SOME SUBORDINATION RELATIONS

T. BAŞGÖZE AND F. R. KEOGH

ABSTRACT. If $P_n(z) = \sum_{k=1}^n a_k z^k$, $a_1 = 1$, $P_{n+1}(z) = P_n(z) + a_{n+1}z^{n+1}$, and if $P_{n+1}(z)$ is univalent for |z| < 1, then $P_n(z/2) < P_{n+1}(z)$, $n \ge 1$, and the constant 1/2 is best possible. If $f(z) = \sum_{k=1}^n a_k z^k$, $a_1 = 1$, is analytic and univalent for |z| < 1, $s_n(z) = \sum_{k=1}^n a_k z^k$, then $s_n(z/8) < s_{n+1}(z/4) < f(z)$, $n \ge 1$ (and the constant 1/8 is best possible), and $s_{n+1}(z/8) < s_n(z/4) < f(z)$.

Let γ denote the disc |z| < 1 and let S denote the class of functions f(z) analytic and univalent in γ and normalized by the conditions f(0) = 0, f'(0) = 1. For a function g(z) analytic in γ , if g(0) = 0 and g(z) is subordinate to f(z), we write $g(z) \prec f(z)$. Let $P_n(z) = \sum_{k=1}^n a_k z^k$, $a_1 = 1$, and let $P_{n+1}(z) = P_n(z) + a_{n+1} z^{n+1}$.

THEOREM 1. If $P_{n+1}(z) \in S$, then

(1)
$$P_n(z/2) \prec P_{n+1}(z), \quad n \ge 1,$$

and the constant 1/2 is best possible.

The fact that the constant 1/2 is best possible is shown by the function $P_2(z) = z + (1/2)z^2 \in S$. We deduce Theorem 1 from the following more precise form.

THEOREM 2. If $P_{n+1}(z) \in S$ then

$$P_n(z/2) \prec P_{n+1}(z), \quad n = 1, 2,$$

 $P_n(\alpha_n z) \prec P_{n+1}(z), \quad n \ge 3,$

where α_n is the root of the equation

$$\frac{\alpha^{n+1}}{n+1} - \frac{1}{4} \left(\frac{1-\alpha}{1+\alpha}\right)^2 = 0$$

in the interval (0, 1). $\alpha_n > 1/2$ for all $n \ge 3$, α_n increases with n and $\lim_{n\to\infty}\alpha_n = 1$.

Received by the editors on March 15, 1983, and in revised form on September 2, 1983. 1980 *Mathematics Subject Classification*: Primary 30C55; Secondary 30C10, 30B10.

Key Words and Phrases: Subordination, univalent function, analytic function. Copyright © 1984 Rocky Mountain Mathematics Consortium To prove this theorem we require two well-known inequalities which we state as lemmas.

LEMMA 1. If $f(z) \in S$, then, for all real θ ,

$$|f'(re^{i\theta})| \ge \frac{1-r}{(1+r)^3}, \quad 0 \le r < 1.$$

LEMMA 2. If $\sum_{k=1}^{n} b_k z^k \in S$, then $|b_n| \leq 1/n$.

For Lemma 1 see, for example, [2]. Lemma 2 follows from the fact that, with the given hypothesis, all the zeros of the derivative $\sum_{k=1}^{n} kb_k z^{k-1}$ lie outside γ .

PROOF OF THEOREM 2. With n = 1, since $|a_2| \le 1/2$ by Lemma 2, for |z| = 1 we have $|z + a_2 z^2| \ge 1 - |a_2| \ge 1/2$, which implies that $(1/2)z \lt z + a_2 z^2$.

In the case n = 2, let λ_1 , λ_2 be the zeros of $P'_3(z)$. Then $P'_3(z) = 3a_3(z - \lambda_1)(z - \lambda_2)$, $|\lambda_1| \ge 1$, $|\lambda_2| \ge 1$, and for $0 \le r < 1$ and all real θ ,

(2)
$$|P'_3(re^{i\theta})| \ge 3 |a_3|(1-r)^2.$$

Let Δ now denote the image of γ under the mapping $w = P_3(z/2)$, let D denote the image of γ under the mapping $w = P_3(z)$, and let d be the distance of the boundary of Δ from the boundary of D. Then by (2),

(3)
$$d \ge \int_{1/2}^{1} \min_{\theta} |P'_{3}(re^{i\theta})| dr \ge |a_{3}|/2^{3}.$$

If $a_3 = 0$ then the consequence $P_2(z/2) \prec P_3(z)$ is trivial. If $a_3 \neq 0$ then it follows from (3) and $|a_3(z/2)^3| < |a_3|/2^3$.

