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MINIMAL EXISTENCE OF NONOSCILLATORY SOLUTIONS 
IN FUNCTIONAL DIFFERENTIAL EQUATIONS 

WITH DEVIATING ARGUMENTS 

BHAGAT SINGH 

ABSTRACT. For the equation 

(A) L„y(t) + F(t9y(g(t)))=f(t) 

minimal sufficient conditions ensure the existence of a nonoscilla
tory solution of (A). Ln is a disconjugate differential operator of the 
form 

j = 1 d_ 1 1 d_. 
^ P„(t) dt Pn-AO ' ' ' />i(» dt p0(tj ' 

1. Introduction. It is well known from the works of Onose [3] and Singh 
[7] that, subject to the conditions 

(1) ^tn-i\q(t)\dt<œ 

and 

(2) §"t*-i\flt)\dt < oo, 

an equation of the form 

(3) y™{t) + q(t)y(g(t)) = f(t) 

has a nonoscillatory solution with a prescribed limit at oo. However 
when the integral size in (1) or (2) is allowed to be unbounded, then the 
results of Singh [7], Onose [3], Lovelady [2] and Philos [4] do not indicate 
if a nonoscillatory solution still exists. Our purpose in this work is to 
prove the existence of a nonoscillatory solution of a much more general 
functional equation of the form 

(4) Lny(t) + F(t, y(g(t))) = f(t) 
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where n ^ 2 and Ln is a disconjugate operator of the form 

(5) Ln =
 l d 1 d d . 
Pit) dt p^it) dt dt po(t) 

under much less severe conditions, even when (4) is specialized to (3). 
In what follows, we assume that 

(i) Pi(t)9 f(t) are continuous on [a, oo) for some a > 0, p{(t) > 0 for 
0 ^ / ^ « , and 

(6) \°°Pi(t)dt = oo for 1 ̂  i <; n - 1 ; 

(ii) F: R x R -^ Ris continuous where R is the real line; vF(w, v) > 0; 
F(w, v) is increasing in v; 

(iii) g(f).* R -* (0, oo) is continuous, g(t) -• oo as t -> oo, g(f) ^ *. 
Following our notations in [9] (which are generalized version of nota

tions of Willett [12]), we let ik e {1, 2, . . . , TI ~ 1}, 1 ̂  fc g /i - 1 and 
/, 5- e [#, oo). We define 

/ o = l 
( ' ' A ^ Av • • • > A/) = J 'pikirVk-iir, s; pik_v..., /7t/)Jr. 

It can be easily verified that for 1 ^ k ^ n — 1, we have the identities 

(8) /*(*, s; pik, . . ., Pi) = ( - 1)* /*(.*, f ; /?,-, . . ., /?,A) 

(9) Ik(t, s; pik, . . . , Pil) = J ̂  (r) /*_!(*, r ; /?,v . . . , p^rfr. 

For simplicity, we let 

(10) / ,( / , r) = /?0(OAC r;pl9 ..., pt) 

(11) /,-(/) = /,-(/, T) for any 7 ^ . 

Note that for any function G(t) 

(12) JT 

= JTPI(*I) JTP2(*2) ] T " ) T Pnir)G(r)dr dsnr.1 . . . dsh 

In the foregoing analysis, the quasi derivatives will be used. We define 

(13) Loyit) - ^Û-A>(0 ' 

(14) LM0 = j^j (i.,-1 A0Y, lèi un. 
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The domain of Ln is defined to be the set of all functions y:[a, oo) -• R 
such that L{y{t) exist and are continuous on [a, oo). By a solution of equa
tion (4) is meant a function y in the domain of Ln which satisfies (4) on 
[a, oo). By a proper solution of equation (4) and its type is meant a solu
tion y(t) which satisfies 

(15) sup{LKOI:'è Ty}>0 

for every Ty ^ a. A proper solution y(t) of (4) is said to be oscillatory 
if it has arbitrarily large zeros on the interval [a, oo), otherwise y(t) is 
called nonoscillatory. 

There is not much known about the asymptotic behavior of the solu
tions of functional equations involving disconjugate operators such as Ln. 
Quite often such solutions are assumed to exist, and oscillation criteria 
obtained. For sufficiency type results insuring oscillation of the solutions 
of (4), we refer the reader to Singh [7], Lovelady [2], Philos [4] and Trench 
[10]. For asymptotic boundedness of the solutions of equation (4), the 
excellent sources are Philos and Staikos [5] and Kusano and Naito [1]. 
For asymptotic limits of nonoscillatory solutions and other related results 
the reader is referred to Singh and Kusano [8]. 

