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UPPER AND LOWER SOLUTIONS FOR SYSTEMS OF 
SECOND ORDER EQUATIONS WITH NONNEGATIVE 

CHARACTERISTIC FORM AND DISCONTINUOUS 
NONLINEARITIES 
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1. Introduction. The method of upper and lower solutions has a long 
history and a wide application in the study of nonlinear elliptic and 
parabolic boundry value problems. It is related to the methods of mono
tone operators as discussed in [1], and has been applied to elliptic, para
bolic, and first order equations and systems by various authors, see [1], 
[2], [3], [4], [8], [10], [11], [12], [13], among many others; for further ref
erences see [1], [12]. 

The present article gives a unified treatment for systems of second 
order equations with nonnegative characteristic form, as studied in [5], 
[6], [9]. Such equations include elliptic, parabolic, and first order equations, 
among others. The results obtained here extend existing ones in various 
ways. First, we consider the general setting of systems of equations with 
nonnegative characteristic form. Single equations of that type are con
sidered in [4], but are required to be elliptic near the boundary of the 
domain where they are studied. We consider weak solutions; in fact, 
since we allow discontinuities in our nonlinearity, and equations with 
nonnegative characteristic form need not have any smoothing properties, 
we can do no better. 

Specifically, we consider systems of the form 

(1.1) -Lr[ur] = fr(x, u) in Q, r = 1, . . ., m 

where Û i R is a smooth bounded domain, ü = (w1, . . . , um) and 

(1.2) U[u] = £j (fi{x)uXiSJ + t 6?(*K + cr(x)u 

with £?/,=i arij{x)££j ^ 0. The functions fr(x, u) are required to be 
measurable in all variables and quasimonotone, that is, fr must be non-
decreasing in us for s 7* r; we also require that fr(x, ü) + Mur be in
creasing in ur for some M > 0. We also require that if ü is bounded and 

Received by the editors June 24,1983. 
Copyright © 1984 Rocky Mountain Mathematics Consortium 

549 



550 C. COSNER AND F. SCHINDLER 

measurable, then so isfr(x, w)for each r. That will be true under various 
conditions discussed in §3, but in particular, it suffices that fr be inde
pendent of x and be a Borei function in w, which allows fr to be discon
tinuous. In [13], discontinuous nonlinearities are considered, but only 
for a single equation. 

In the elliptic case, equations and systems have been studied where the 
nonlinearity depends on the first derivatives of the dependent variables; 
see [2], [12]. However, the operators in (1.1) may be first or even zero 
order, and no compactness results are available, so we consider only the 
case where no derivatives occur in the nonlinearity. 

We also discuss the requirement of quasimonotonicity for (1.1). This 
condition is a common one for results based on monotone operator 
theory. In the case r = 2 it is noted in [3], [10], [11] that the condition 
can be replaced by requiring/7 to be decreasing in w', i ^ j , with suitable 
redefinition of upper and lower solutions. However, such systems can be 
made quasimonotone by a change of variables, as noted in [10]. In fact, 
a similar situation occurs in some systems with m ^ 3; we address the 
question of reducing systems to equivalent ones which are quasimonotone. 
We give a simple method of deciding if such a reduction can be performed 
by replacing ur by — ur for some values of r. 

2. Preliminaries. Let Ö i R" be a bounded domain, with dû of class 
Ç2+CC for some a e (0, 1). For r = 1, . . . , m let Lr denote the operator 

(2.1) L'[u] = £ ^j(x)uXt.x. + £ bi(x)uXi + C(x)u, 
i, j=l i=l 

and let U* denote the formal adjoint of Z/, so that 

(2.2) L*[u] EE £ arj(x)uXiX. + £ b?(x)uXi + <f(x)u. 
it y=i i=i 

Assume that a^_= ar
ß for all /•, that for all, i,j, r, ar

{j e C2(Ö), bf e C\Q), 
bri, c\ cr* e C«(Ä), and that for all £ = (&, . . . , £n) G R«, X e Q, and r, 

(2.3) i di{x)Mj*0. 

