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Introduction. This survey is concerned with recent developments in the 
Artin-Schreier theory of fields. The basic notion of an ordering of a 
field has been extended to the more general notion of an ordering of 
higher level. This extension has opened the way to a natural, far-ranging 
extension of the ordinary Artin-Schreier theory. Between 1924 and 1927, 
the foundation of the Artin-Schreier theory was laid by two papers of 
E. Artin ([1], [2]), by two joint papers of E. Artin and O. Schreier ([3], [4]) 
and by R. Baer's contribution [5]. As an introduction to this survey we 
recall some main features of these papers and the investigations they 
inspired. 

It is thown that a field K can be ordered if and only if it is formally real 
which, by definition, means that — 1 is not a sum of squares in K. More
over, an element of K is proved to be a sum of squares if and only if it is 
contained in all orderings of K. 

The maximal real agebraic extensions R of K (the real closures of K) 
are shown to admit the unique ordering R2. Via R i-> R2 f| K (R2 f| K 
is an ordering in K), their conjugacy classes over K correspond bijectively 
to the orderings of K. 

Starting from these results Artin was able to solve Hubert's \lth prob
lem in the affirmative. Artin's proof related, for the first time, the theory 
of real fields with real algebraic geometry. This becomes especially clear 
in S. Lang's version of this proof [35] which in turn gave rise to the Real 
Nullstellensatz by Dubois [27] and Risler [40]. An up-to-date account of 
this relationship can be found in several papers contained in [23]. 

Real closed fields are characterized by the property that their algebraic 
closure is a finite, nontrivial extension or, equivalently, by the property 
that their absolute Galois group is a nontrivial finite group, in fact a 
cyclic group of order 2. From this point of view, the theory of real closed 
fields contributes to the question of characterizing which profinite groups 
may occur as the absolute Galois group of a field. It is this problem which 
is of interest for this paper. 
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Real closed fields were also important in the development of model 
theory. In 1948 A. Tarski published his famous Tarski Principle for these 
fields [45] and later A. Robinson proved the model completeness of the 
elementary theory of real closed fields. One can see from the introduction 
of the paper [3] of Artin and Schreier that at least Tarski's result on com
pleteness fits nicely with the motivation of the founder of the theory. 

Today it appears quite natural to treat orderings of a field by using valu
ation rings. It is interesting to learn that Artin and Schreier in [3] and, 
more systematically, Baer in [5], had already proceeded in this manner. 
They all were led to valuation rings by investigating Archimedes' axiom 
in arbitrary ordered fields. Besides model theory there is another area of 
current research that is not touched upon in the fundamental papers of 
Artin, Schreier and Baer. In 1966 A. Pfister [38] revealed the importance 
of the various orderings of a field K for the quadratic forms over K. 
He was dealing with the signatures sgnP(p) of a quadratic form p with 
respect to the various orders P of K and was able to derive deep results 
on the Witt ring of K. 

Our list of some of the main features of the ordinary Artin-Schreier 
theory is now complete. Each of the items will be discussed again in the 
extended theory. The extension is based on the replacement of orderings 
by orderings of higher level or by signatures of higher level. By definition, 
a signature % of K is a character %: K* -> Q/Z with an additively closed 
kernel, and the orderings of higher level are just the kernels of those 
signatures. The signatures %: K* -> (1/2«)Z/Z of level n are related to the 
sums of 2n-i\\ powers in Kin the same way that the ordinary orderings are 
related to sums of squares. In extending Artin's result we find more gener
ally that an element of AT* is a sum of 2«-th powers if and only if it is con
tained in the intersection of all orderings of level n. 

The plan of the survey is the following. In §1 we present the Kadison-
Dubois representation theorem for Archimedean partially ordered rings. 
This theorem serves as the fundamental device in studying Archimedean 
properties of fields and leads to the definition and study of the real holo-
morphy ring. Signatures and orderings of higher levels are defined and 
investigated in §2. Their application to questions on sums of 2«-th powers 
is discussed. In the next section we shall be concerned with higher re
duced Witt rings by which Pfister's approach is extended to signatures of 
higher level. The last two sections are devoted to real closures of signatures 
of higher level (§4), and to the theory of these fields (§5), including a 
proof of the Nullstellensatz over them. 

I would like to thank Dan Shapiro for his help in preparing this paper. 

