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ON SOME PROPERTIES OF DOMAINS OF 
INTEGRAL OPERATORS 

P. SZEPTYCKI 

SUMMARY. A construction of enlarging solid topological spaces 
of measurable functions is discussed. It is shown that both the 
domain and the extended domain of an integral operator are in
variant under this construction. 

1. Introduction, Let I b e a measure space, LP = L°(X) be the vector 
space of measurable finite a.e. scalar-valued functions on Zand let A a L° 
be a topological vector space. Denote A* = {ue L°; {v e A; \v(x)\ g 
\u(x)\ a.e.} is bounded in A}. If A is solid then A cz A%, otherwise it may 
happen that A% = {0}. If A is a solid normed space then A% is a space 
defined by a function norm in the sense of [1]. 

In this paper we study the "functor"1 as applied to the domain &K 

and the extended domain @K of an integral operator K. The conclusion 
is that both domains are preserved by #, (Theorem 4.1 and theorem 4.2) 
in particular if K is defined on A then it is also defined on A% and if K 
extends by continuity to a solid topological vector space A then it also 
extends by continuity to A*. 

As a preliminary to theorem 4.2 we prove theorem 2.1 which is a new 
characterization of the space 3>K. 

Example (4.5) seems to show that Theorem 4.2 is nontrivial; we do 
not know a proof of (4.5) which would not involve in one way or another 
the idea of that theorem. 

The reference [2] is the background of all the results outlined in Section 
2. 

2. Notation and prelimaries. We assume that X is ^--finite, by subsets of 
X we mean measurable subsets, the measure on X we denote by dx and 
the measure of a set E a X we note by \E\. 

By a metric p we shall mean a translation invariant metric and we shall 
write p(u) = p(u, 0). 

The space L° of all measurable, scalar valued, finite a.e. functions on X 
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has a natural topology of convergence in measure on all subsets of finite 
measure. This is a complete vector topology which can be given, e.g., 
by the metric 

(2.1) p(u) = px(u) = J \u\ (1 + |i/|)-i ^ dx 

where <j> e LP, cj> > 0, \ x <j>dx = 1. 
Above and in what follows we write u = u(x), \u\ = \u{x)\, and by 

u < v or u ^ v we mean the inequalities a.e. 
For a subset A cz LP and u e LP we let 

(2.2) Au = Alui = { v 6 ^ ; | v | ^ u}. 

The set A is SÖ/ZV/ if for every u s A we have L^ c ^* 
A topological (additive) subgroup of L° (in particular a topological 

vector subspace) is solid if its topology can be defined by a base of solid 
neighborhoods of 0. 

A metric p on a subspace A c L° is solid if p(v) ^ p(u) whenever w, 
v e ^ , |K| ^ |v|. 

It is known that solid metrizable vector subspaces of L° are contin
uously contained in L° (see, e.g., [3]); whether this is true without the 
hypothesis of metrizability seems to be an open question. 

If A a LP and E cz X then E is an unfriendly set for A if u\E = 0 for 
all u e A, u\E denoting the restriction of u to E. 

Recall (see [2]) that if A c LP is a vector subspace of LP (not necessarily 
solid) then there exists a maximal, unique up to sets of measure 0, un
friendly subset EA for A, also there exist sequences Xn \ X\EA, v„eA, 
such that |vj > 0 on Xn. If A is solid then for a choice of X„ as above 
one can take v„ — %Xn where %E denotes the characteristic function of E. 

For a solid metrizable subspace A a L0 we denote by Ac the subspace 
of "norm continuous" functions in ,4, i.e., Ac = {ue A; %Enu ->A0 for 
every sequence En <= X s.t. En | 0 } where £„ i 0 means that {En} is 
decreasing and | f] En\ = 0. 

Note that the definition of Ac is meaningful if A is any topological 
subspace of LP containing 0. Of course it is possible that Ac = {0}. 

We recall some facts about integral operators (see [2], [3]). 
Let Y be another ^-finite measure space; in the cases not leading to 

confusion we will write LP = L°(Y). 
A kernel is a function k G L°(X X Y) and the corresponding operator 

(transformation) K is given by 

(Ku)(x) = f k(x, y)u(y)dy, 
(2.3) •*Y 

@K={ueL0; \K\ \u\(x) = J ^ \k(x9 y)\ \u(y)\\ dy < oo a.e.}. 
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AT is a linear operator from @K c: L°(Y) into L°(X). 
On @K there is a natural solid metric 

(2.4) pK(u) = PY(u) + px(\K\ \u\) 

where pY, px are as in (2.1). 
With the metric pK, @K is a complete solid vector space and, by the 

closed graph theorem, if A acL\Y) is a complete metrizable vector 
subspace of L° such that A c QtK then K\A: A -+ L 0 ^ ) is continuous. 

By the dominated convergence theorem one easily verifies the following. 

PROPOSITION 2.1. &°K = @K. 