2. Main Results. In this section we shall establish the existence of a 
nonoscillatory solution of (4) under the most minimal conditions. We 
shall consider the case when the operator Ln is in canonical form. Ln is 
said to be in canonical form when (6) holds. According to Trench [10], 
any operator of the type of Ln which is not in canonical form can be 
represented uniquely with a different set of ph 1 ^ / ^ n. 

THEOREM 1. Suppose (i) —(iii) hold. Further suppose that for each 
T ^ a the limit 

(Jn-i(t)Y
lpQ(t) j ^ /„_! ( / , r;/?!,...,/>„_!) • pn(r)\f(r)\dr < oo] 

exists, and for each finite constant b > 0 and T ^ a, the limit 

Poi*) (Jn-liO)'1 j / » - l ( ' > r ' Pl> • • >Pn-l)'Pn(r) = 

•FfabJ^igirmdr J 

exists and h(b, T) -> 0 as T -> oo. Then equation (4) has a nonoscillatory 
proper solution y(t) with the property y(t) = 0(Jn_i(t)). 

PROOF. Let D be the locally convex space of all continuous functions 
S: [T, oo) -• N, T ^ 8a, superimposed with the topology of uniform 
convergence on compact subsets of [T, oo). The members of D satisfy 
the additional property that for each S e D, \S(t)\/Jn_i(t) ^ C, where 

(16) lim 
t-*oo 

(17) lim 
t—>oo 
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C > 0 is the same for all S eD. We consider the set X a D defined, for 
a finite constant c > 0, 8c < C, as 

(18) X = {y e D: ((c/2)/«.^)) ^ y(0 è (3c Jn^{t% t è r } , 

where T' > r i s large enough so that for t ^ T',g(t) > T, 

(19) ( /„ -xWr^oC) f ' Pn(r)In-i(t, r;pl9...9 /v-i) l /WI* < */» 

and 

(^-i(0)_1/?o(0 L PnirVn-iit, r;pl9 .. .,pn-i) 
(20) J r ' 

•F(r,cJn_1(g(r)))dr<c/S. 

Notice that (19) and (20) are possible in view of (16) and (17) for a suf
ficiently large T. We now define an operator <f>: X -* D as 

(2i) MO = ^«-i(0, * ^ r 

and 

0X0 = c/„_!(/) 
( 2 2 ) + (/>o(0) r PnW*-i(t,r;Pl,...,/^w-i)[/W-F(r,XgW))Wr,r ^ T . 

We shall show that <j> is continuous and <j>X a X. To prove continuity 
of <f>, we choose a sequence {>>w(0} of functions from X converging to 
j G l a s m -> oo. We only need to consider the case when t ^ T' since 
for t ^ T' the conclusion is obvious. Now 

( 2 3 ) ^ />0(0 f' p„(r) - In^t,r;Pl,... ,/>„_!) \F(r, ym(g(r))) - F(r, y(g(r)))\dr, 
J T' 

which yields 

\<l>yJ!) - çJXOK^-i(O)-1 

è PoiOiJn-xit))-1 j W ) / „ _ i a r; Pl, ...,pn^)Gm{r)dr, 

where Gm(r) = [F(r, ym(g(r))) - F(r,y(g(r)))]. Since 

|Gm(r)| ^ 2F(r, C / ^ ^ r ) ) ) 

and in view of (17), Gm(r) -> 0 as m-* oo for r ^ 7", by Lebesgue do
minated convergence theorem, we have <j>ym{t) -> <j>y(t) as w -> oo (in the 
topology induced on D earlier). Hence <j>: X -+ D is continuous. Now we 
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will show that (f>X c X. From equation (22), in view of (19) and (20), it 
is obvious that 

<t>y(t) £ Jn_x{t)[c - c/8 - c/8] ^ (c/2)/„_1(0, 

and 

<f>y{t) ^ cJ^it) 

+ /B-i(o[(/»-i(0)-^o(0 ^ / » „ W W , ';/>i> • • -, /V-i(')) 

•(l/WI+^X^)))!)^] 
^ /„_!(0(t + c/8 + 3c/8) :g 3c / „ ^ ( f ) 

in view of (19) and (20) and the fact that t ^ T'. Hence $X <=. X. Next 
we shall show that <j>X is precompact. Differentiating (21) and (22) we get 

^<fry(t))IPo(t))\ = c- dt 
J»-i(OIPo(t)) 

for t < T and 

J-(MOWO) c. d (J„^(t) 
dt \ Po(t) 

(24) + Pitt) | T,P«(r) • 7»-2('- r;p2,..., />„_i) 

• |/(r) - F(r, y(g(r)))\dr, for f ^ T. 