1. The representation theorem of Kadison-Dubois and the real holomorphy 
ring. The importance of the Archimedean property of an ordering was 
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noticed as early as in the papers of Artin-Schreier [3] and Baer [5]. It is 
the distinction between Archimedean and non-Archimedean orderings or 
partial orders that we adopt as one of the leading principles. The Kadison-
Dubois representation theorem treats a rather general Archimedean 
situation. In the field case, the deviation from the Archimedean axiom is 
related to the appearance of nontrivial valuation rings with a formally real 
residue field. The real holomorphy ring H(K) of a formally real field K 
comprises both aspects. It consists of those elements of the field which are 
finite with respect to every ordering of K. The valuation rings of K with a 
formally real residue field are just the localizations of H(K). Hence, in the 
study of the various orderings of a field, the holomorphy ring is to be 
regarded as one of the basic global objects. 

The representation theorem is concerned with Archimedean partially 
ordered rings. Let R denote a ring with 1, neither associativity nor com-
mutativity being assumed. An infinite preprime P (in the sense of Har
rison [29]) is a subset of R subject to the conditions 

(*) 0, 1 e P; -1 $ P ; P + P a P and PP c P. 

Note that (*) implies char(P) = 0, hence Z a R. If additionally 

(**) (Vae R) (In eN):n - aeP 

holds then P is called an Archimedean infinite preprime. Basic examples 
are provided by compact Hausdorff spaces X: 

R0 = C(X, R), P0 = CHX, R) = {fé C(X9 R) | (Vx e X):f(x) ^ 0}. 

The Kadison-Dubois representation theorem relates an arbitrary ring 
with an Archimedean infinite preprime P to these examples (C(X, R), 
C+(X, R)). Given (P, P) as above set 

X = {(j) 6 Hom(P, R) | <f>(P) c R2}. 

By Hom(P, R) we mean the set of unitary ring homomorphisms. On X 
we impose the weak topology with regard to all the evaluation functions 
â : X -> R, (f> »-• (j){a). We get the representation 

(R -* C(X, R) 
0:< 

[a -> a 
1.1. THEOREM \) Xis a non-empty compact Hausdorff space, 
ii) 0~i(C+(X, R)) = {aeR\ (V« e N) (3m e N) : m(\ + no) e P}, 

iii) ker 0 = {a e R | (V/i e N) (ìm e N): m(\ ± na) e P}, 
iv) Q - 0(R) is dense in C(X, R), 

V; l a ; ' U e P * n Po0(a)eC(X,R)* f] C+(X, R). 
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Here R* denotes the group of units of R, whenever R is a ring. 
This theorem and its proof have a long history. The first special case 

was treated by H. Stone [32] in 1942, his result was extended by Kadison 
[32] in 1952, later by D. Dubois [26] in 1968 and by the author [8] in 1979. 
Today an easy proof by N. Schwartz and the author is available [15]. 
In [44] R. G. Swan studied projective modules over certain rings by 
relating them to vector bundles over associated compact Hausdorff 
spaces. These rings had to satisfy certain axioms and it is interesting to 
note that in the situation above the image of R under 0 meets these re
quirements. 

We next turn to the application of 1.1 to infinite preprimes of fields. 
such a preprime T of K is called a preordering if T* := T\{0} is a sub
group of K*, and a torsion preordering if additionally K*/T* is a torsion 
subgroup. Let T be a torsion preordering of K. In general, T need not be 
an Archimedean preprime. Following the approach of Artin-Schreier and 
Baer we therefore introduce the ring A(T) of the "finite" elements. 

A(T) = {a G K | (3n e N): n ± a e T) 

ACT) is readily checked to be a subring of K. As an application of 1.1, 
in [8] the following fundamental result is proved. 

THEOREM 1.2. Given a torsion preordering T of the field K, the following 
statements hold: 

i) A(T) is a Prüfer ring with quotient field K. 
ii) as a ring, A(T) is generated by the elements 1/(1 -f t), t e T; 

iii) every valuation overring ofA(T) has a formally real residue field. 

Following one of the various definitions we call an integral domain a 
Prüfer ring if every localization is a valuation ring. 

In view of statement iii) we obtain the important corollary that a field 
is formally real if and only if it admits a torsion preordering. Statement 
iii) immediately leads us to consider the intersection of all valuation 
rings of K with a formally real residue field, H(K) = f] V, where V ranges 
over all valuation rings of K with formally real residue field. H{K) is 
called the real holomorphy ring of K. It includes the two sorts of informa
tion we are interested in, the Archimedean property and the deviation from 
it measured by valuation rings. This is the essence of the next statement. 
Set 

k k oo k 

£ # " = { £ * ? l * i , ...,xkeK},%K* = U S * * -
i i k=i l 

THEOREM 1.3. i) H(K) = A(T>K2) = {a e K \ (3n e N): n ± a e J^K2}. 
ii) H(K) is a Prüfer ring with quotient field K. 
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iii) A valuation ring V of K has a formally real residue field if and only if 
H(K) cz V. 

