SOME SUBORDINATION RELATIONS

T. BAŞGÖZE AND F. R. KEOGH

Abstract

If $P_{n}(z)=\sum_{k=1}^{n} a_{k} z^{k}, a_{1}=1, P_{n+1}(z)=P_{n}(z)+a_{n+1} z^{n+1}$, and if $P_{n+1}(z)$ is univalent for $|z|<1$, then $P_{n}(z / 2)<P_{n+1}(z)$, $n \geqq 1$, and the constant $1 / 2$ is best possible. If $f(z)=\sum_{k=1}^{\infty} a_{k} z^{k}$, $a_{1}=1$, is analytic and univalent for $|z|<1, s_{n}(z)=\sum_{k=1}^{n} a_{k} z^{k}$, then $s_{n}(z / 8)<s_{n+1}(z / 4) \prec f(z), n \geqq 1$ (and the constant $1 / 8$ is best possible), and $s_{n+1}(z / 8)<s_{n}(z / 4)<f(z)$.

Let γ denote the disc $|z|<1$ and let S denote the class of functions $f(z)$ analytic and univalent in γ and normalized by the conditions $f(0)=0$, $f^{\prime}(0)=1$. For a function $g(z)$ analytic in γ, if $g(0)=0$ and $g(z)$ is subordinate to $f(z)$, we write $g(z) \prec f(z)$. Let $P_{n}(z)=\sum_{k=1}^{n} a_{k} z^{k}, a_{1}=1$, and let $P_{n+1}(z)=P_{n}(z)+a_{n+1} z^{n+1}$.

Theorem 1. If $P_{n+1}(z) \in S$, then

$$
\begin{equation*}
P_{n}(z / 2)<P_{n+1}(z), \quad n \geqq 1, \tag{1}
\end{equation*}
$$

and the constant $1 / 2$ is best possible.
The fact that the constant $1 / 2$ is best possible is shown by the function $P_{2}(z)=z+(1 / 2) z^{2} \in S$. We deduce Theorem 1 from the following more precise form.

Theorem 2. If $P_{n+1}(z) \in S$ then

$$
\begin{array}{ll}
P_{n}(z / 2)<P_{n+1}(z), & n=1,2, \\
P_{n}\left(\alpha_{n} z\right)<P_{n+1}(z), & n \geqq 3
\end{array}
$$

where α_{n} is the root of the equation

$$
\frac{\alpha^{n+1}}{n+1}-\frac{1}{4}\left(\frac{1-\alpha}{1+\alpha}\right)^{2}=0
$$

in the interval $(0,1) . \alpha_{n}>1 / 2$ for all $n \geqq 3, \alpha_{n}$ increases with n and $\lim _{n \rightarrow \infty} \alpha_{n}=1$.

[^0]To prove this theorem we require two well-known inequalities which we state as lemmas.

Lemma 1. If $f(z) \in S$, then, for all real θ,

$$
\left|f^{\prime}\left(r e^{i \theta}\right)\right| \geqq \frac{1-r}{(1+r)^{3}}, \quad 0 \leqq r<1
$$

Lemma 2. If $\sum_{k=1}^{n} b_{k} z^{k} \in S$, then $\left|b_{n}\right| \leqq 1 / n$.
For Lemma 1 see, for example, [2]. Lemma 2 follows from the fact that, with the given hypothesis, all the zeros of the derivative $\sum_{k=1}^{n} k b_{k} z^{k-1}$ lie outside γ.

Proof of theorem 2. With $n=1$, since $\left|a_{2}\right| \leqq 1 / 2$ by Lemma 2 , for $|z|=1$ we have $\left|z+a_{2} z^{2}\right| \geqq 1-\left|a_{2}\right| \geqq 1 / 2$, which implies that $(1 / 2) z \prec$ $z+a_{2} z^{2}$.

In the case $n=2$, let λ_{1}, λ_{2} be the zeros of $P_{3}^{\prime}(z)$. Then $P_{3}^{\prime}(z)=3 a_{3}$ $\left(z-\lambda_{1}\right)\left(z-\lambda_{2}\right),\left|\lambda_{1}\right| \geqq 1,\left|\lambda_{2}\right| \geqq 1$, and for $0 \leqq r<1$ and all real θ,

$$
\begin{equation*}
\left|P_{3}^{\prime}\left(r e^{i \theta}\right)\right| \geqq 3\left|a_{3}\right|(1-r)^{2} \tag{2}
\end{equation*}
$$

Let Δ now denote the image of γ under the mapping $w=P_{3}(z / 2)$, let D denote the image of r under the mapping $w=P_{3}(z)$, and let d be the distance of the boundary of Δ from the boundary of D. Then by (2),

$$
\begin{equation*}
d \geqq \int_{1 / 2}^{1} \min _{\theta}\left|P_{3}^{\prime}\left(r e^{i \theta}\right)\right| d r \geqq\left|a_{3}\right| / 2^{3} \tag{3}
\end{equation*}
$$

If $a_{3}=0$ then the consequence $P_{2}(z / 2)<P_{3}(z)$ is trivial. If $a_{3} \neq 0$ then it follows from (3) and $\left|a_{3}(z / 2)^{3}\right|<\left|a_{3}\right| / 2^{3}$.

