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SOME RESULTS ON REAL ALGEBRAIC CYCLES 

A. TOGNOLI 

Dedicated to the memory of Gus Efraymson 

Introduction. Let cp: V -> Wbt a differentiable map between two com
pact differentiable manifolds. We shall say that <p has a weak algebraic 
approximation if it is possible to find two structures of real algebraic 
varieties Va, Wa on Va, W such that cp: Va -> Wa can be approximated by 
algebraic maps. It was conjectured by Akbulut and King [1] that any 
differentiable map should have weak algebraic approximation. Bendetti 
and Dedo [4] have proved that for any « ^ 11 there exists a differentiable 
map <p: V„__2 -* Wn, dim V — n — 2, dim W= n, that has no weak 
algebraic approximation. It seems that one of the main problems in this 
area of real algebraic geometry is to characterise differentiable maps that 
have weak algebraic approximation. These notes are devoted to giving 
some results in this direction. 

In §1 we fix the notations and we recall some Known results that show 
that the above problem is equivalent to characetrizing the algebraic 
homology classes. The fact that a differentiable map ç>: V -+ W, W a Rw, 
between algebraic compact varieties has, in general, no algebraic ap
proximation depends on the non existence of an algebraic tubular neigh
bourhood of W in Rw. 

In §2 we shall prove that, if on W there exists a topological line bundle 
F -* W\haX is not trivial, then W never has a neighbourhood W a U a 
Rw and an algebraic retraction %\ U -» W. 

In §3 we disprove the "strong Nash conjecture". In fact we prove 
(theorem 4) that for any « ^ 1 1 there exists a compact, connected, dif
ferentiable manifold Wn that has no algebraic structure W% birationally 
equivalent to i*w(R). On the other side we prove (Theorem 5) that the 
strong Nash conjecture is true for n = 2. 

In §4 we recall some results and definitions about the strongly algebraic 
vector bundles. Using the notions of §4 and the theory of weak complete 
intersections, in §5, we give some positive answers to our main problem. 
The results of §2 are not yet published, §3 is contained in a paper (to 
appear) by Benedetti and Tognoli. The results of §5 well appear in a 
paper of the author. 
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834 A. TOGNOLI 

1. Definitions and problems. By algebraic variety (or manifold if it is 
regular) we shall mean affine, reduced real algebraic variety (i.e., the 
locus of zeroes of polynomials functions in Rn). Algebraic map means 
rational regular map. 

Let (p\ V -*> JVbQ a continuous map between algebraic varieties, let V 
be compact, V a R», W c Rm. We shall say that the map <p has algebraic 
approximation if for any e > 0, p G N, there exists an algebraic map 
<pe: V-> W such that \\(p — <pe\\P < s, where || \\P is the norm of CP 
functions. 

If l^is an algebraic variety we shall say that a e Hp(W, Z2) is algebraic 
if there exists an algebraic map <p: V -> JV, F a regular, compact algebraic 
variety, such that: a = <p*([V]), where [V] is the fundamental class of V. 

We shall denote by H\(W, Z2) the subgroup of Hp(W, Z2) generated 
by algebraic classes. 

Let Wbe an algebraic variety and cp: V -» Wa. differentiable map, where 
F is a compact differentiable manifold. We shall say that <p is bordant to 
an algebraic map if there exists a map <J>: B -> W such that 

(i) B is a differentiable manifold with boundary dB = V [} V0, c[)\v = cp, 
and 

(ii) VQ has an algebraic structure and çJ|Fo is algebraic. 
Let cp: V -> Wbe a differentiable map between compact differentiable 

manifolds. We shall say that <p has a weak algebraic approximation if 
there exist two diffeomorphisms g: V -> Va, h: W'-• Wa, where Va, Wa 

are regular algebraic varieties, such that hoc og-i; Va -> Wa has alge
braic approximation. 

One of the most interesting problems in real algebraic geometry seems 
to be the following. 

PROBLEM. Characterize the differentiable maps <p: V -> W that have 
weak algebraic approximation. 

The following theorem contains some information about the above 
problem. 

THEOREM 1. [11] Let <p: V -> Wbe a differentiable map between algebraic 
regular varieties and let us suppose that V is compact. 

Then for any e > 0, p G N there exists an algebraic variety V and an 
analytic isomorphism J: V -* V, where V is open and closed in V and an 
algebraic map cp: V -> W such that \\(p\v — (p ° J\\p < e, If one of the fol
lowing conditions is satisfied we may suppose V = V {and hence y has a 
weak algebraic approximation). 

oc) <p*([V]) e H$(W, Z2), [V] = fundamental class of V; 
(ß) cp is bordant to an algebraic map. 
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An algebraic variety W such that H*(W, Za) = H%(W, Z2) shall be 
called totally algebraic. 