Following Fichera [6] (see also [5], [9]), divide dQ in regions as follows: 
let v = (vi, . . ., vn) be the inward unit normal to dû. For each r, define 
2or to be the subset of dû where 2 ? y = 1 ar

{j v{Vj = 0. Define a function 
Br(x) on 2or by 

B'(x) =£&-£ *?„>,. 
f=i j=i ' 

(Br(x) is generally known as the Fichera Function for Lr\ its sign at any 
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point of 20r is invariant under nondegenerate changes of coordinates.) 
Define 2r

0, 2[, 2r
2 to be the subsets of 2or where Br(x) = 0, Br(x) > 0, 

and Br(x) < 0, respectively. Define 2r
3 by 2r

3 = dÛ\20r. Define Fr to be 
the set boundary points of 2r

2 U 2Q in dû. Suppose that dû is given in 
some neighborhood of x0 e dû by F(x) = 0, with F > 0 inside Û and 
IF * 0. Define /3'(JC) at x0 by ^(JCQ) = M ^ W ] U*0- ( W e w i l 1 b e 

concerned with only the sign of /3r, which is independent of the choice of 
F. In many cases, the sign of ßr(x) will agree with that of Br(x), but that 
is not always true; see [8], p. 31.) 

We will be interested in weak solutions to problems involving the opera
tors Lr. The simplest problem, which provides the basis for studying more 
complicated ones, is the following: 

-Lr[u] = f(x)in Û, 
(2.4) 

u = g(x) on 2r
2 (J 2$, 

where / and g are bounded measurable functions on Û and 2r
2 U 2\ 

respectively. We follow [5], [6] and [9], and define a weak solution to (2.4) 
to be a bounded, measurable function u such that for any v e C2(û) with 
v = 0 on 2[ U 2r

2, the equation 

(2.5) -J f l„i™ äx = Jflv/& - k * * * + ̂  * gv A 

is satisfied, where öfc denotes surface measure on dû. Observe that although 
the notion of a weak solution includes having ueL°°(û), equation (2.5) 
still makes sense for u e Lp(û), p ^ 1. 

We will need the following existence-uniqueness theorem. 

THEOREM 1. Suppose that the following conditions are met: (E) the 
coefficient cr(x) satisfies cr(x) ^ c0 < 0; / ^ 0 is a bounded, measurable 
function on Û, and g ^ 0 is a bounded measurable function on 22 U 23 

such that there exist functions gn e C2+a(D) with gn ^ 0 and gn -> g in 
L2(2r2 U 25); and(U) the coefficient <** ofV* satisfies c<* < 0 in Û; ß** < 0 
on 21, (where ßf is the function corresponding to ßr for I/*), the n-\ 
measure of a ô neighborhood of Fr in dû has order öq, q > 0, and that the 
coefficients of IS* can be extended into a ö neighborhood of 2Q U 22 so 
that the smoothness hypotheses given above, and (2.3), remain true. 

Then the problem (2.4) has a unique bounded measurable weak solution, 
u, in the sense of (2.5), with 

(2.6) 0 ^ u ^ max {ess sup//c0, ess sup g} 

holding almost anywhere. 

PROOF. This theorem is essentially Theorems 1.5.1 and 1.6.2 of [9]; the 
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hypotheses given under (E) are needed for existence, those under (U) 
for uniqueness. The only new assertion is the nonnegativity of u; that 
follows from the construction of the weak solution in theorem 1.5.1 of 
[9], which is done by approximating/and g by sequences of smooth func
tions {/„} and {gn} which converge to / and g in the L2 sense on Q and 
%2 U 2l respectively, and then solving — e Au — Lru = /„ in Q u = gn 

on dQ to obtain u£>n, and passing to a limit as e -» 0, n -> oo. We can 
obtain fn ^ 0 by mollifying/, and gn ^ 0 by hypothesis. Then uen ^ 0 
so that u ^ 0 a.e. 

