ON PYTHAGOREAN REAL IRREDUCIBLE ALGEBROID CURVES

Jesús m. Ruiz

Dedicated to the Memory of Gus Efroymson

In this note we deal with the pythagoras number p of certain 1-dimensional rings, i.e., real irreducible algebroid curves over a real closed ground field k. The problem we are concerned with is to characterize those real irreducible algebroid curves which are pythagorean (i.e., $p=1$). We obtain two theorems involving the value-semigroup. Then we apply them to solve the cases of: (a) Gorenstein curves, (b) planar curves, (c) monomial curves, and (d) curves of multiplicity $\leqq 5$. Finally, two conjectures are stated.

1. Statement of the theorems. Let k be a fixed real closed field. A real irreducible algebroid curve is any real 1-dimensional complete local integral domain A whose residual field is k.

Let $p A$ denote the pythagoras number of A (i.e., the least $p \geqq 0$ such that any sum of squares is a sum of p squares). It can be shown that $p A$ is finite. When $p A=1, A$ is called pythagorean.

Now we recall some definitions [1]. As is known, the derived normal ring \bar{A} of A is a discrete valuation ring and we denote by ν its valuation. The semigroup $\Gamma=\nu(A-\{0\})$ is called value-semigroup of A. Then
i) The multiplicity of $A=$ least positive integer m in Γ.
ii) The degree of the conductor of A in $\bar{A}=$ least positive integer $c \in \Gamma$ such that each $n \geqq c$ is in Γ.

Conversely, if Γ is a numerical semigroup (i.e., $\Gamma \subset N$ and $N-\Gamma$ is finite) the right sides above give definitions of m and c. Finally we denote by \mathscr{M}_{Γ} the class of all curves whose value-semigroup is Γ and by $\mathscr{P}_{y}+h_{\Gamma}$ the class of all pythagorean curves in \mathscr{M}_{Γ}. Then we have

Theorem I. $\mathscr{P}_{y^{t h}}{ }_{\Gamma} \neq \phi$ if and only if for each $q \in \Gamma$ the set $\Gamma_{q}=\{p-$ $q \mid p \geqq q, p \in \Gamma\}$ is a semigroup.

Now set $d=\min \{p \in \Gamma \mid p \not \equiv 0(\mathrm{~m})\} \cup\{c\}$ and $E=\{p \in \Gamma \mid p \geqq d\}$. Then

Theorem II. $\mathscr{P}_{y+h_{\Gamma}}=\mathscr{M}_{\Gamma}$ if and only if for each $q \in \Gamma, p \in E$ with $q<p$, we have $(1 / 2)(q+c) \leqq p$.
2. Sketch of the proofs. We may assume $A \subset \bar{A}=k[[t]]$, and we let ν be the standard valuation in A. The condition that A is pythagorean can be rephrased as follows. If $g, h \in A$, then $\sqrt{g^{2}+h^{2}} \in A$. Notice that $\sqrt{g^{2}+h^{2}} \in k[[t]]$. After this, the method to prove I and II consists of: (a) finding suitable $A \in \mathscr{P}_{y^{t}}{ }^{\prime}, g, h \in A$ and identifying $\nu\left(\sqrt{g^{2}+h^{2}}\right)$; (b) finding suitable "equations" for an element $f \in k[t]]$ to be in A. Let us show now how this works in some cases.

Proof (of I). For the "only if" part, let $A \in \mathscr{P}_{y}{ }^{t} h_{\Gamma}$ be such that $t q \in A$. Then if $p_{1}, p_{2} \in \Gamma, q<p_{1} \leqq p_{2}$ there are $g_{1}, g_{2} \in k[[t]]$ with $t^{q} g_{1}, t^{q} g_{2} \in A$ and $\nu\left(g_{1}\right)=p_{1}-q, \nu\left(g_{2}\right)=p_{2}-q$. We have

$$
\sqrt{t^{2 q}+\left(h_{1}+h_{2}\right)^{2}}=-t^{q}+\sqrt{t^{2 q}+h_{1}^{2}}+\sqrt{t^{2 q}+h_{2}^{2}}+f
$$

where $\nu(f)=p_{1}+p_{2}-q$. As A is pythagorean, $f \in A, p_{1}+p_{2}-q \in \Gamma$, and $\left(p_{1}-q\right)+\left(p_{2}-q\right) \in \Gamma_{q}$.

For the "if" part, it is checked that the monomial curve $A=\{f \in$ $\left.k[[t]]: f^{(n)}(0)=0, n \notin \Gamma\right\}$ is pythagorean as a consequence of the hypothesis on the Γ_{q}.