Let

$$
h_{n}(\alpha)=\frac{\alpha^{n+1}}{n+1}-\frac{1}{4}\left(\frac{1-\alpha}{1+\alpha}\right)^{2}
$$

Then $h_{n}(0)=-1 / 4, h_{n}(1)=1 /(n+1)$, and $h_{n}(\alpha)$ increases with α. It follows that there is exactly one solution $\alpha=\alpha_{n}$ of the equation $h_{n}(\alpha)=$ 0 . Also, since $h_{n}(\alpha)$ is a decreasing function of n for fixed $\alpha(0<\alpha<1)$, it is clear that α_{n} increases with n and $\lim _{n \rightarrow \infty} \alpha_{n}=1$. In the case $n \geqq 3$, let Δ, D denote the images of γ under the mappings $w=P_{n+1}\left(\alpha_{n} z\right), w=$ $P_{n+1}(z)$, respectively, and let d be the distance of the boundary of Δ from the boundary of D. Then by Lemma 1,

$$
\begin{equation*}
d \geqq \int_{\alpha_{n}}^{1} \min _{\theta}\left|P_{n+1}^{\prime}\left(r e^{i \theta}\right)\right| d r \geqq \frac{1}{4}\left(\frac{1-\alpha_{n}}{1+\alpha_{n}}\right)^{2} \tag{4}
\end{equation*}
$$

By Lemma 2 we have

$$
\left|a_{n+1}\left(\alpha_{n} z\right)^{n+1}\right|<\frac{\alpha_{n}^{n+1}}{n+1}=\frac{1}{4}\left(\frac{1-\alpha_{n}}{1+\alpha_{n}}\right)^{2}
$$

and the rest of the theorem now follows from (4).
The relation (1) of Theorem 1 results from the fact that $\alpha_{n}>1 / 2, n \geqq 3$.
Theorem 3. If $P_{n}(z) \in S$ and $\left|a_{n+1}\right| \leqq 2 / 9$, then $P_{n+1}(z / 2) \prec P_{n}(z), n \geqq 1$.
Proof. The case $n=1$ is trivial. By an argument similar to that used in the proof of Theorem 2 for the case $n \geqq 3$, it is sufficient to note that, for $n \geqq 2$,

$$
\left|a_{n+1}\right| / 2^{n+1} \leqq\left|a_{n+1}\right| / 8 \leqq 1 / 36 .
$$

We remark that we have not attempted to prove a more precise form of this result, but it is clear that for a conclusion of the form $P_{n+1}(\beta z)<$ $P_{n}(z)$ some restriction on the size of $\left|a_{n+1}\right|$ is necessary.

Our last theorem indicates a reciprocal subordination relation between the successive partial sums of the Taylor series of a univalent function.

Theorem 4. If $f(z)=\sum_{k=1}^{\infty} a_{k} z^{k} \in S$ and $s_{n}(z)=\sum_{k=1}^{n} a_{k} z^{k}$, then

$$
\begin{align*}
& s_{n}(z / 8) \prec s_{n+1}(z / 4) \prec f(z) \tag{5}\\
& s_{n+1}(z / 8) \prec s_{n}(z / 4) \prec f(z) \tag{6}
\end{align*}
$$

for $n \geqq 1$. The constants $1 / 4$ in (6) and $1 / 8$ in (5) are best possible.
Proof. It is known that if $f(z) \in S$, then $s_{n}(z / 4)$ is univalent [4], $s_{n}(z / 4)<$ $f(z)$ for all n and the constant $1 / 4$ is sharp. [3] Statement (5) now follows from Theorem 1. The case $f(z)=z(1-z)^{-2}, n=1$, shows that the constant $1 / 8$ cannot be increased. To prove (6), we note first that, since $\left|a_{2}\right| \leqq 2$ (see, for example, [2]), $\left|s_{2}(z / 8)\right| \leqq 5 / 32<1 / 4$ in γ. Next, by Theorem 3, for $n \geqq 2$, it is sufficient to show that

$$
\begin{equation*}
\left|a_{n+1}\right| / 4^{n} \leqq 2 / 9 \tag{7}
\end{equation*}
$$

For $n=2$ and 3, (7) follows from the inequalities $\left|a_{3}\right| \leqq 3$ (see, for example, [2]), $\left|a_{4}\right| \leqq 4$ (see, for example, [1]). Finally, by Lemma 2, since $4 s_{n+1}(z / 4) \in S$, (7) for the case $n \geqq 4$ follows from the inequality $4\left|a_{n+1}\right| /$ $4^{n+1} \leqq 1 /(n+1)$.

References

1. L.V. Ahlfors, Conformal Invariants, McGraw-Hill, 1973.
2. W.K. Hayman, Multivalent Functions, Cambridge Tracts 48, University Press, 1958.
3. F.R. Keogh, A subordination property of univalent functions, Bull. London Math. Soc., 3 (1971), 181-184.
4. G. Szegö, Zur Theorie der schlichten Abbildungen, Math. Annal., 100 (1928), 188211.

Department of Mathematics, Middle East Technical University, Ankara, Turkey and
Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506
Birchwood, Corgarff, Aberdeenshire AB3 8YD, Scotland, United Kingdom

[^0]: Received by the editors on March 15, 1983, and in revised form on September 2, 1983. 1980 Mathematics Subject Classification: Primary 30C55; Secondary 30C10, 30B10.

 Key Words and Phrases: Subordination, univalent function, analytic function.