Another result that will be needed is a theorem of Krasnosel'skii on 
monotone operators. The setting will be the space [Lp(Q)]m of vector 
functions ü = (w1, . . . , um) with ur e Lp(0) for r = 1, . . . , m; the cone K 
used to define order monotonicity in[Lp(Q)]m will be the cone of functions 
v with V ^ 0 a.e. for r = 1, . . . , m. The cone K in [Lp(Q)]m is regular and 
strongly minihedral; that is, every bounded sequence monotone with 
respect to K has a limit, and every bounded set has a least upper bound. 
(For further discussion see [7].) The relation ü ^ v then means ur ^ vr 

a.e. for r = 1, . . . , m. An operator on all or part of [LP(Q)]m is monotone 
(with respect to K) if ü ^ v implies ^w ^ 4̂v. The conical segment in 
[LP(Q)]m defined by the elements v, w, is the set of all u G [LP(Q)]m with 
v ^ ü ^ w. 

The following is a theorem of Krasnosel'skii ([7], Theorem 4.1). 

THEOREM 2. Let A be an operator, monotone on the conical segment 
v g i/ ^ w and transforming that segment to itself, that is, with Av ^ v 
and Aw g w. 

If the cone K defining the ordering is strongly minihedral, then A has a 
fixed point in the segment. 

REMARK. Note that A need not be continuous. That fact is crucial for 
the results that follow. 

3. The Existence Theorem. In this section we establish an existence 
theorem for weak solutions of the system. 

-Lr[w] = / ' ( * , u\ . . . , i/w) in Q, r = 1, . . . , m, 

ur = 0 on 2r2 U 25, 

by using results on monotone maps. We will require that either / = 
(f\ ..., fm) is quasimonotone (that is, fr is nondecreasing in us for s 
7* r) for x e Q and ü = (w1, . . . , um) in an appropriate set, or that system 
(3.1) can be transformed to one in which the nonlinearity is quasimono
tone. We will also require that for some M > 0, for all r 
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fr(x, u\ ...a, ur~l, ur, ur+1, , um) 

(3.2) - />(*, u\ . . . , ur-\ v , W+1, ...,!*"•) 

^ -M(ur - vr) 

for wr ^ vr, x e fl, and w in an appropriate set. (The "appropriate set" will 
typically be a set including any values of ur between the components 
%r, <j>r of the upper and lower solutions.) 

We will assume that f(x, u) is a bounded measurable function if ur is 
bounded and measurable for each r. (Again, this need only hold between 
the lower and upper solutions.) There are various possible sufficient condi
tions for such functions. One is the Carathéodory condition that fr(x, ü) 
be bounded and measurable in x and continuous in w. Another is that 
fr(x, ü) = fr(ü), with/r(w)a Borei function for each r. (If/r(w)is separately 
continuous in each component of ü, then it is Borei.) Borei functions can 
be rather discontinuous; for example, {£/,}, / = 1, 2, • • -, is a disjoint 
collection of Borei sets in Rm with ( J ï i ^ = Rm> then/(a) = £ £ i c^. 
is Borei, and bounded if the coefficients c{ are bounded. Other conditions 
on f(x, u) are also possible. In the case of a function of a single variable, 
f(w), condition (3.2) implies/is Borei since/(w) + Mw is monotone. 

We define a weak solution of (3.1) to be a bounded measurable func
tion w on 0 such that for any v e C2(Q) with vr = 0 on 2[ (J 2%, the equa
tions 

(3.3) - J urU*[vr]dx = \ vrfr(x, u)dx, r = 1, . . . , m 

are satisfied. (Any classical solution is also a weak solution.) 

THEOREM 3. Suppose that there exist bounded measurable vector functions 
<f>, %on Q such that for r = 1, . . ., m, <j>r satisfies 

UW\ = F'(x) in Q, 
(3.4) Y 

in the sense of (2.5), with Fr(x) ^fr(x, 0) a.e. and %r satisfies in the sense of 
(2.5), 

(3.5) U -

with Fr(x) S fr(x, x) a.e., where Fr, Fr, gr, gr are bounded measurable 
functions, and there exist functions gr

n, g
r
n e C2+a(Q) with gr

n ^ 0, gr
n g 0 

and grn -+ F, fn -> ir in L\2r
2 U 2£). 

