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SOME SUBORDINATION RELATIONS 

T. BACGÖZE AND F. R. KEOGH 

ABSTRACT. If Pn(z) = £j?=1ß*z\ ax = 1, Pn+1(z) = Pn(z)+an+1z
n+\ 

and if P„+1(z) is univalent for \z\ < 1, then Pn{zj2) < Pn+1(z), 
n ^ 1, and the constant 1/2 is best possible. If f(z) = Hr=itf*z*, 
a1 — 1, is analytic and univalent for \z\ <1, sn(z) = H*=itf*z*, then 
s„(z/S) < sn+l(z/4) -Kf(z)9 n ^ 1 (and the constant 1/8 is best pos
sible), and sn+l(z/S) < sn(z/4) <f(z). 

Let j denote the disc \z\ < 1 and let S denote the class of functions 
f(z) analytic and univalent in 7* and normalized by the conditions/(0) = 0, 
f'(0) = 1. For a function g(z) analytic in 7-, if g(0) = 0 and g(z) is sub
ordinate to/(z), we write g(z)</ (z) . Let Pn(z) = J^k=iakzk> ^ = 1, and 
let Pn+1(z) = Pn(z) + an+1z»+h 

THEOREM 1. IfPn+i(z) e S, then 

(1) Pn(z/2)<Pn+1(z), n^U 

and the constant 1/2 is best possible. 

The fact that the constant 1/2 is best possible is shown by the function 
P2(z) = z + (l/2)z2 e S. We deduce Theorem 1 from the following more 
precise form. 

THEOREM 2. IfPn+l(z) e S then 

Pn(z/2) <Pn+l{z\ « = 1 , 2 , 

Pn(anz) < Pn+1(z)9 n = 3, 

where an is the root of the equation 

«4-1 4 \ 1 + a) 

in the interval (0, 1). an> 1/2 for all n = 3, an increases with n and 
lim^ooO:,, = 1. 
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To prove this theorem we require two well-known inequalities which 
we state as lemmas. 

LEMMA 1. Jff(z) e S, then, for all real d, 

LEMMA 2. If Tik=\bkz
k e S, then \bn\ ^ l/n. 

For Lemma 1 see, for example, [2]. Lemma 2 follows from the fact 
that, with the given hypothesis, all the zeros of the derivative 2 ? = 1 kbkz

k~l 

lie outside y. 

PROOF OF THEOREM 2. With n = 1, since |a2| ^ 1/2 by Lemma 2, for 
\z\ = 1 we have \z + a2z

2| ^ 1 — fel è 1/2, which implies that (l/2)z -< 
z + a2z

2. 
In the case n = 2, let Ai, /l2 be the zeros of P3(z). Then P3(z) = 3a3 

(z - Ai)(z - A2), |Ail â 1, W2I ^ 1, and for 0 ^ r < 1 and all real 0, 

(2) |/>3'(re")l â 3 |fl3|(l - r)2. 

Let A now denote the image of 7* under the mapping w = P3(z/2), let D 
denote the image of y under the mapping w = P3(z), and let d be the 
distance of the boundary of A from the boundary of D. Then by (2), 

(3) d ^ r min \P&re")\ dr ^ \a3\/2
3. 

J 1/2 6 

If <z3 = 0 then the consequence /^(z/2) •< P3(z) is trivial. If a3 ^ 0 then 
it follows from (3) and |a3(z/2)3| < |a3|/23. 

Let 

"»W „ + j 4 V 1 + a 

Then /zw(0) = -1 /4 , /zw(l) = l/(« + 1), and hn(a) increases with a. It 
follows that there is exactly one solution a = an of the equation /*„(<%) = 
0. Also, since hn(a) is a decreasing function of« for fixed a:(0 < a < 1), 
it is clear that an increases with n and lim^oo an = 1. In the case « ^ 3, 
let A, D denote the images of 7- under the mappings w = Pn+i(an z), w = 
Pn+1(z), respectively, and let d be the distance of the boundary of A from 
the boundary of D. Then by Lemma 1, 

(4) ^ £ n m m | ^ + 1 ( ^ ) K ^ | ( j ^ f ) 2 

By Lemma 2 we have 
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and the rest of the theorem now follows from (4). 

The relation (1) of Theorem 1 results from the fact that an > 1/2,« ^ 3. 

THEOREM 3. IfPn(z) e S and \an+1\ ^ 2/9, then Pn+i(z/2) < Pn(z\ n ^ 1. 

PROOF. The case n = 1 is trivial. By an argument similar to that used in 
the proof of Theorem 2 for the case n ^ 3, it is sufficient to note that, 
for n ^ 2, 

k+1 |/2»+i S \an+1\/S ^ 1/36. 

We remark that we have not attempted to prove a more precise form 
of this result, but it is clear that for a conclusion of the form Pn+1(ßz) -< 
Pn(z) some restriction on the size of \an+1\ is necessary. 

Our last theorem indicates a reciprocal subordination relation between 
the successive partial sums of the Taylor series of a univalent function. 

THEOREM 4. Iff(z) = Tit=\Cikz
k e S and sn(z) = £g = 1 akz

k, then 

(5) Sn(z/S)<sn+1(z/4)<f(z\ 

(6) sn+1(z/S)<sn(z/4)<f(z\ 

for n ^ 1. The constants 1/4 in (6) and 1/8 in (5) are best possible. 

PROOF. It is known that if f(z) e S, then sn(z/4) is univalent [4], sn(z/4) -< 
f(z) for all n and the constant 1/4 is sharp. [3] Statement (5) now follows 
from Theorem 1. The case f(z) = z(l - z) - 2 , n = 1, shows that the 
constant 1/8 cannot be increased. To prove (6), we note first that, since 
\a2\ S 2 (see, for example, [2]), \s2(z/S)\ ^ 5/32 < 1/4 in r . Next, by 
Theorem 3, for n ^ 2, it is sufficient to show that 

(7) k+il/4» g 2/9. 

For n = 2 and 3, (7) follows from the inequalities \a3\ ^ 3 (see, for ex
ample, [2]), |a4| ^ 4 (see, for example, [1]). Finally, by Lemma 2, since 
4sn+1(z/4) e S, (7) for the case n ^ 4 follows from the inequality 4\an+1\/ 
4»+! g I/O* + 1). 
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