Since y(g(r))) ^ C J„-i(g(r)), (24) reveals that the family of functions 
{(dldt)((f>y(t))/po(t)) :y(t) e X} is uniformly bounded on any finite sub-
interval of [T, oo). Thus the family {$y(t)lp0(t):yeX} is equicontinuous 
at each point of [T, oo). Now for any points tlt t2 e [T, oo) we have 

which yields 

(25) \Mh) - W i ) l ^ l/>o('2) -Po(h)\ 
Po(h)\ Po(h) Po(*i) 

From (25) we obtain that the family {<ßy:yeX} is equicontinuous and 
uniformly bounded at each point of [T, oo). We conclude that <f>X is 
precompact. By the Schauder-Tychonoff theorem, (j> has a fixed point 
y(t) in X which is obviously the nonoscillatory solution of (4) satisfying 

(26) lim s u p / ^ , .) = X < oo, c/2 ^ X è 3c. 
*->oo \ Jn-l\t) J 
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This completes the proof of Theorem 1. 

REMARK 1. In relation to equation (3), we have improved and extended 
sufficiency conditions of Onose [3] and Singh [6, 7] for nonoscillation. 
In fact we have the following corollary. 

COROLLARY 1. Suppose that the limits 

(27) limf/i-» f' (/ - tiY-KgW-1 \q(f*)\dfi) < oo 

and 

(28) l im( / i -»£ ( r - ^ W I 4 " ) < oo 

exist for each T ^. a. Then (3) has a proper nonoscillatory solution y(t) 
which satisfies y(t) = 0(fw_1). 

EXAMPLE 1. Consider the equation 

(29) y'V) + jgy{VT) = £ + js + ±,t > 0. 

It is easily verified that conditions (27) and (28) hold even though (1) 
fails. This equation has y(t) = 1 4- 1/f2 as a nonoscillatory solution satisfy
ing the conclusion of Corollary 1. 

EXAMPLE 2. For the equation 

(30) y"{t) + jfy(VT) = ~m,t>0, 

conditions (1) and (2) fail but (27) and (28) are easily verified. This equa
tion has y(t) = t as a solution satisfying the conclusion of Corollary 1. 

REMARK 2. We would like to point out that whereas conditions (27) 
and (28) suffice for equation (3) to have a nonoscillatory solution which 
is asymptotic to (tn~x), conditions (1) and (2) guarantee the existence of a 
nonoscillatory solution with any finite limit at oo. 

We have the following partial converse of Theorem 1. 

THEOREM 2. Suppose (i)-(iii) hold. Further suppose that for each T ̂  a, 
condition (16) of Theorem 1 holds. Let y(t) be a proper nonoscillatory solu
tion of equation (4) satisfying 

(31) Hm (| j(0IM„-i(0) ^ j8 
*->oo 

for some 0 < ß < co. Then there exists a d, 0 < ô < 1 such that 



MINIMAL EXISTENCE OF NONOSCILLATORY SOLUTIONS 537 

lim sup(/7o(0(^»-i(0)_1 I ' In-iit, r;ph ...,p„-i)-p„ir) 
(32) '^°° K JT 

•F{r,ößJ^Mr)))dr)< co 

for each T ^ a. 

PROOF. Without any loss of generality, suppose there exists a T > a 
large enough so that y(t) > 0, y(g(t)) > 0, for t ^ T and (16) holds. 
Choose T > T large enough so that g(t) ^ Tand 

(33) (yWn-MO)) ^ öß 

for t ^ 7". From the condition on F, we have 

(34) F(t, y(g(t))) ^ F(t, ößJ^igit))) 

for t ^ T. Integrating equation (4), for t ^ T we have 

(35) + J ^h-iiU r;pl9 . . . , pn-^)pn{r)f{r)dr 

f In-X(t, r ;pl9 . . . , /?n_!) - pn(r)F(r, y(g(r)))dr, 
T 

where L;(T), 0 ^ i ^ n — 1 are constants as defined in (13) and (14). 
Now (9) implies 

Hm / . C ^ P i , ••-,/>,) = 0 ; 
*->oo ln-\\t, 1 ; pi, . . . , pn-i) 

for 0 ^ i ^ « - 2. Using (33), (34) in (35) we have 

lim sup A W - G ^ - I C O ) " 1 - I h-iit, r\/?b . . . , /7M_i) 
(36) *~° L JT 

•Pn(r)F(r, ößJ^igmdr] 

which concludes the proof of Theorem 2. 