In order to derive 1.3 from 1.2 one only has to observe that a valuation 
V of K has a formally real residue field if and only if (1 H- Z a ^ ) - 1 e V 
holds for every xh . . . , xr e K, r e N. 

By the procedure described before 1.1 we obtain a topological space M 
attached to H = H(K), since H can be expressed as A(J^K2). It turns out 
that M = Hom(#, R), since H Ç] £K2 = £H2. But by 1.3, ii) and iii), 
every <j> e M extends uniquely to a real place A : K -• R (J °° a n d every 
real place can be obtained in this way. For more details see, e.g., [10]. 
Moreover, M is seen to coincide with the subspace of closed points in the 
real spectrum of H [10]. 

2. Signatures of fields. Set fi = {z e C | zn = 1 for some n). By defini
tion, a signature % of K is a character ^: K* -> fx with an additively closed 
kernel. This notion was introduced in [14] by J. Harman, A. Rosenberg 
and the author. It extends the notion of an ordering P in a character 
theoretical setting. Note that an ordering P can be equivalently replaced 
by the signature sgnP where sgnP(a) = 1 or — 1 if aeP* or a e — P* 
respectively. Obviously, we get P back via JP* = ker sgnF. In general, 
the kernels of arbitrary signature, the so called orderings of higher level 
[6], [9], [14], play an important role too. But in certain circumstances it is 
easier to start with signatures than with orderings of higher level. 

We first extend Artin's characterization of sums of squares in a 
field. 

THEOREM 2.1. Let T be a torsion preor'dering of K. Then 

T* = f) ker z , 

where % ranges over the set XT of all signatures ofK with T* c ker Z. 

This theorem generalizes Artin's result for the case T = J^K2, since 
the kernel of a signature % e XZKz necessarily has index 2 in K* and is 
therefore of the type sgnF, for an ordering P. 

The other basic discovery of Artin-Schreier and Baer, namely that an 
ordering gives rise to a valuation ring, also extends to this more general 
situation. 

For any signature % of # w e set 

A(x) - ^4(ker x [j {0}), 

T(X) ••= {a e K \ (V« G N) : \ ± a e ker %}. 

As proved in [8, (3.4)] or [14, (2.7)], we get the following result. 
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THEOREM 2.2. 

i) A(x) is a valuation ring with the maximal ideal I{y). The residue field 
Ä(%)IK%) is formally real, 

ii) i induces the signature of an Archimedean ordering P of A(%)/I(%) 
via e + I(%) *-+ x(e\ e G Ad)*. 

We are now going to specialize the previous results. The ordinary 
Artin-Schreier theory provided basic tools for the study of sums of 
squares in fields. In an analogous manner, one can exploit the extended 
Artin-Schreier theory for the investigation of sums of 2«-th powers. To 
this end we deal with the torsion preordering J^K2n. (Arbitrary torsion 
preorderings have not yet found any applications.) A detailed account can 
be found in [9], [11]. 

THEOREM 2.3. For afield K the following statements are equivalent. 
i) — 1 e J^K2, i.e., K is not formally real. 

ii) - 1 G Y^K2n for some neN. 
iii) -leZK2»forallneN. 

This was first proved by Joly [31], but a proof also easily follows from 
1.2 since J^K2n is a torsion preordering if we assume —\$ J^K2n. 

A famous result of Pfister [37] states that the "Stufe" s of a field is 
always a power of 2. The Stufe s equals si in the sense of the following 
definition. 

k 

sn = sn(K) = m'm{k G N | - 1 G J^K2n) or sn = oo. 

To date, there are no hints indicating which way Pfister's result might 
be extended. To stimulate interest I would like to pose the first problem. 

PROBLEM 1. What are the natural numbers which occur as the higher 
Stufen sn of fields? 

A signature x which is trivial on ^K2n necessarily has a finite order 
2m in the character group of K*, where m\n. This order is even since 
X(— 1) = —1. In this case, s(%) = m is called the level of %. If P = 
(ker x) U {0} where ^ is a signature with s(x) = m then P is called an 
ordering of level m. The orderings of level 1 are just the usual orderings 
of the Artin-Schreier theory. This terminology follows the convention of 
[14] and supersedes the previous notations. Without a reference to signa
tures, an ordering of level m can be characterized as any subset of K 
subject to 

K2™ c P, P + P c P, PP c P, A:* /P* cyclic of order 2m. 