Suppose also 

(3.6) <t>r(x) ^ xr(x) a.e., r = 1, . . . , m. 
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Suppose that for x eu and ü with %r ^ ur ^ <ßr a.e.,/0/* all r, f(x, ü) 
is quasimonotone and satisfies (3.2) and the measurability hypotheses fol
lowing (3.2), and that for each r, Lr satisfies the hypotheses of Theorem 1, 
but with the condition of{E) that cr(x) ^ — c0 < 0 replaced by the condi
tion that cr(x) ^ ci. 

Then (3.1) has a weak solution ü in the sense of (3.2) with xr ^ wr ^ <j>r 

a.e., r = 1, . . . , m. 

PROOF. Choose/? e (1, oo). (We want bounded measurable solutions, 
but to apply Theorem 2 we need the cone K of §2 to be minihedral, which 
is not true in [L°°(Q)]m. Thus we must work in a subset of [Lp(Q)]m. How
ever, the necessary operators are well defined and need not be continuous, 
so that is not a problem.) Using the cone K in [Lp(Q)]m defined in §2, the 
relation xr = wr = $r ae-> r = 1> • • •> m-> defines a conical segment S. 
By adding the term Mur to both sides of the rth equation in (3.1), we can 
simultaneously make fr monotone increasing in ur and make the coef
ficient — cr + M of the undifferentiated term in — Lr + M satisfy — cr + 
M ^ CQ > 0, which is equivalent to what is needed in hypothesis (E) of 
Theorem 1. Also, (3.3) is unaffected. Thus we shall assume, without loss 
of generality, that fr is monotone increasing in ur and the hypotheses of 
Theorem 1 are satisfied. 

For w e F, define Z = Aw by taking Z r to be the unique solution in the 
sense of (2.5) to 

-L'Zr = / ' ( * , w)inQ, 
(3.7) 

Zr = 0 on 21 U 2r
3. 

Theorem 1 insures that Z is well defined, and since Z is bounded and 
measurable, Z G [Lp(Q)]m. 

We now show that A maps S to itself and is monotone on S. Suppose 
w e S. Then for any admissible test function vr, we have 

- $JrL"[vr]dX = J o yrFr(x)dx ~ ^ ? ^ ds + J ^ ßr^ds 

and for Z = Aw, -J0Z'.Z/*[v'] = f0v/>(x, w>) dx. Thus, 

- f (0r - Zr) V*[v]dx 

= $ovF'(x) -f(x, w)dx - J 2 § r | j - & + J , , Ä ' r v ' A . 

By 3.8, <j>r — Zr is the unique bounded measurable weak solution 
to -Lr[u] = Fr(x) -fr(x, w) in Q, u = gr on 2r

2 U 2& Since f'(;c) ^ 
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ci) and <j)s ^ ws a.e. for s = 1, . . . , m, it follows from Theorem 1 that 
(j)r — Zr ^ 0 a.e; thus Z = Aw ^ ç5. A similar argument with inequali
ties reversed shows that Aw ^ £, so A maps S into itself. Suppose now that 
#i, #2 G S with # ! ^ w2, and let Zf = ^w, i = 1,2. Then it follows as 
(3.8) that for each r, for admissible v, 

(3.9) - f (Zf - ZÔ IT[V] = f v'[/>(*, WO - / ' ( * , w2)]dx. 
J Q JO 

But by the monotonicity properties of f,fr(x, Wi) — fr(s, w2) ^ 0 a.e. 
By (3.9), Z[ — Z£ is the unique weak solution of Lr[u] = fr(x, w{) — 
fr(x, w2) in Ö, u = 0 on 2% U 2?; so by Theorem 1, Z[ - Zr

2 ^ 0 a.e. 
Thus Awi ^ ^w2, so 4̂ is monotone on 5. 

