebusch, An introduction to locally semialgebraic spaces, this 
volume. 

2. H. Delfs, Kohomologie affiner semialgebraischer Räume, Diss. Univ. Regensburg, 
1980. 

3. H. Delfs and M. Knebusch, On the homology of algebraic varieties over real closed 
fields, J. reine angew. Math. 335 (1982), 122-163. 

4. , Separation, retractions and homotopy extension in semialgebraic spaces, 
to appear in Pacific J. Math. 114 No. 1 (1984). 

5. S.-T. Hu, Homotopy theory, Academic Press, New York—London, 1959. 
6. C. R. F. Maunder, Algebraic topology, van Nostrand, London, 1970. 
7. E. H. Spanier, Algebraic topology, McGraw Hill, New York, 1966. 

MATH INSTITUT, UNIVERSITÄT REGENSBURG, REGENSBURG, WEST GERMANY 
FACHBER MATH., UNIVERSITÄT REGENSBURG, REGENSBURG, WEST GERMANY 