Proof ("Only if" of II). The proof is developed in four steps. The first one is the inequality $c \leqq 2 d$. To do that, write $d=\lambda m+r, 0<r<m$ (case $r=0$ is trivial). If $c>2 d$ a curve $A \in \mathscr{M}_{\Gamma}$ is obtained such that $t^{m}, t^{d}+t^{c-(r+1)}, t^{d+j r} \in A, j \geqq 1$. Then

$$
\sqrt{t^{2 \lambda m}+\left(t^{d}+t^{c-(r+1)}\right)^{2}}=\sum_{l \geqq 1} M_{l} t^{d+(2 l-1) r}+t^{\lambda m} g, \quad M_{l} \in k
$$

where $\nu(g)=r+c-(d+1)$. Since $\mathscr{P}_{y} t h_{\Gamma}=\mathscr{M}_{\Gamma}$ we conclude $t^{\lambda m} g<A$ and ${ }^{\prime} \lambda m+r+c-(d+1)=c-1 \in \Gamma$, which is absurd.

The remaining steps run along the same lines. Once the suitable square root has been found, the hard part is to obtain effectively the curve $A \in \mathscr{M}_{\Gamma}$

Proof ("If" of II) Let $A \in \mathscr{M}_{\Gamma}, g, h \in A$ and $f=\sqrt{g^{2}+h^{2}} \in k$ [[$\left.\left.t\right]\right]$. To show that $f \in A$ we distinguish two cases:
i) $q=\nu(f) \geqq d$. Then we can assume $g=t^{q}$ and the hypothesis applies to deduce a formula $f=a g+b h+f^{*}, \nu\left(f^{*}\right) \geqq c$, and so $f \in A$.
ii) $q=\nu(f)<d$. Then we can assume $t^{m} \in A$ and find numbers $a_{j l} \in k$ such that $f \in A$ if and only if it is true that

$$
\begin{aligned}
& f^{(l)}(0)=0 \text { for } l<d, l \not \equiv 0(m), \text { and } \\
& \frac{1}{l!} f^{(l)}(0)=\sum_{j=1}^{s} \frac{1}{p_{j!}} f^{(p j)}(0) a_{j l} \text { for } l>d, l \notin \Gamma
\end{aligned}
$$

where $p_{1}<\cdots<p_{s}$ are the integers $<c$ and $\not \equiv 0(m)$ in Γ. This is of course related to the moduli of Γ (see [2]). Finally, as g and h verify these equations, it follows by induction on q that so does f.
3. Applications. Recall that A is called Gorenstein if the length of the A module $\mathfrak{M}^{-1} A$ is 1 (where \mathfrak{M} is the maximal ideal of A) [3], and it is called Arf if emb $-\operatorname{dim}(B)=\operatorname{mult}(B)$ for every local ring B infinitely near to A, [4]. Then from I and II, and general properties of the valuesemigroup, one deduces:
(3.1) Assume A Gorenstein. Then $p A=1$ if and only if mult $A \leqq 2$.
(3.2) Assume A plane. Then (a) $p A=1$ if mult $A \leqq 2$; (b) $p A=2$ if mult $A \geqq 3$.
(3.3) Assume A monomial. Then $p A=1$ if and only if A is Arf.

Finally let us say that I and II furnish a useful device for exploring pythagorean curves of low multiplicity. Actually, we have obtained the list of all pythagorean curves of multiplicity $\leqq 5$. For instance, the ones of multiplicity 3 are

$$
A_{n}=k\left[\left[t^{3}, t^{3 n+1}, t^{3 n+2}\right]\right], \quad B_{n}=k\left[\left[t^{3}, t^{3 n+2}, t^{3 n+4}\right]\right](n \geqq 1) .
$$

(Complete details are given in [5] and [6].)
4. Two conjectures. In the light of the previous results the following conjectures are suggested:
(4.1) Every pythagorean curve is Arf.
(4.2) Every local ring infinitely near to a pythagorean curve is pythagorean too. Both of them can be tested for multiplicity $\leqq 5$, of course.

References

1. A. Campillo, Algebroid curves in positive characteristic. Lecture Notes in Mathematics 813, Springer-Verlag, New York, 1980.
2. S. Ebey, The classification of singular points of algebraic curves, Trans. A.M.S. 118 (1965), 454-471.
3. E. Kunz, The value-semigroup of a one-dimensional Gorenstein ring. Proc. A.M.S. 25 (1970), 748-751.
4. J. Lipman, Stable ideals and Arf rings, Amer. J. Math. 93 (1971), 649-685.
5. J. M. Ruiz, Ph. D. Dissertation, Univ. Complutense de Madrid, 1982.
6. -, On pythagorean real curve germs, preprint, 1983.

Departamento de Algebra, Facultad de Matemáticas, Universidad Complutense, Madrid, Spain