Since A is a monotone map of the conical segment S into itself and the 
cone K defining S is minihedral, it follows by Theorem 2 that A has a 
fixed point w e F, which is equivalent to the conclusion of the theorem. 

REMARKS. We require that/(x, w)be quasimonotone. Counter examples 
show that even for elliptic equations, some conditions of that type are 
needed; see for example [12]. However, in the case of two elliptic or 
parabolic equations, it has been noted that if/7 is decreasing in W for 
j 7* i, then the method of upper and lower solutions can still be used ; 
see [3], [10], [11]. In [10], such a system is reduced to a quasimonotone 
system by replacing w2 with m — u2 for some constant m. In fact, such a 
transformation in always possible in that case, and in many others. 

Suppose that fr(x, u) is increasing in ur for each r (if (3.2) is satisfied, 
simply assume that we have added Mur to both sides of (3.1) as in the 
proof of Theorem 3. If we replace ur by ur = — ur, we obtain for the rth 
equation 

-Lrur = -fr(x, u\ . . . , ur~l, -w r , wr+1, . . . , wm). 
(3.10) . 

= fr(x, u\ . . . , ur~\ ür
9 ur+\ . . . , **), 

where (because of the two minus signs on the right of the first equation 
in (3.10) fr is increasing in ur. Also, if fr was increasing in us for s # r, 
then fr is decreasing in ws, and vice versa. For s ^ r, —Lsus = fs (x, u\ 
. . . , Mr_1, — wr, wr+1, . . . , um) so if fs was decreasing in wr, it is increasing 
in wr, and vice-versa. 

A method of accounting for the above considerations is as follows : for 
a given f(x, u) with fr monotone in wr, construct a matrix P = ((P,-/)), 
i, y = 1, . . . , m with P f 7 equal to - 1 , 0, or 1 as /* is decreasing in w>, 
independent of M', or increasing in w> respectively. Replacing ur with fir 

leads to a new nonlinearity/i(X u) with matrix P obtained from P by multi
plication on the left and right by a matrix with zeros off the diagonal, 
ones on the diagonal except for the rth row and column, and a negative 
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one in the rth row and column. If by repeated multiplications by such 
matrices P can be transformed to a matrix with all entries nonnegative, 
then/can be transformed to a quasimonotone function. 

EXAMPLES. If m = 2 and/' is decreasing in u>\ i # j , then we have 

co H-1 - ÌM i -?)(-! "DG -S)-(! ì) 
so / can be made quasimonotone. For the reduction to work, P must 
be symmetric, but that is not sufficient. If m = 3 and 

/ i i - i \ 
(3.12) P = 1 1 - 1 

\ - l - 1 1/ 

then the reduction is possible; if 

1 - 1 1\ 
- 1 1 1 

1 1 1/ 

then it is not. 

A note on sub- and supersolutions: In the case (3.11), the appropriate 
requirement is that there exist (01, %2), (x1, (fi2) with <f>' ^ yj and 

-L2[X
2]^P{x,(j>\x2l 

-V\x*\£fKx,p,f), 
- i^UA*,* 1 .* 2 ) ; 

see [3]. [10]. [11]. (Such pairs are called upper-lower and lower-upper 
solutions.) If the transformation w2 = — u2 is performed on such a system, 
then (<j>1, — x2) and (%1, - 02) give upper and lower solutions in the sense 
of Theorem 3 for the system with/replaced by/. In the case of (3.12) a 
similar situation occurs ; upper-upper-lower and lower-lower-upper solu
tions lead to upper and lower solutions when the system is transformed by 
i/3 = _ w3 A similar analysis is possible in more general situations. 

We have the following result. 

COROLLARY 4. If the original system of equations (3.1) can be made 
quasimonotone by transformations as above, and appropriate "upper" and 
"lower" solutions can be found (and the remaining hypotheses of Theorem 
3 holds, then there exists a solution to (3.1) in the sense o/(3.3). 

(3.13) P = 
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