3. The Equation Lny(f) + F(r, Xs(0)) = 0. In view of Theorem 1 and 
Theorem 2, we have the following theorem which gives a necessary condi
tion for all proper solutions of the equation 

(37) Lny(t) + F(t,y(g(t))) = 0 

to be oscillatory. 

THEOREM 3. Suppose (i)-(iii) hold. Then a necessary condition for all 
proper solutions of equation (37) to be oscillatory is that the limit 
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Pol 
(38) 

lim 
t-+oo 

(t) (/w_i(0)_1 §'T h-iiU r;pl9 ..., pn-i) 

Pn{r)F{ricJn_l{g{r)))dr\ = oo 

exists for some c > 0. 

REMARK 3. Recently Yeh [13] has shown that all proper solutions of 
the equation 

(39) y\t) + p(t)f(y(t), y(g(t))) = 0, p(t) ^ 0 

are oscillatory if 

(40) lim supU1"» J (t - juY^pi/ddju) = oo 

for some n > 2. The conditions imposed upon /?, g and f in Yeh [13] 
are more severe but compatible with ours. Yeh's Theorem 1 in [13] in
dicates that if the left hand side in (40) is finite for some n > 2 then 
equation (39) has a nonoscillatory solution. Our condition (27) in Corol
lary 1 supports this claim under less restrictive conditions. More precisely 
we have the following theorem in regard to equation (39). 

THEOREM 4. Suppose p, g e C[a, oo\fx e C(R x R)9fx(u9 v) has the sign 
ofu and v when they have the same sign, and the limit 

(41) Um(|-i J^( / - fi)g(fi)p(ju)dvj < oo 

exists for each T ^ a. Further suppose that 

(42) lim inf /ite v) > C 

for some constant C > 0. Then equation (39) has a nonoscillatory solution. 

PROOF. This follows in the manner of Theorem 1. 

Our next theorem gives a necessary and sufficient condition for the 
oscillation of all bounded solutions of equation (39) and significantly 
strengthen's Yeh's criterion for bounded solutions of (39). 

THEOREM 5. Suppose all conditions except (41) of Theorem 4 hold. Further 
suppose g'(t) :> 0 andg"(t) ^ Ofor large t. Then 

(43) l i m ( r i £ ( * - /jt)p(/dg(fi)d^ = oo. 

is necessary and sufficient for all proper bounded solutions of equation (39) 
to be oscillatory. 
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PROOF. In view of Theorem 4, all we need to show is that (43) is a 
sufficient condition to cause all proper bounded solutions of (39) to 
oscillate. 

Suppose to the contrary that (39) has a proper nonoscillatory and 
bounded solution y(t). Without any loss of generality suppose there exists 
a constant T ^ a such that y{t) > Oandj>(g(0) > Ofor f ^ T. From equa
tion (39) we have y(t) > 0, y\t) > 0 and y"(t) ^ 0 for t^ 7\ ^ T. In
tegrating (39) we have 

(44) y'it)g(t)- yXTMTi)- f y'(s)g'(s)ds + c[ g(.s)y(g(s)p(s)ds ^ 0. 
J Tx JTi 

Since y'(t)g(t) > 0 and y(g(t)) is nondecreasing, (44) yields 

- yXTMTi) - y(t)g'(t) + ATitem) 

+ f y(s)g"(s)dt + CyigiTJ) f g(s)p(s)ds g 0 
J Ti J Ti 

which gives 

(46) P0 - y(t)g'(t) + />! f g(s)p(s)ds ^ 0, 
J T\ 

where P0 = >< W ( ? i ) - /(T^giT,) + f~ y(t)g"(t)dt, 0 < P, = 
CyigiTJ). Notice that - J * y(t)g"(t)dt < oo since g\t) ^ 0, g"(0 ^ 0 
and j>(0 is bounded for / ^ 7\. Integrating (46) and dividing by / we have 

(47) P0(t - 7\)// - \ ^Ty(/2)gf(M)dju + P^\ £ (f - fi)g{fi)p{fi)d^ ^ 0. 

Now let y(t) ^ P2 for * ^ 7\. Since g(0 > 0, g'(0 ^ ° a^d g"(0 ^ 0 
for J ^ 7\, we have #(*)/* eventually bounded. Since (43) holds, a con
tradiction is immediately apparent in (47), and the proof is complete. 
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