ON PYTHAGOREAN REAL IRREDUCIBLE ALGEBROID CURVES

JESÚS M. RUIZ

Dedicated to the Memory of Gus Efroymson

In this note we deal with the pythagoras number p of certain 1-dimensional rings, i.e., real irreducible algebroid curves over a real closed ground field k. The problem we are concerned with is to characterize those real irreducible algebroid curves which are pythagorean (i.e., p = 1). We obtain two theorems involving the value-semigroup. Then we apply them to solve the cases of: (a) Gorenstein curves, (b) planar curves, (c) monomial curves, and (d) curves of multiplicity ≤ 5 . Finally, two conjectures are stated.

1. Statement of the theorems. Let k be a fixed real closed field. A real irreducible algebroid curve is any real 1-dimensional complete local integral domain A whose residual field is k.

Let pA denote the pythagoras number of A (i.e., the least $p \ge 0$ such that any sum of squares is a sum of p squares). It can be shown that pA is finite. When pA = 1, A is called pythagorean.

Now we recall some definitions [1]. As is known, the derived normal ring \overline{A} of A is a discrete valuation ring and we denote by ν its valuation. The semigroup $\Gamma = \nu(A - \{0\})$ is called value-semigroup of A. Then

i) The multiplicity of A = least positive integer m in Γ .

ii) The degree of the conductor of A in \overline{A} = least positive integer $c \in \Gamma$ such that each $n \ge c$ is in Γ .

Conversely, if Γ is a numerical semigroup (i.e., $\Gamma \subset N$ and $N - \Gamma$ is finite) the right sides above give definitions of m and c. Finally we denote by \mathcal{M}_{Γ} the class of all curves whose value-semigroup is Γ and by $\mathcal{P}_{\mu}cA_{\Gamma}$ the class of all pythagorean curves in \mathcal{M}_{Γ} . Then we have

THEOREM I. $\mathcal{P}_{\mathcal{F}}\mathcal{A}_{\Gamma} \neq \phi$ if and only if for each $q \in \Gamma$ the set $\Gamma_q = \{p - q | p \ge q, p \in \Gamma\}$ is a semigroup.

Now set $d = \min\{p \in \Gamma | p \neq 0(m)\} \cup \{c\}$ and $E = \{p \in \Gamma | p \ge d\}$. Then THEOREM II. $\mathcal{P}_{\mathcal{Y}}\mathcal{I}_{\mathcal{F}} = \mathcal{M}_{\Gamma}$ if and only if for each $q \in \Gamma$, $p \in E$ with q < p, we have $(1/2)(q + c) \leq p$.

2. Sketch of the proofs. We may assume $A \subset \overline{A} = k[[t]]$, and we let ν be the standard valuation in A. The condition that A is pythagorean can be rephrased as follows. If $g, h \in A$, then $\sqrt{g^2 + h^2} \in A$. Notice that $\sqrt{g^2 + h^2} \in k$ [[t]]. After this, the method to prove I and II consists of: (a) finding suitable $A \in \mathcal{P}_{\mathcal{Y}} \ltimes_{\Gamma}$, $g, h \in A$ and identifying $\nu(\sqrt{g^2 + h^2})$; (b) finding suitable "equations" for an element $f \in k[t]$ to be in A. Let us show now how this works in some cases.

PROOF (of I). For the "only if" part, let $A \in \mathscr{P}_{\mathscr{I}} \mathscr{I}_{\mathcal{I}_{\Gamma}}$ be such that $t^q \in A$. Then if $p_1, p_2 \in \Gamma$, $q < p_1 \leq p_2$ there are $g_1, g_2 \in k[[t]]$ with $t^q g_1, t^q g_2 \in A$ and $\nu(g_1) = p_1 - q, \nu(g_2) = p_2 - q$. We have

$$\sqrt{t^{2q} + (h_1 + h_2)^2} = -t^q + \sqrt{t^{2q} + h_1^2} + \sqrt{t^{2q} + h_2^2} + f,$$

where $\nu(f) = p_1 + p_2 - q$. As A is pythagorean, $f \in A$, $p_1 + p_2 - q \in \Gamma$, and $(p_1 - q) + (p_2 - q) \in \Gamma_q$.

For the "if" part, it is checked that the monomial curve $A = \{f \in k[[t]]: f^{(n)}(0) = 0, n \notin \Gamma\}$ is pythagorean as a consequence of the hypothesis on the Γ_q .