COROLLARY 1. Let W be a totally algebraic variety. Then any differenti-
able map <p: V -+ W, where V is a compact differentiable manifold, has 
weak algebraic approximation. 

Let Wbe a differentiable manifold, we shall denote by H*g(W9 Z2) the 
subring of H*{W, Z2) generated by the elements a having one of the 
following properties : 

1) a is represented by the fundamental class of some submanifold of W; 
2) a is dual of the Stiefel-Whitney class of some vector bundle F -» W. 
We have (see [3]). 

PROPOSITION 1. Let V be a compact differentiable manifold. Then V has 
an algebraic structure Va, such that 

H%(Va, Z2) => Hf(Va, Z2). 

COROLLARY 2. Let Wbe a compact differentiable manifold. If dim. W ^ 6, 
then W has an algebraic structure that is totally algebraic. 

PROOF. By a result of Thorn ([10]), if dim W > 6, we have H*(W, Z2) = 
HS${W, Z2). Hence the corollary follows from proposition 1. 

2. The tubular neighbourhood. Let W be an algebraic subvariety of R", 
we shall say that the embedding i: W <•+ R» is perfect if there exists a 
Zariski open set U => W and an algebraic map %\ U -> W, such that 
7c\w = id. 

Let W be an algebraic (differentiable) manifold. We shall say that W is 
perfect (has a model that is perfect) if any differentiable map <p: V -> W, 
where V is a compact algebraic variety, has algebraic approximation (if 
W has an algebraic structure Wa such that Wa is perfect). 

LEMMA 1. Let i: W <-> Rw be a perfect embedding. Then W is perfect. 

PROOF. Let %\ U -> W be the algebraic retraction and <p: V -> W a 
differentiable map. From the Weierstrass approximation theorem we 
know that we can approximate cp by polynomial maps </>„: V -> U, hence 
% ° (/>n'> V -> W are algebraic approximations of <p. 

LEMMA 2. Let W be a compact algebraic variety. If W {considered as 
differentiable manifold) has a perfect model, then any topological line bundle 
F -+ W has a strongly algebraic structure (For the definition of strongly 
algebraic vector bundle see §4.) 

PROOF. Let Wa be a perfect model of W. Any differentiable divisor D -> 
Wa can be approximated by an algebraic divisor Da -> Wa, hence any 
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topological line bundle F' -» Wa has a strongly algebraic structure. 
Let now F -> W be a topological line bundle and h: W -* Wa a dif

feomorphism. 
If {h~1Y(F)a is an algebraic structure on {h~lY{F) and Ä : W -> PTa is an 

algebraic diffeomorphism near to /z we have that A*((/*_1)*0F)O) is a strong 
algebraic structure on F. 

THEOREM 2. Let W be a compact algebraic variety such that one of the 
following conditions is staisfied : 

i) W is not connected', 
ii) There exists a topological nontrivial line bundle F -> W. Then W has 

no perfect embedding. 

PROOF. Let us suppose W noi connected and that W — (J?=1 Wi9 W( ^ 
(f>, dim Wx ^ dim(J ï V : 1^, is the decomposition of W into connected 
components. Any Zarisky open set U of Rn is irreducible hence the 
theorem is proved if W is reducible. 

Now suppose Wis irreducible and let <p: W -> Wbe a differentiable map 
such that cp\Wl = id, cp{W) cz Wv From the remark d) of [12] we know 
that cp has no algebraic approximation and hence W is not perfect. By 
lemma 1 the theorem is proved in this case. 

Let F -> W be a non trivial topological line bundle. From lemma 2 
we know that if W has a perfect embedding W <-» Rw, % : U -> W, then 
F has a strongly algebraic structure Fa -» W. Let Fa = 7c*(Fa) -> U be 
the strongly algebraic line bundle pullback of Fa. If D' is the (algebraic) 
divisor associated to Fa then D' can be extended to Sn => R» D £/ hence 
Fa is the restriction of a line bundle F -» 5W. Clearly dim ^ > 0 and hence 
« ^ 2. So the line bundle F should be trivial but this cannot happen be
cause F\w is not. 

COROLLARY 1. If W is a compact algebraic variety, then W x S1 has no 
perfect embedding. If dim W ^ 2 nad W is obtained from W blowing up a 
point, then W has no perfect embedding. 

3. The strong Nash conjecture. The following result proves that, in 
general, a differentiable map <p: V -> W has no weak algebraic approxi
mation. 