Note that the first three conditions imply that P* = P\{0) is a subgroup 
of #*. 
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In terms of orderings of higher level, theorem 2.1 reads as follows. 

THEOREM 2.4. J^K2n = f]P, where P ranges over all orderings of level m, 
for which m\n. 

In the proof of 2.1 one has as an intermediate result that J* = 
PjF*r*, where Tis any torsion preordering and Franges over all valua
tion rings with a formally real residue field. This fact and the statement v) 
in 1.1 result in surprising relations between sums of 2«-th powers and 
the real holomorphy rings. 

THEOREM 2.5. Let K be a formally real field. Then the following statements 
hold for H = H(K\ 

i) H = A(X&")9 

ii) 2# 2 w = (//* f| 2*2X2*2)». 

PROOF. 

i) Theorem 1.2, iii), says that H <= A{J^K2n). By 1.2, ii), the latter 
ring is generated by the elements 1/1 + 2 ï xf1, x{ e K, r e N . These ele
ments themselves are contained in every valuation ring with a formally 
real residue field, hence A(J^K2n) a H. 

ii) Because of H fi UK2 = 2 # 2 > the statement i) just proved, and 1.1, 
v),we get if* fi ZK2 a 2# 2 w . Take #e(2A:2)*, then q«e V*K*2« for 
every valuation ring V with a formally real residue field. Hence, qn e 
p)K*#*2* = %K2». This all implies 2 # 2 w => (H* fl L# 2 ) ( i ;# 2 ) w . To 
prove the opposite inclusion write 

^ l ~~ ŒxïY yLj l 

and check that the first factor on the right hand side lies in H* f| UK2. 

A detailed study of the group H* f\ J^K2 has led to results on the finite-
ness of the Waring numbers 

g(K, n) = min{/ e N (J {oo} | 2 > " = Ç K»} 

where K is any field, n e N. In [11], this number was denoted by Pn(K) 
and called the w-th Pythagoras number. But, following the more classical 
notations g(u) and G(u) of Hardy-Littlewood, I would like to make this 
change. 

THEOREM 2.6. ([11]) Given afield K the following statements are equiva
lent. 

i) g(K, 2) < oo, 
ii) g(K, 2ri) < oo for some n, 

iii) g(K, In) < oo for all n. 
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Moreover, there is a polynomial bound for g(K, In) in terms of g(K, 2). 

Poster has shown g(R(Xl9 . . . , Xk), 2) ^ 2k [39]. Hence we see g(R(Xx, 
. . . , Xk), 2n) < oo for all k, n. The precise values are unknown. The 
study of the numbers g(K, 2) is in general extremely difficult, and the 
numbers g(K, In) present even more difficulties. Moreover it seems that 
studying the g(K9 2n), n > 1, one requires new ideas and methods beyond 
those already known in quadratic form theory. This is the reason for the 
second problem. 

PROBLEM 2. Find general results on the g(K, In), either sharp bounds or 
exact values. 

If one tries to extend the above applications of signatures and the real 
holomorphy rings, one is immediately led to the question of which subsets 
Toï K* can be represented as an intersection of kernels of signatures. For 
T to be represented in this way there are two obvious necessary condi
tions: T is a preordering and H* fl T,K2 c T. The latter condition 
follows since H* f| UK2 = f] ker % where % ranges over the whole set 
of signatures ([14, (2.10)], [11, (1.1)]). In general, these two conditions are 
not sufficient as examples show [18], but cf 2.1. For further applications 
it is therefore interesting to deal with the following problem. 

PROBLEM 3. Characterize the intersections of kernels of signatures and 
understand their meaning. 

3. The reduced Wittrings of higher level. Let sgn(K) denote the set of all 
signatures of K and K~* the compact character group of the discrete 
group K*. We give sgn(Äf) the subspace topology. In general, sgn(AT) is 
not closed in AT"*. Its closure sgn(A )̂ has been determined in [18]. 

THEOREM 3.1. A character x' K* -> S1 lies in sgn(K) if and only if it 
satisfies : 

i) A(%) is a valuation ring of K, 
ii) I(%) is the maximal ideal of A(%), 

iii) i induces via e + /(%) »-* %{e), e e A{y), the signature sgnP of an 
Archimedean ordering P ofA(%)/I(%). 