PROOF ("Only if" of II). The proof is developed in four steps. The first one is the inequality $c \leq 2d$. To do that, write $d = \lambda m + r$, 0 < r < m(case r = 0 is trivial). If c > 2d a curve $A \in \mathcal{M}_{\Gamma}$ is obtained such that t^{m} , $t^{d} + t^{c-(r+1)}$, $t^{d+jr} \in A$, $j \geq 1$. Then

$$\sqrt{t^{2\lambda m} + (t^d + t^{c-(r+1)})^2} = \sum_{l \ge 1} M_l t^{d+(2l-1)r} + t^{\lambda m} g, \qquad M_l \in k,$$

where $\nu(g) = r + c - (d + 1)$. Since $\mathcal{P}_{\mathcal{Y}}\mathcal{C}_{\Gamma} = \mathcal{M}_{\Gamma}$ we conclude $t^{\lambda m}g < A$ and $\lambda m + r + c - (d + 1) = c - 1 \in \Gamma$, which is absurd.

The remaining steps run along the same lines. Once the suitable square root has been found, the hard part is to obtain effectively the curve $A \in \mathcal{M}_{\Gamma}$

PROOF ("If" of II) Let $A \in \mathcal{M}_{\Gamma}$, $g, h \in A$ and $f = \sqrt{g^2 + h^2} \in k$ [[t]]. To show that $f \in A$ we distinguish two cases:

i) $q = \nu(f) \ge d$. Then we can assume $g = t^q$ and the hypothesis applies to deduce a formula $f = ag + bh + f^*$, $\nu(f^*) \ge c$, and so $f \in A$.

ii) $q = \nu(f) < d$. Then we can assume $t^m \in A$ and find numbers $a_{jl} \in k$ such that $f \in A$ if and only if it is true that

$$f^{(l)}(0) = 0 \text{ for } l < d, l \neq 0 (m), \text{ and}$$

$$\frac{1}{l!} f^{(l)}(0) = \sum_{j=1}^{s} \frac{1}{p_{j!}} f^{(p_j)}(0) a_{jl} \text{ for } l > d, l \notin \Gamma,$$

where $p_1 < \cdots < p_s$ are the integers < c and $\neq 0(m)$ in Γ . This is of course related to the moduli of Γ (see [2]). Finally, as g and h verify these equations, it follows by induction on q that so does f.

3. Applications. Recall that A is called Gorenstein if the length of the A module $\mathfrak{M}^{-1}A$ is 1 (where \mathfrak{M} is the maximal ideal of A) [3], and it is called Arf if emb $-\dim(B) = \operatorname{mult}(B)$ for every local ring B infinitely near to A, [4]. Then from I and II, and general properties of the value-semigroup, one deduces:

(3.1) Assume A Gorenstein. Then pA = 1 if and only if mult $A \leq 2$.

(3.2) Assume A plane. Then (a) pA = 1 if mult $A \leq 2$; (b) pA = 2 if mult $A \geq 3$.

(3.3) Assume A monomial. Then pA = 1 if and only if A is Arf.

Finally let us say that I and II furnish a useful device for exploring pythagorean curves of low multiplicity. Actually, we have obtained the list of all pythagorean curves of multiplicity ≤ 5 . For instance, the ones of multiplicity 3 are

$$A_n = k[[t^3, t^{3n+1}, t^{3n+2}]], \quad B_n = k[[t^3, t^{3n+2}, t^{3n+4}]] \ (n \ge 1).$$

(Complete details are given in [5] and [6].)

4. Two conjectures. In the light of the previous results the following conjectures are suggested:

(4.1) Every pythagorean curve is Arf.

(4.2) Every local ring infinitely near to a pythagorean curve is pythagorean too. Both of them can be tested for multiplicity ≤ 5 , of course.

References

1. A. Campillo, Algebroid curves in positive characteristic. Lecture Notes in Mathematics 813, Springer-Verlag, New York, 1980.

2. S. Ebey, *The classification of singular points of algebraic curves*, Trans. A.M.S. **118** (1965), 454–471.

3. E. Kunz, The value-semigroup of a one-dimensional Gorenstein ring. Proc. A.M.S. **25** (1970), 748–751.

4. J. Lipman, Stable ideals and Arf rings, Amer. J. Math. 93 (1971), 649-685.

5. J. M. Ruiz, Ph. D. Dissertation, Univ. Complutense de Madrid, 1982.

6. ——, On pythagorean real curve germs, preprint, 1983.

DEPARTAMENTO DE ALGEBRA, FACULTAD DE MATEMÁTICAS, UNIVERSIDAD COMPLUTENSE, MADRID, SPAIN