THEOREM 3. For any n ^ \\ there exists a compact connected differenti
able manifold Wn and an element an e Hn_<£Wn, Z2) such that for any 
algebraic structure W% on Wn, a is not algebraic. 

See [4] for the proof. 

COROLLARY 1. For any n^i\\ there exists a differentiable map <p\ V -* 
Wn that has no weak algebraic approximation. 
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PROOF. Let <p: V -> Wn be a differentiate map such that ccn = <p*([V]) 
(see [10] for the existence of cp). By theorems 2 and 3 it follows that cp 
has no weak algebraic aproximation. 

Let V, Wbt two real (or complex) algebraic varieties. We shall say that 
V is birationally equivalent to W if there exist dense open sets Uv a V, 
Uw c W and an algebraic isomorphism ç: Uv -» Uw; V shall be called 
birational if it is birationally equivalent to Pn(R). It is well known (see 
[12] p. 178) that the number of connected components (of maximal di-
mention) is a birational invariant. Nash [9] has stated the following 
problem. 

PROBLEM. Let V be a compact connected differentiate manifold. Does 
there exist a birational structure Va on VI 

Now we shall prove 

THEOREM 4. For any « ^ 1 1 there exists a compact connected n-dimen-
sional differentiable manifold Wn that has no birational structure. 

The above theorem is a consequence of theorem 3 and of the following 
proposition. 

PROPOSITION 2. Let W be a compact algebraic variety birationally equiv
alent to PW(R). Then W is totally algebraic. 

PROOF. Let U <=. W be an open set isomorphic to an open set U' c 
PW(R) and <p: U -» U' an isomorphism. We shall denote by r <=• W x 
P„{R) the closure of the graph of cp and by r -*%' PW(R), r -** Wiht natural 
projections. Using the "main lemma" of Hironaka [8] we deduce that 
there exists a sequence of blow ups (with smooth centers) S : X -• Pn(R) 
and a birational algebraic map 0: X -> T such that the following diagram 
is commutative. 

(1) * 

PnQQ 

It is well-Known that P„(R) is totally algebraic, hence by the proposition 
6.1 of [9], X is also totally algebraic. Let us now consider the surjective 
algebraic map K ° </>: X -+ W. ^ o ^ i s surjective of degree 1, hence by 
Poincaré duality we deduce that (K o 0)^: H*(X, Z2) -• H*(W, Z2) is 
surjective. This proves that X totally algebraic implies that W has the 
same property. 

In dimension 2 we have 
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THEOREM 5. Let W be a compact, connected, two dimensional regular 
variety. The following conditions are equivalent: 

1) Any topological, compact, connected, two dimensional manifold T has 
an algebraic structure Ta birationally equivalent to W. 

2) W is birationally equivalent to an algebraic surface T homeomorphic 
to the sphere S2. 

3) HX(W, Z2) is algebraic. 
4) Any topological line bundle F -> W has a strongly algebraic struc

ture. {For the definition of strongly algebraic vector bundle see §4.) 

PROOF. We recall some well known facts about topological classifica
tion of compact surfaces. 

By P2(R), S2, 7\ we shall denote the projective plane, the two sphere 
and the two dimensional torus. If X, Y are manifolds Z # Y is the con
nected sum. 

Let 

T = j y t • • - tf Tx a n d v = P2(R)tt...flP2(R) 
8 g times g g times 

be the orientable and the non orientable surfaces obtained by iterated 
connected sums of 7\ and P2(R). 

If V is any connected compact two dimensional manifold we have (see 
[5]): 

i) V is homeomorphic to some of the following models S2, Tg, Ug, 
ii) Tg # P2(R) = U2g+\ where ^ means homeomorphic, and 

iii) V % P2(R) is homeomorphic to the surface obtained from V by 
blowing up a point. 

Now we prove the equivalence of the various conditions. 
3) o 4). This is well-known see [13] of [3]. 
2) => 3). The fact that Tis homeomorphic to£ 2 implies that Tis totally 

algebraic. By the proposition 6.1 of [2] we deduce, using the same argu
ments of proposition 2, that W is totally algebraic. 

3) => 2). By the topological classification we know that one can find a 
finite number of differentiable curves, *Sl5 . . . , Sq in general position 
in W such that WIR is homeomorphic to S2, where R is the equivalence 
relation x ~Ryox= y or x \J y C^J?^ S;). The condition 3) implies 
(see Theorem 1) that we can approximate S{ by regular algebraic curves 
S/. From Proposition 3.4 of [5] we deduce that there exists an algebraic 
variety W and an algebraic surjectivemap #: W -* W suchthat: %\W-
(J?=1 S'i is an isomorphism, tf((J?=i S^ i s a P o i n t - Clearly W is homeo
morphic to a sphere and birationally equivalent to W. 