Here, of course, A{y) and I(%) are defined in the same manner as in 
§2. 

In some sense, this is a satisfying theorem because it shows that, even 
in the most general context, the two basic features of the Artin-Schreier 
theory are preserved (the Archimedean property and the occurence of 
valuation rings). But on the other hand, it seems to suggest that one 
should deal with all characters x 6 sgn(AT) and not just with signatures 
X'. K* -> //as defined here. For future investigations this might become 
necessary. Actually however, there is no need to be concerned with the 
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"most general signatures" % e sgn(AT). To see this, first set XT = {̂  e 
sgn(K)\%(T*) = 1} where Tis any preordering of K. Denoting the closure 
by XT we get 

H ker x = H ker Z-

Hence, in this regard, there is no need at all to turn to XT. In the case of 
a torsion preordering Twe even get that XT is closed, since K*/T'* is 
closed in K~*. Thus we have 

PROPOSITION 3.2. If T is a torsion preordering, then XT is a compact 
Hausdorff space. 

If T = S ^ 2 then XT is just the well known Harrison space X(K) of 
all the orderings of K, see, e.g., [10]. The theory of reduced quadratic 
forms ([12], [13], [21], [36]) is concerned with the subring Wreà(K) a 
C(X(K), Z) which is generated by the evaluation functions a : X(K) -> Z, 
P »-• sgnP(a). This definition is easily extended to our general situation. 
Instead of Z we have to deal with Z\y\ =•. a which is, by the classical 
result of Dedekind-Weber, the ring of integers of the maximal abelian 
extension of Q. Each ae K* induces the function â: XT -> a, % i-> %(a). 
Hence, we define WT to be the subring of C(XT, a) which is generated by 
these functions a, âe K*. Here a is regarded as a discrete ring, and T is 
assumed to be a torsion preordering. 

These rings WT are the reduced Witt rings of higher level. A forth
coming paper of A. Rosenberg and the author is devoted to them. But 
that paper treats only the case that K*/T* has a finite exponent 2n. A 
sample of the results will be described in the sequel. 

We fix a preordering T subject to K2n a T. A "form" over T of dimen
sion k is a /:-tuple p = (a^ . . . , ak), at e K*. A form p induces the function 
p = HajE WT. Two forms p and z are called isometric (p Ä Z) if 
dim p = dim r and p = z. In the case of quadratic forms one has the 
two fundamental relations (Satz 7 of Witt [46]) 

(x2a) ^ (a) for a, x e K*, 

(a, b) e* (a + b, (a + b)ab) for a, b, a + b e K*. 

In our context the following statements are valid. 

PROPOSITION 3.3. 

i) (to) Ä (a) /or aeK*,teT, 
ii) (a, 6) ~ (a + ò, a2w^ + ab2n) for a, b, a + b e K*. 

The proof relies heavily on the fundamental fact that for every signa
ture #, A(%) is a valuation ring and that ^ induces the signature of an 
ordering on the residue field. Witt's Satz 7 states that it is possible to pass 
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from one form to an isometric one by a finite number of applications of 
the basic relations. This is true in our situations as well. To have a con
venient notion at hand we say that a form p over T is chain-equivalent to 
the form % over T if % can be obtained by a finite number of the substitu
tions as given in i) and ii) of 3.3. 

THEOREM 3.4. Two forms over T are isometric if and only if they are 
chain-equivalent. 

This is one of the basic theorems which enables a detailed study of the 
higher reduced Witt rings. Some of its many consequences follow. 

COROLLARY 3.5. Ifp = (al9 . . . , ak) and z = (bÌ9 ..., bk) are isometric 
then their value sets coincide : 

DT(p) := t Ta, = t Tb{ - DT(T). 
1 1 

COROLLARY 3.6. The kernel of the natural epimorphism Z\K*\T*\ -> WT 

induced by a *-* â is generated by the elements 

Ï + (Pl)9 ä + b - (a + b) - (a2nb + ab2») 

where a, b, a + be K*, ä = aT* etc. 

Every reader who is familiar with the theory of reduced quadratic 
forms ([12], [13], [21], [36]) will easily recognize the analogy. This similarity 
remains valid for nearly all aspects of the theory. For instance, the prime 
spectrum of WT and its relation to orderings of higher level, the char
acterization of fans (see [8] for this notion) by the fact that WT is a group 
ring over an integral domain, and, finally, the representation theorem of 
[13] can all be carried over to our situation. 

