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RESEARCH ANNOUNCEMENT ON
EXTENDING NASH FUNCTIONS OFF SINGULAR CURVES

GUSTAVE EFROYMSON

The general extension problem is: given sets W < V and a function
f: W - R, to find a function g: ¥ — R with g = fon V. We say g extends
f. To make the problem interesting, we need restrictions on f and g. In
our case we want fand g to be Nash. The most general extension theorem
about Nash functions doesn’t quite fit the above description.

THEOREM (2] Let V be a Nash variety in R” (i.e., V = h~1(0) for a Nash
Sfunction h: R? — R). Suppose U is an open neighborhood of V and f a Nash
function f: U — R. Then there exists a Nash function g defined on R* with
g=fonV.

Note we have to assume f'is defined on a neighborhood of ¥ to extend it.
But from the above theorem it easily follows that

THEOREM. [2] If V is a non-singular variety in R* and f: V — R is Nash
then there exists g: R* — R extending f.

At this point, it would be a good idea to say what we mean by a Nash
function on a possibly singular variety. Recall first that if ¥ is nonsingular,
every point of V' has a neighborhood which is essentially euclidean, and
so the usual definition applies, i.e., fon V¥ is Nash if fis analytic on ¥ and
f is algebraic. For a singular point of ¥, I don’t know what an analytic
function is, so I will define a globally algebraic function on ¥ to be Nash
at a point p of V if f has an analytic extension to some neighborhood of
Pin R~

QuEesTiON. Can you always extend a Nash function f: ¥V —» R to g:
R” — R where V'is a possibly singular variety?

ANSWER. No. For example there is a Nash function on the Whitney
umbrella (x2 + y?)z = x3, which can’t be extended.

I think the problem with the Whitney umbrella is that it is not coherent
[4]. Since curves are always coherent, they are a good starting place for
proving an extension result.
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THEOREM 1. Let V be a Nash curve, V = R#, and f a Nash function
V — R. Then f can be extended to R

We will sketch the proof in the planar case; the general case is similar.
So let g(x, y) = 0 be the equation of the Nash curve and p(x, y) = 0 be the
equation of the polynomial so that ¥V, = V,. Let f: ¥ — R be a Nash
function as defined above. By [1], there exists a Nash transformation of
R~ so that in the transformed plane, p = [[(z — a;,(x)) with the following
properties:

1) All singular points (a, b) of p = 0, with a real, lie on the y axis.

2) If p(a, b) = op/dy(a, b) = 0, a, b real, a # 0, then 9p/oy(a, b) # O.

3)If op/oy(a, b) = 0, p(a, b) = 0,a # 0, areal, then b is real also.

LeMMA. The function f has an extension to that part of V¢ which lies along
the a;(x).

Proor. This follows from above by analytic continuation, since the
only points where the a,(x) meet away from x = 0 are at real points.

We now wish to construct a function, r(x, y) = 3,42} B;(x)y?, d = degree
of g. We want r(x, y) = f(x, y) along y = a(x), and the 8;(x) should be
Nash functions. Then it will be clear that r(x, y) will extend f to R2. We
take x real, but a,(x) can be complex.

The idea is to write f(x,y) = X%} B(x)y". Then f(x, aj(x) =
YB:(x)a(x), j =1, ..., d gives d linear equations in d unknowns,
Bo> - - .5 Ba—i» Which we can solve, but we must show that the 8;(x) are
Nash functions. Using Cramer’s rule, we set as denominator for the 3;,
[Ticfa; — a;) which is 0 only at multiple points of g and so otherwise
is analytic. So we must look at each point above x = 0 where we have a
singularity. Let P = (0, y,) be a singular point of V. Then let ay(x), ...,
a/(x) be the a; for which «,(0) = y,. Then, by essentially the residue theo-
rem of complex variables, it follows as in [3, p. 167] that all symmetric
functions s,(a;, . . ., a,) are analytic and so Nash. We use the local power
series for f(x, y) to represent fin terms of symmetric functions of the a;,
which we use to get analyticity of the part of Cramer’s formula which
comes from aj, ..., a,. Putting together the various factorizations at
points (0, y;), will give in a somewhat messy way a proof that all the
B:(x) are Nash.
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