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HOVANSKY' THEOREM AND COMPLEXITY THEORY. 

JEAN-JACQUES RISLER. 

Dedicated to the memory of Gus Efroymson 

The additive complexity of P e R[Xl9 . . . , Xn] is related to the set of 
zeros of P in Rn. 

1. Hovansky's theorems. (Cf. [2], [3]). The results of Hovansky are in 
the spirit of Bezout's theorem, but in the real case. Let us recall Descartes's 
lemma. 

LEMMA 1.1. If P = a0 + a^X + • • • + anX
n e R[X]9 the number of 

positive real roots of P is smaller than the number of changes of signs in the 
sequence a& . . . , an. 

PROOF. This is very simple by induction on n9 using Rolle's theorem. 

COROLLARY 1.2. The number of positive real roots of P is smaller than 
the number of non-zero monomials in P. 

The result of Hovansky is a generalisation of this-corollary. 

THEOREM 1.3. Let Fl9 ...9Fn e R[Xl9 ...9Xn9Yl9 . . . , Yk]9 deg.F,- = mi9 

where Y{ = e<a,'>x>(l ^ i ^ k) with <«% X} = Ti%xa)Xh a) e R. Then 
the number of non-degenerate roots in Rn of the system {F^X, Y(X)) = 0, 
1 ^ i ^ n} (with X = (Xl9 . . . , Xn)) is ^ 2a/2)*a-i)(i + j^m.y Tjm . . 

The proof is by induction on k, beginning with the classical Bezout 
theorem, and using an old method of Liouville to "kill" the exponentials, 
and a variant of Rolle's theorem. 

COROLLARY 1.4. Let Pl9 . , . , Pn e R[Xl9 . . . , Xn]9 the total number of 
monomials in (Pl9 . . . , Pn) being k\ then the number of non-degenerate 
solutions in R% of the system Px = . . . = PB = 0, is g (1 + n)k2k(k-1)/2. 

PROOF. Put X{ = eYi
9 and use Theorem 1.3. 

REMARKS 1.5. a) Probably the bound in the corollary can be greatly 
improved. 

b) Theorem 1.3 can be generalised to a large set of analytic functions. 

2. Additive complexity of polynomials in one variable over R. The additive 
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complexity of P e R[X], denoted L%(P\ is by definition the minimum 
number of additions and subtractions required to evaluate P over R. 
L%(P) ^ k if and only if there exists a system of k + 1 equations: 

(S0 = X 
k-i k-i 

(1) is^c^sr^ + dk^sf^\ 

with m(i, j) and m'(ij) in Z, c{ and d{ in R, and P(X) being evaluated 
from P% by successive elimination of the St-(\ ^ i ^ &). 

THEOREM 2.1. Ze/ p(/:) Z?e //z<? l.u.b. of the distinct real zeros of P such 
that L%(P) ^ k\ then there exists a constant C > 0 such that p(k) ^ Ck2. 

PROOF. Make a little perturbation to P, and apply Hovansky's result to 
the system (1) (the last equation being P = 0), cf. [4]. 

REMARKS 2.2. a) This result is an amelioration of a result of Borodin 
and Cook. [1]. 

b) The best lower bound known for p(k) is 3Ä (this bound is attained for 
Chebyshev polynomials). 

3. Additive complexity of polynomials in several variables (over R). If 
P e R[Xl9 . . . , Xnl the definition of L$(P) is the same as in §2; let C(P) 
be the number of connected components of Z(P). 

THEOREM 3.1. There exists a function cjj{k, n): N x N -> N such that 
C(P) ^ cjj{k, n)for all P e R[Xl9 . . ., Xn] with L$(P) ^ k. 

PROOF. Induction on n, the case n = 1 having been solved in §2. 

Let Cb{P) be the number of bounded components of Z(P), and Cn(P) 
be the number of non bounded components. 

LEMMA 3.2. (Cf. [2], [4]). There exists an affine hyperplane H e Rn 

intersecting at least Cn(P)/2 unbounded components of Z(P). 

This lemma bounds Cn(P), because P\H is a polynomial in n — 1 
variables and one can apply induction hypothesis. 

To majorize Cb(P), one uses the fact that if C is a smooth compact 
component of Z(P), then the function Xn\C has at least two critical 
points, and the following lemma. 

LEMMA 3.3. If L£(P) ^ k, then L^dP/dX^ g 3k(k + 2)/2. 

To prove Theorem 3.1, one must then apply Hovansky's theorem to 
the system of equations satisfied by the critical points of Xn\Z(P) (cf. [4]). 
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