We assume in what follows that Q)K has no unfriendly sets. 
Let u e L° = LP(Y) and define 

(2.5) pK(u) = pr(w) + </*(w), dK(u) = supfr^ATv); v e f e ) „ } 

where as in (2.2) (£^#)a = { v e ^ ; |v| ^ |w|} and pY, px are as in (2.1), 
thus pY ^ 1, px ^ 1-

p* is a complete solid metric on L°, with this metric L° is a metric group 
(but in general not a metric vector space) which we denote by L° = L%. 

The closure Q)K of @K in L° is a solid metric vector space, this is the 
extended domain of K. 

&K has the following maximality property. 
(2.6) (a) There is a (unique) continuous operator K: §}K -• L°(X) such 

that AT|̂  = K. 
(2.7) (b) If A is a solid topological vector subspace of LP, if @K f] A 

is dense in A and if there is a continuous extension A^ of K to ,4 then 
A c SK and A^ = A^. 

PROPOSITION 2.2. 9C
K = ®Ä. 

PROOF. This is an immediate consequence of Prop. 2.1 and of the 
following general statement. If A c B are two solid metric subspaces of 
JL° with dense and continuous inclusion and if A = Ac then B = Bc. 
Indeed, if pA, pB are solid metrics defining the topologies on A and 
B, if u e B and if En i 0 , then for every e > 0 choose vG/4 such that 
pB(u - v) < e/2 and write 

pBÌXEnu) Û PBÌXEV) + PB(XESU - v » = PB(XE„V) + p*(w - v) < PBÌXEV) + e/2. 

Since PA(XEH
V) -• 0 and the inclusion A a Bis continuous, it follows that 

PB(XE„V) < eß f°r a" sufficiently large n. 

THEOREM 2.1. &K = {L°K)C. 

PROOF. By Prop. 2.2 we have the inclusion @K a (L°)c, Suppose 
that u e (L°y, we can assume that u ^ 0. Since 2K has no unfriendly 
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sets there is a sequence Yn î Y such that XY„e@K> Let Y'n = {ye Yn\ 
u(y) ^ «}, then Y'n \ Y and vn = Xr'n u 6 @K- W e n a v e 

PK(U - vM) = pAXvw'n ") -• 0 

since 7\y^ J, 0 and w G (L°)C, and it follows that u e <3K. 

REMARK. One could also consider the space (L°)v = {WGL°; pfdn^u) 
->„_KX> 0}. We don't know whether or not <3K = (L°)y. 

PROPOSITION 2.3. If A a g>K is a solid vector space without unfriendly 
sets then A is dense in <3K and a fortiori in §)K. 

PROOF. Let Yn î y be such that XY„
 e ^ anc* ^et u 6

 @K- Define Y'n as in 
the preceding proof with u replaced by \u\. Then XYnueA an(* XY„ U -+®K

 U 

by the dominated convergence theorem. 

We have the following necessary condition for a function ue L° to 
belong to J^(see [2]). 

PROPOSITION 2.4. Let u e §)K, let {E„} be a partition of Y and let un e <3K 

be any sequence such that |wj ^ XEH \U\- Then J2\Kun(x)\2 < oo a.e. 

Except for some special examples we know of no class of kernels K for 
which the above condition would be also sufficient for u to belong to <$K. 

3. Some properties of #. It will be convenient in the next two sections 
to use the convention that 0/0 = 0. We recall the definition from §1. 

If A is a topological vector subspace of LP = L°(X) then 

(3.1) A* = {u e L°; Au is bounded in A}, 

where Au is given by (2.2) and bounded means bounded in the topology 
of A. 

It is easy to find examples of spaces A where A% = {0}, however 

(3.2) if A is solid, then A a A*. 

If <ty is a base of neighborhoods of 0 defining the topology in A then a 
natural topology on A* is defined by 

(3.3) <& = {£/#; ue®} where U* = {ueL°; Au c U). 

It is immediately verified that if A is solid and if ^ is a basis of solid 
neighborhoods of 0 then <2r* is a basis of solid neighborhoods of 0 defining 
a vector topology on A%. If A is a Hausdorff space and has no unfriendly 
sets, then A% is a Hausdorff space; in fact if u e f] {{/*; (7 e ^r} and v e y4tt 

then v e n { t / ; t / 6 f } = {0}. Let Xn î J\T be such that j ^ G V4 and let 
X'n = {JC G A^; |n(x)| g /Î}. Then xx'n

 ueAu and ^ w = 0. "since X'n\ X 
it follows that u = 0. 
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From now on we shall deal only with solid Hausdorff vector subspaces 
of ZA If U is a solid neighborhood of 0 in A then W f] A = U and it 
follows that the original topology on A and the one induced by A* 
coincide. 