Putting all these results together one is led to restart the program of 
abstract Witt rings [34], [36] and spaces of orderings [36] by considering 
appropriate factor rings Z[G]/J where G might be any torsion group. It 
is interesting to note that the pair (K*/T*, XT) represents a space of 
orderings of higher level [36] if one makes the obvious changes in Mar
shall's definition. Therefore the following problem is posed. 

PROBLEM 4. Extend the theory of abstract Witt rings and of spaces of 
orderings in order to incorporate the rings WT defined above. 

In the case of exponent 2, i.e., K2 c T, it is well known [12] that WT 

is a factor ring of the ordinary Witt ring W(K) of K. It seems to be a 
major problem to figure out the right definition for a non-reduced Witt 
ring of higher level. Various suggestions have already been made by 
Kleinstein-Rosenberg [33], by Carlsson [22] and, in the case of rings, by 
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Craven [24], [25]. Based on 3.6 we propose a further definition for the 
Witt ring Wn(K) of level«. 

Wn(K) = Z[K*IK*2»]/(Ï + (=T), a + b - ^~+T> - a2»6 + a62«) 

where a, b, a + b e K*, ä = tfi£*2w etc. 
Which definition is to be chosen is not yet clear. So far all of the pro

posals lead to infinite series of higher Witt rings, even to projective 
systems. What is the importance of these series for the field lCi This is 
not yet know. 

PROBLEM 5. Find the right definition for the Witt rings of higher level, 
relate them to the theory of forms of higher degree (if there is any rela
tionship) and study the whole system of Witt rings and reduced Witt 
rings of the various levels. 

4. Real closures. In this section we are concerned with the extensions 
of a given ordering P of level n to algebraic extensions L of the base field 
K. Define an ordering PL of L to be a faithful extension of P if s(PL) = 
s(P) = n and PL f| K = P. In this case, we write (L, PL) \ (K, P). A real 
closure (R, P) is by definition any maximal algebraic extension (R9 P) \ 
(K, P). Real closures exist by Zorn's lemma. It is often advantageous to 
switch over to signatures. This is possible because of the following easily 
proved fact. Given a signature % with P* = ker ^ then for every faithful 
extension (L, PL) \ (K, P) there is a signature %L of L such that %L(L*) = 
UK*), ker U = PI and U\K* = XK. 

Now let (R, P) be a real closure of (K, P) and choose iP, % with 
ker^p = P*, ker % = P*. We are going to consider the valuation ring 
A(x) and its additive value group T7. In [9] the next result has been estab
lished. 

THEOREM 4.1. 

i) A(%) is a Henselian valuation ring with a residue field which is real 
closed in the ordinary sense of Artin-Schreier. 

ii) If p denotes a prime then we have: 

r = pr ifpj(n9 

[r:Pr)=P ifp\n. 
Note that in the case of an ordering (n = 1) the value group r is divisi

ble. This implies that R2 is the only ordering of an higher level m,meN. 
In the case of n > 1 there is, on the other hand, a great variety of orderings 
and signatures of higher levels. Set //(2m) = {£ e C | Ç2w = 1} and choose 
a signature xo attached to an ordering (of level 1) of R. According to 
[14], signatures of a level s\m can be constructed by % = Xo0(vou) where 
rj : r -> jLt(2m) is any character and v : K* -* T is the Krull valuation 
corresponding to A(y). In fact we even have 
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PROPOSITION 4.2. 

i) Every signature of R of level s, seN, can be constructed as given 
above. 

ii) Ifx is any signature of R then s{%) = X\p\n P
ap, apeN \J {0}. 

iii) R is real closed with respect to a signature % (or ker % (J {0}) if and 
only s(%) = Ylp]n paP, where ccp > 0 for all p. 

If n > 1 there are in fact infinitely many signatures of R as seen from 
4.1, ii). Let us recall the situation we started from. A signature %p of K 
was chosen and then extended to the signature % of R. Obviously, R is 
real closed with respect to %. But now many new signatures appear, 
including some for which R is also real closed. Therefore it is a basic 
task to organize this huge set of signatures. This can be done by appealing 
to the notion of a chain of signatures, first introduced by J. Harman [28]. 
After further investigations of this concept, especially by R. Brown [19], 
[20], it was N. Schwartz [42] who quite recently came up with a new, 
surprisingly easy and effective definition of a chain of signatures. We 
follow his approach. 