3) => 1). We have proved that if 3) holds, then W is birationally equiv
alent to W homeomorphic to a sphere. Blowing up W we prove that 
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W is birationally equivalent to surfaces homeomorphic to any Ug, g e N. 
Let now Tg be an orientable surface of genus g. By the previous remark 
we know that Tg # P2(R) - #2*+i has an algebraic structure Û2g+i 
birationally equivalent to W. Hence Û2g+i is totally algebraic. Now we 
can find a differentable curve S c Û2g+1 such that if we contract this 
curve we find a topological madel of Tg. By the usual argument we deduce 
that S can be chosen to be algebraic and the quotient ( ^ Tg) birationally 
equivalent to W. 

REMARK 1. In the proof of the previous theorem, to find the algebraic 
approximations of the curves St we use the following well known argu
ment. The divisor St is algebraic the line bundle Ft associated to St is 
strongly algebraic => the differentiate sections of F{ can be approximated 
by algebraic sections => S{ has algebraic approximation. We remark ex
plicitly that this argument works also in case W is not regular. 

REMARK 2. Let W be an algebraic regular variety homeomorphic to 
P2(R). Then W is totally algebraic. In fact the generator of H^W, Z2) is 
the dual of the Stiefel Whitney class of the tangent bundle ; hence (see [3]) 
is algebraic. 

4. Strongly algebraic vector bundles and complete intersections. Let V be 
an algebraic variety and F -** V be an algebraic vector bundle. Hence F 
is an abstract algebraic variety. We shall say that F is strongly algebraic 
if Fis an affine variety. The following result is proved in [3]. 

PROPOSITION 3. Let V be a compact real algebraic variety and F-*% Vbe 
an algebraic vector bundle. The following conditions are equivalent: 

1) F is strongly algebraic. 
2) There exists an algebraic vector bundle F' -* V such that F ® F' is 

algebraically isomorphic to the trivial bundle. 
3) There exists an algebraic map ç: V -> Gnt q such that F is algebraically 

isomorphic to <p* (tautological bundle). 

REMARK 1. An algebraic vector bundle in general is not strongly al
gebraic (see [13]). 

In the following we shall use 

LEMMA 3. Let V be a compact algebraic variety and F -> V be a strongly 
algebraic vector bundle. Any differentiable section y. V -> F can be ap
proximated by algebraic sections. 

See [13] for the proof. 
Let now F be a differentiable manifold, F->* F be a differentiable vector 

bundle and S a subvariety of V. We shall say that S is a weak complete 
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intersection in V, with respect to F, if there exists a differentiate section 
y. V -+ F such that 

i ) 5 = { x e V\r(x) = 0}, and 
ii) 7- is transverse to the zero section of F 7- shall be called an equation 

of S. If V, F, y are algebraic, S is called an algebraic weak complete 
intersection. 

REMARK 2. Let S be a weak complete intersection. Then S is a smooth 
submanifold and dim K-dim S =dim(Fx = %~\x)). If Fis trivial we have 
the usual notion of complete intersection. 

Let S be a weak complete intersection in V with respect to the vector 
bundle Fand the equation j-: V-* F. Let us suppose that a scalar product 
is defined on Fand denote: 

1) Fr -> V — S as the subbundle of F\v_s generated by y(x), x e V — S, 
and 

2) Fjr as the orthogonal compie ment of Fr in F|7__s. 
The following results are proved in [6]. 

PROPOSITION 4. Let S be a submanifold of the differentiate manifold V. 
Then 

a) If S is a weak complete intersection in V with respect to the vector 
bundle F -+ V, then F\s is isomorphic to the normal bundle of S in V. 

b) S is weak complete intersection in the tubular neighbourhood of S in V. 
c) Let Ns -• Us be the normal bundle of S extended to a tubular neigh

bourhood Us and y: Us -+ Ns an equation of S in Us. S is a weak complete 
intersection in V is and only if(Ns)}- -> Us — S can be extended to a vector 
bundle F-+ V - S. 

d) Let S, V, Ns -> USf, 7* be as defined in c) and dUs the boundary of Us 

in V. Then dUs-+
p S is a fiber bundle and the fibers are spheres. The fiber 

bundle (Ns)jr\dUs is isomorphic to the subbundle of the tangent bundle of V 
given by vectors that are tangent to the fibers of p: dUs -> S. 

