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In this note we deal with the pythagoras number p of certain 1-dimen
sional rings, i.e., real irreducible algebroid curves over a real closed 
ground field k. The problem we are concerned with is to characterize those 
real irreducible algebroid curves which are pythagorean (i.e., p = 1). 
We obtain two theorems involving the value-semigroup. Then we apply 
them to solve the cases of: (a) Gorenstein curves, (b) planar curves, (c) 
monomial curves, and (d) curves of multiplicity <; 5. Finally, two con
jectures are stated. 

1. Statement of the theorems. Let k be a fixed real closed field. A real 
irreducible algebroid curve is any real 1-dimensional complete local in
tegral domain A whose residual field is k. 

Let pA denote the pythagoras number of A (i.e., the least p ^ 0 such 
that any sum of squares is a sum of p squares). It can be shown that 
pA is finite. When pA = 1, A is called pythagorean. 

Now we recall some definitions [1]. As is known, the derived normal 
ring Ä of A is a discrete valuation ring and we denote by v its valuation. 
The semigroup T — v(A — {0}) is called value-semigroup of A. Then 

i) The multiplicity of A = least positive integer m in r. 
ii) The degree of the conductor of A in Ä = least positive integer e e T 

such that each n ^ c is in r. 
Conversely, if T is a numerical semigroup (i.e., r a N and N — T 

is finite) the right sides above give definitions of m and c. Finally we 
denote by Jtr the class of all curves whose value-semigroup is F and by 
gPyttp the class of all pythagorean curves in Jtp> Then we have 

THEOREM I. 0»ys*r ^ <f> if and only if for each qe r the set Fq = {p — 
q\p ^ q, p e r} is a semigroup. 

Now set d = min{/? e r\p & 0(m)} (J {c} and E = {p e r\p ^ d}. 
Then 
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THEOREM II. ^ ^ r = Jtr if and only if for each q G Z7, p G E with 
q < p, we have (l/2)(q + c) ^ p. 

2. Sketch of the proofs. We may assume ^ c i = &[[/]], a^d we let v be 
the standard valuation in A. The condition that A is pythagorean can be 
rephrased as follows. If g9 h e A, then ^/g2 + A2 e ^- Notice that 
^ 2 + /̂ 2 e /: [[t]]. After this, the method to prove I and II consists of: 
(a) finding suitable A e 0>^r, g,he A and identifying v(«Jg2 + A2); (b) 
finding suitable "equations" for an element/G k[t]] to be in ^4. Let us 
show now how this works in some cases. 

PROOF (of I). For the "only if" part, let A e 0>j,s/r be such that f« G A. 
Then if pl9 p2 e T7, q < P\ ^ /?2 there are g b g2

 G k[[t]] with *%, r% G A 
and v(gi) = Pi - q, v(g2) = p2 ~ 4- We have 

v^2* + (Ai + //2)2 = - " + Vf2* + A? + Vt2<* + Ai + / , 

where v(/) = /?i + />2 — q. As ^ is pythagorean,/G A, px + p2 — q £ T, 
and (/?! - q) + (/?2 - ?) e A-

For the "if" part, it is checked that the monomial curve A = {fe 
£[[*]]•' Z(w)(0) = 0, n£ r} is pythagorean as a consequence of the hy
pothesis on the rq. 

PROOF ("Only if" of II). The proof is developed in four steps. The first 
one is the inequality c ^ 2d. To do that, write d = fan + r, 0 < r < m 
(case r = 0 is trivial). If c > 2d a curve A G J(r is obtained such that 
tm, td 4- r- ( r + 1 > , td+ireA,j ^ 1. Then 

y/^m + Ud + ^-(r+l))2 = 2 Af/ ^ + ( 2 / - 1 ) r + /Awg, M, G A:, 

where v(g) = r 4- c - (d + 1). Since &>y*tr — Mr we conclude tlmg < A 
and fan + r -h c — (rf + 1) = c — I G / 7 , which is absurd. 

The remaining steps run along the same lines. Once the suitable square 
root has been found, the hard part is to obtain effectively the curve 
A G Mr 

PROOF ("If" of II) Let A G Jtr, g, h e A a n d / = v V + h2 e k [[*]]. To 
show that/G 4̂ we distinguish two cases: 

0 <7 = K/ ) ^ rf- Then we can assume g = ti and the hypothesis applies 
to deduce a formula/ = ag + bh + / * , v(/*) ^ c, and SO/G ^ . 

ii) g = v(f) < d. Then we can assume tm e A and find numbers an G /: 
such that/G A if and only if it is true that 

/<'>(0) = 0 for / < d, I & 0 (m), and 

T T / ( / ) ( 0 ) = t - J - / ( ^ ( 0 ) ay/ for / > d, It r, 
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where px < • • • < ps are the integers < c and & 0(m) in T7. This is of 
course related to the moduli of r (see [2]). Finally, as g and h verify these 
equations, it follows by induction on q that so does/. 

3. Applications. Recall that A is called Gorenstein if the length of the 
A module 9JÎ~M is 1 (where 9JÎ is the maximal ideal of A) [3], and it is 
called Arf if emb — dim(i?) = mult(2?) for every local ring B infinitely 
near to A, [4]. Then from I and II, and general properties of the value-
semigroup, one deduces: 

(3.1) Assume A Gorenstein. Then pA = 1 if and only if mult A ^ 2 . 
(3.2) Assume A plane. Then (a) pA = 1 if mult A ^ 2; (b) pA = 2 

if mult A ^ 3. 
(3.3) Assume A monomial. Then pA = 1 if and only if A is Arf. 
Finally let us say that I and II furnish a useful device for exploring 

Pythagorean curves of low multiplicity. Actually, we have obtained the 
list of all pythagorean curves of multiplicity ^ 5. For instance, the ones 
of multiplicity 3 are 

An = k[[t\ t3n+\ t^+% Bn = k[[t*, *3*+2, *3»+4]] (n è 1). 

(Complete details are given in [5] and [6].) 

4. Two conjectures. In the light of the previous results the following 
conjectures are suggested: 

(4.1) Every pythagorean curve is Arf. 
(4.2) Every local ring infinitely near to a pythagorean curve is pythago

rean too. Both of them can be tested for multiplicity ^ 5, of course. 
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