Let F be any formally real field, set Z = linvMZ/7iZ = \[7JP, where 7JP 

is the ring of /7-adic integers, and where Z, Z>p are considered with their 
natural compact topologies. By Schwartz's definition, a chain of signatures 
is a homomorphism K: AT* -* Z* x Z such that the kernel of /c, denoted 
by r , satisfies : a$ —T implies 1 + a e T \J Ta. (In the terminology of 
[8], r i s a fan.) A chain K gives rise to a certain sequence of signatures in 
the following way. Set K(X) = (/co(X), £i(X))and let %t\ Z -> ju(t) be the 
homomorphism which is induced by 1 i-> exp(27ci/t). Then define %t = 
/co'(7ct°Ki)91 e N. It turns out that {%t}t^N is a sequence of signatures which 
satisfies 

(*) Xi = !> (XtsXT1)5 = XtXï1 f o r a n y ^ e N . 

Conversely, it can be proved that every sequence {xt}t^s °f signatures 
which satisfies (*) is induced by a chain n. Here, KQ = Xi anc* &\ — 
lim<_ XtXï1* a^ t e r identifying l inv fi(t) with Z in the natural way. 

Given a signature ^ of level s(%) = n, we say that a chain K passes 
through x if X = %2» in t n e construction as above. In general, the image 
rc(K*), for K a chain of signatures, is not closed in Z* x Z. Since the 
closed subgroups of Zp are known, we get for the closure, 

W*) = Z* x r i / ^ Z , , a ^ e N U {0, oo}. 

Here, we set p°°Zp = 0. 

PROPOSITION 4.2. Given any signature % of F there is a chain of signatures 
K passing through % and satisfying 
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K(K*) = z* x n z,. 
p\s(X) 

Two chains tt\ and A:2 of F are called equivalent if there is an automor
phism a of Z* x Z with a°A4 = £2. See [42, Th. 30] for a characterization 
of equivalent chains. 

Recall that (R, P) is a real closure of (K, P) where P has level «. In this 
situation we have 

THEOREM 4.3. Up to equivalence, R admits a unique K satisfying 

tfR*) = Z* x n Z*. 
p\n 

This theorem directly generalizes, and in fact implies, the result that a 
real closure in the sense of Artin-Schreier has R2 as the only ordering of 
a higher level m, m e N. For if R is such a field then R*2 is divisible which 
implies A;(R*2) = 1. Then tc(R*) = Z*, as claimed. 

Given a real closure (R, P), P* = ker £, we pick a chain A; through % 
which satisfies A;(Ì^*) = Z* X Ylp\nZp- By restricting it to K we obtain a 
signature tcQ passing through ^ and satisfying KQ(K*) = Z* x Ylp\nZp-
Obviously, equivalent chains induce equivalent ones on K. The following 
theorem generalizes the result of Artin-Schreier that two ordinary real 
closures are isomorphic over AT if and only if they induce the same order
ing. 

THEOREM 4.4. Given (K, P) with s(P) = n, choose a signature % with 
ker % = P*. Let (R^ P;), i = 1, 2 be two real closures of (K, P). Then 
the following statements hold. 

i) The conjugacy classes over K of real closures (R, P) over (K, P) 
correspond bijectively with the equivalence classes of chains K of K passing 
through x and satisfying K(K*) = Z* x YlP\nZp, 

ii) Rx c*K R2 0 R? p K = R% H Kfor all t e N. 

As a consequence of 4.4 one can show that in general there are infinitely 
many conjugacy classes of real closures, see [6, Ch. IV], [20] or [42] for 
details. 

The results above mentioned suggest that one should deal with fields 
and arbitrary chains n on them. In particular, a real closure (R, K) of (K, K) 
can be defined as well. The study of arbitrary pairs (AT, /c), it a chain, was 
begun in [28], then extended in [19], [20] by R. Brown and finally refor
mulated by N. Schwartz in [42]. 

5. The theory of generalized real closed fields. In this section we are 
concerned with fields R which admit an ordering P of level n such that 
(R, P) does not have any proper algebraic extension (L, PL)\(R, P). These 
fields are called generalized real closed fields. In the case of an ordering 
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P(s(p) = 1) these are just the real closed fields of Artin and Schreier. 
From [9, Bern. 3.8 (iv)] we get the following characterization. 

THEOREM 5.1. The following statements are equivalent. 
i) R is real closed with respect to an ordering of level n. 

ii) R admits a Henselian valuation ring with a residue field which is real 
closed in the ordinary sense, and with a value group F satisfying F — pF 
ifpXnand[F:pr] =pifp\n. 