REMARK 3. The following facts are easy consequences of proposition 
4 (see [14]). 

a) One point x0 is a weak complete intersection in the sphere Sn if and 
only if n = 1, 2, 4, 8. 

j3) Let S c R3 a compact curve, then S is a complete intersection. 
7-) One point x0 is a weak complete intersection in the projective space 

FM(R), but it is not a complete intersection. The point x0 is a weak complete 
intersection with respect to the vector bundle F ^ 0 ? = 1 F{ where the F,- are 
the line bundles associated to the hyperplane sections. 

Finally we have 

PROPOSITION 5. Let V be an algebraic variety and F -> V a strongly 
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algebraic vector bundle. Let S be a compact, differentiable submanifold of V 
that is a weak complete intersection with respect to F. Then S can be ap
proximated by regular algebraic subvarieties of V that are weak complete 
intersection with respect to F. 

PROOF. It follows from Lemma 3. 

5. Lie groups and Nash homology classes. If F is a differentiable mani
fold, we shall say that F has q umbilics, and write fy(V) = q if there exists 
a subset S = (J?=1 xh q > 0, of q points that is a weak complete inter
section but any nonempty set of less then q points is not a weak complete 
intersection. 

We need 

LEMMA 4. Let V be a differentiable manifold and S a V a weak complete 
intersection with respect to the vector bundle F-> V. Let <p: W -> V be a 
differentiable map, U's a neighbourhood of (p~\S)such that <p: U's -* <p(U's) 
is a diffeomorphism. Under these hypotheses (p~l(S) is a weak complete 
intersection in W respect to the vector bundle <p*(F). 

The proof is easy, see [14]. 
Now we have 

THEOREM 6. Let V be a differentiable manifold. Then we have <%(V) ^ 2 
and, if V is not compact, <%(V) = 1, and the set of one point is a complete 
intersection in V. 

SKETCH OF THE PROOF. I) Let Sn = {(xl9 . . . xn+1) e R^ 11 S ^ x ? = 1} 

be the «-sphere. The set S = (0, . . . 0, 1) U (0, . . .0, - 1 ) is a complete 
intersection and Xi = x2 = • • • = xn = 0 are equations of S. So we have 
(see also remark 3 of §4) <%(S«) = 1 if n = 1, 2, 4, 8 and <&(S») = 2 if 
n * 1, 2, 4, 8. 

Now let Vbe an «-dimensional manifold and D c F a n open set such 
that D is diffeomorphic to the open «-disk and D to the closed «-disk. 
We can construct a differentiable surjective map (])m.V-±Sn such that (p\D 

is a diffeomorphism. From the results of lemma 4 the map cjj proves 

#(K) ^ ^(Sw) ^ 2. 
II) Now suppose that V is connected and noncompact. It is possible to 

define a differentiable map / : R -> V such that 
i) / : R -+ /(R) is an homeomorphism, and 

ii) /(R) is a closed differentiable submanifold of V and J is a proper 
map. See [14]. Theorem 2, for the details of this construction. 

Let U be a tubular neighbourhood of /(R). /(R) is contractible ; hence 
U is diffeomorphic to R x Rw_1. It is now possible to project V onto 
R x Sn~l (we parametrize by R the construction used in the first part 
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of the theorem). Using Lemma 4 we are reduced to proving that 
^ (R x S*-i) = 1 and this is easy. See [14] for the details. 

Finally we can use the above results to prove the 

THEOREM 7. Let G be a real algebraic, non compact, group and a e 
Hp(G, Z2). There exists an analytic component V of an algebraic subvarie t y 
V of G such that a = fundamental class of V. 

PROOF. Clearly we can suppose G is connected. By a well known result 
of Thorn [10] there exists a differentiable map ç: V -> G, where V is a 
compact differentiable manifold, such that a = p* (fundamental class 
of V). 

Let rf = {(*, y)eV x G\y = cp(x)}, y0eG and T0 = {(*, y) e V x 
G\y = 7o}- The couple (V x G, r9) is diffeomorphic to (G x V, r0\ the 
map (x, y) -• (x, j 0 • (p{x)~ly) is a diffeomoprhism. By Theorem 6, / ^ is 
a complete intersection in V x G; hence ry has the same property. 
Let U zi (p(V)be a compact neighbourhood of ^(F) in G. Using proposi
tion 5 of §4 we can approximate T^ in V x U by an analytic component 
P of an algebraic variety We V x G. We may suppose W [] (V x U) = 
/* and hence the image of the foundamental class of P under %\ V x G -+ G 
is a. The theorem is proved. 
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