Let

$$h_n(\alpha) = \frac{\alpha^{n+1}}{n+1} - \frac{1}{4} \left(\frac{1-\alpha}{1+\alpha} \right)^2$$

Then $h_n(0) = -1/4$, $h_n(1) = 1/(n + 1)$, and $h_n(\alpha)$ increases with α . It follows that there is exactly one solution $\alpha = \alpha_n$ of the equation $h_n(\alpha) = 0$. Also, since $h_n(\alpha)$ is a decreasing function of *n* for fixed $\alpha(0 < \alpha < 1)$, it is clear that α_n increases with *n* and $\lim_{n\to\infty} \alpha_n = 1$. In the case $n \ge 3$, let Δ , *D* denote the images of γ under the mappings $w = P_{n+1}(\alpha_n z)$, $w = P_{n+1}(z)$, respectively, and let *d* be the distance of the boundary of Δ from the boundary of *D*. Then by Lemma 1,

(4)
$$d \ge \int_{\alpha_n}^1 \min_{\theta} |P'_{n+1}(re^{i\theta})| dr \ge \frac{1}{4} \left(\frac{1-\alpha_n}{1+\alpha_n}\right)^2.$$

By Lemma 2 we have

$$|a_{n+1}(\alpha_n z)^{n+1}| < \frac{\alpha_n^{n+1}}{n+1} = \frac{1}{4} \left(\frac{1-\alpha_n}{1+\alpha_n}\right)^2,$$

and the rest of the theorem now follows from (4).

The relation (1) of Theorem 1 results from the fact that $\alpha_n > 1/2, n \ge 3$.

THEOREM 3. If $P_n(z) \in S$ and $|a_{n+1}| \leq 2/9$, then $P_{n+1}(z/2) \prec P_n(z)$, $n \geq 1$.

PROOF. The case n = 1 is trivial. By an argument similar to that used in the proof of Theorem 2 for the case $n \ge 3$, it is sufficient to note that, for $n \ge 2$,

$$|a_{n+1}|/2^{n+1} \leq |a_{n+1}|/8 \leq 1/36.$$

We remark that we have not attempted to prove a more precise form of this result, but it is clear that for a conclusion of the form $P_{n+1}(\beta z) \prec P_n(z)$ some restriction on the size of $|a_{n+1}|$ is necessary.

Our last theorem indicates a reciprocal subordination relation between the successive partial sums of the Taylor series of a univalent function.

THEOREM 4. If $f(z) = \sum_{k=1}^{\infty} a_k z^k \in S$ and $s_n(z) = \sum_{k=1}^{n} a_k z^k$, then

(5)
$$s_n(z/8) \prec s_{n+1}(z/4) \prec f(z),$$

(6)
$$s_{n+1}(z/8) \prec s_n(z/4) \prec f(z),$$

for $n \ge 1$. The constants 1/4 in (6) and 1/8 in (5) are best possible.

PROOF. It is known that if $f(z) \in S$, then $s_n(z/4)$ is univalent [4], $s_n(z/4) \prec f(z)$ for all *n* and the constant 1/4 is sharp. [3] Statement (5) now follows from Theorem 1. The case $f(z) = z(1 - z)^{-2}$, n = 1, shows that the constant 1/8 cannot be increased. To prove (6), we note first that, since $|a_2| \leq 2$ (see, for example, [2]), $|s_2(z/8)| \leq 5/32 < 1/4$ in γ . Next, by Theorem 3, for $n \geq 2$, it is sufficient to show that

(7)
$$|a_{n+1}|/4^n \leq 2/9.$$

For n = 2 and 3, (7) follows from the inequalities $|a_3| \leq 3$ (see, for example, [2]), $|a_4| \leq 4$ (see, for example, [1]). Finally, by Lemma 2, since $4s_{n+1}(z/4) \in S$, (7) for the case $n \geq 4$ follows from the inequality $4|a_{n+1}|/4^{n+1} \leq 1/(n+1)$.

References

1. L.V. Ahlfors, Conformal Invariants, McGraw-Hill, 1973.

2. W.K. Hayman, *Multivalent Functions*, Cambridge Tracts 48, University Press, 1958.

3. F.R. Keogh, A subordination property of univalent functions, Bull. London Math. Soc., 3 (1971), 181-184.

4. G. Szegö, Zur Theorie der schlichten Abbildungen, Math. Annal., 100 (1928), 188-211.

 $\ensuremath{\mathsf{Department}}$ of Mathematics, Middle East Technical University, Ankara, Turkey and

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KENTUCKY, LEXINGTON, KENTUCKY 40506

BIRCHWOOD, CORGARFF, ABERDEENSHIRE AB3 8YD, SCOTLAND, UNITED KINGDOM