In the situation of this theorem, one can show that the value group 
of every Henselian valuation ring with a real closed residue field satisfies 
the conditions as given above. This follows from the fact that for p I n, 
R*2 = R*2P and iorp\n w e have [JR*2/>: R*2P] = p. 

N. Schwartz [42, Th. 18] and J. Harman (unpublished) have extended 
5.1 to a characterization of fields which are real closed with respect to a 
chain of signatures; instead of only finite sets there occur arbitrary sets 
S of primes satisfying r = pF for p <£ S, [T7: pF] = p for p e S. 

If R is real closed with respect to P, s(P) = «, there are many Henselian 
valuation rings with the property of 5.1, ii). The ring A(P) is one of them 
but there is another distinguished one, as first shown by B. Jacob [30]. Set 

01 = {xeR\x$R*» U -^* w , 1 + xeR*»}, 

02 = {xe R\xe R*» \J -/**», xOx a 0{}9 O = Ox U 02. 

PROPOSITION 5.2. A(P) is the smallest and O is the largest valuation ring 
satisfying the conditions o/5.1, ii). 

As stated in the introduction, the model theory of ordinary real closed 
field has been developed mainly by Tarski and A. Robinson. B. Jacob 
[30] extended their results to generalized real closed fields. In fact, his 
unpublished results even cover a bigger class, e.g., the class of chain 
closed fields (R, K), see [42]. 

For the sequel fix a field R real closed with respect to P, s(P) = n. Let 
L denote the ordinary field language. For each/?|« we adjoin Dp(x), Tp(x), 
and we adjoin the predicate 0(x) <-* x e O where O is the valuation ring 
as above. The definitions of Dp{x\Tp{x) can be found in [30]. Denote 
the extended field language by L„. The proof of the following theorem is 
given in [30]. 

THEOREM 5.3. The theory Th(R) is decidable and is model-complete in 
the language Ln. 

It is well known that the model theory of the ordinary real closed 
fields provides a proof of the Dubois—Risler Nullstellensatz. Following 
this approach, by appealing to 5.3, B. Jacob and the author have derived 
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the Nullstellensatz over arbitrary generalized real closed fields. Details 
will appear in [17]. 

Let R be as above, and let A be an ideal in R[XX, . . . , Xk]. Set VR(A) = 
{xeR*\F(x)*=0for all FeA}sLndIRVR(A) = {FeR[Xli . . . , Xk]\F=0 on 
VR(A)}. In [17] it will be proved that there exists a certain semi-ring 
S s R[Xl9 . . '., Xk] generated by R[Xl9 . . . , Xk]

2n, P and certain distin
guished polynomials such that the following theorem holds. 

THEOREM 5.4. rads(A) = IRVR(A) where rads(A) = { / | / 2 m + se A for 
some m e N , ss S}. 

The generalized real closed fields R represent examples of fields with a 
known absolute Galois group GR. In fact we have [9] 

GR e Z/2Z x I ] Z „ 
p\n 

where the first factor operates on the second one by taking the inverse. 
The basic motivation for the author's work [6] was to extend the Galois-
theoretical characterization of ordinary real closed fields, as given by 
Artin—Schreier, by looking for a larger class of formally real fields with 
a "simple" absolute Galois group. In this context, hereditarily pythago-
rean fields play an important role. By definition, these are formally real 
fields K such that every formally real algebraic field extension L is Pytha
gorean, i.e., L2 4- L2 = L2. Quite recently, Engler, Jansen and Viswa-
nathan have supplemented the result of [7]. Putting various results 
together we can state. 

THEOREM 5.5. Let Kbe a formally real field. Then the following statements 
hold. 

i) If \ < % GK < co, then K is real closed and GK(n = 1. 
ii) G KU) Abelian o K is hereditarily pythagorean. 

iii) If G KM is not Abelian then the 2- Sylow-subgroup of GK contains a 
free pro- 2-group on an infinite number of generators. 

Generalized real closed fields R are hereditarily pythagorean but they 
are in general not characterized by the statement GR(i) = YlpinZp. Theorem 
5.5 shows distinctive "jumps" in the set of profinite groups which can 
occur as the absolute Galois groups of formally real fields. Which profinite 
groups actually occur is not known. Their determination seems to be an 
important task and is a contribution to the more general problem of 
determining these profinite groups which are Galois groups of arbitrary 
fields. In accordance to this we pose the final problem. 

PROBLEM 6. Determine the profinite groups which occur as the absolute 
Galois groups of formally real fields. 
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