If the topology of A is given by a (not necessarily solid) metric p then 
A* is a metric space with the solid metric 

(3.4) p\u) = supj^v); v e Au}9 u e AK 

On A the metrics p and p* are equivalent. 
In the case when p is a norm, p# is a (possibly extended valued) function 

norm in LP in the sense of [1]. 
If A has the weak Fatou property : 

(3un 6 Au, un -> u a.e.) => ue A\ then A% = A 

(A*f = ,4*, in particular p* = p#* if A is a metric space. 

This follows from the remark that Au = |J {^„i v e Al}. 

PROPOSITION 3.1. If A, B are topological solid vector subspaces of LP, 
if A c B with a continuous dense inclusion and if B is metrizable, then 
A* cz B*. 

PROOF. Suppose that u e A* but u 4 -#*• Then Bu is unbounded and 
hence contains an unbounded sequence, say {v„}. Since A is dense in B 
we can find un e A such that un — vn ->B 0. Replacing if necessary un by 
minflwj, |vw|) \un\~

lun we may assume that \un\ ^ |vn|, hence un e Au. It 
follows that {un} in bounded in A and un — vn ->#0 implies that un is 
unbounded in B, which contradicts the continuity of the inclusion A cz B. 

The following example (see [1]) shows that without additional hypoth
eses A c B does not imply A% a B*. 

Let 

5 = { i / 6 L ° ( R ! ) ; f°° (1 + x2)-2 \u\ (x)dx 
J —oo 

1 CT 

4- lim sup 7̂ - I \u(x)\dx = ||w||ß < oo} 
r-*oo l j-T 

and A = {ueB; lim sup( l / r ) $LT \u(x)\dx = 0}. Z?is a normed space and 
A is a subspace of B with the induced norm. It is easy to see that u = x2 

is in A% but not in B%. 
It would be of interest to see which properties of A are inherited by 

A%, The example of c0 shows that A = Ac does not imply that A% = (A*)c 

and we don't know a condition on A (and A") which would make this 
implication valid. 
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PROPOSITION 3.2. If A is a complete metric solid vector subspace of L° 
then A% is complete. 

PROOF. Suppose that {un} is a Cauchy sequence in A*. Then, by the 
continuity of inclusion A* a L°, there exists u e L° such that un -*L0 u. 
We will show that u e A* and that un -+M u. By choosing if necessary 
a subsequence we can assume that £ |ww+1 — un\ < oo a.e. and that 
TipKun+i - w„) < oo where çf is a metric on A* derived from a com
plete metric p on ^ by (3.4). We have to show that for every e > 0 there 
is X > 0 such that p(Xv) < e for all v G AU. TO this effect choose n such 
that £%=„ p»(w/+1 - W/) < e/2 and ^e (0 , 1] such that p%Àun) < e/2-
this is possible since uneA*. If v G S t r i en v = ZJ?=w-i v/ with v„_i = 
w"1 |i/Jv, v/ = w"1 |w/+1 - w> for / ^ «, where ww = \un\ + £?LW l«/+i -
w/| ^ |w|. The series ^%n-i v/ is clearly convergent in L°, since |v̂ [ ^ 
|w/+1 — w |̂ it is also convergent in A (at this point the completeness of A 
is used) and we can write 

CO 

(W) è f(Xvn) + dX E vA è ft(ton) 
/-I 

oc co 

+ PK* 2 V,) < £/2 + S p*(*//+1 - W,) < 5, 

and w G y4*. 

The same argument using the inequality \u — un\ S H?=u \
u/-hi ~" UA 

shows that p\u — un) -> 0. 

It is likely that A* may be complete without the hypothesis that A is 
complete. 

4. Applications to domains of integral operators. 

THEOREM 4.1. Let K be an integral operator. Then Q)K — Q>\. 

PROOF. Suppose that ue&K, we may assume that w H ; then (see 
(2.4)) the set {\K\ |v|; ve@K)u} is bounded in L°. Let Yn î Y be such 
that XY» e ^ * a n d let K» = {J e Fw; i i^) ^ #}. Then Y'n î 7 and wn = 
Xr» w î w» m particular un e {^K)u. By the known criterion of bounded-
ness in L°(X) we conclude that for every E cz X with \E\ < oo and for 
every £ > Ö there is an M > Ö such that for every n \{XBE'9 \K\un(x) > M} 
< e. Since the sets En = {x e 2s; |A |̂wM(x) > M} are increasing [ IJ£» I û £ 
and |AT|t/w(jc) ^ M for all m outside of the set [}En. It follows from the 
Fatou's lemma that \K\ u < oo a.e. and u G ^ . 

Propositions 2.3 and 3.Î imply now the following corollary. 

(4.1) If A c:c@K is a solid topological vector space without unfriendly 
sets then A* a QiK. If A is a solid complete metric space, then the con-
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tinuous inclusion A c c Q)K is a consequence of the algebraic inclusion 
A a@K. 

(4.2) EXAMPLE. Consider a sequence gn e L°(X), gn > 0. Suppose that 
for every sequence £n ^ 0 with lim^oo %n = 0 we have EjLj Çng„(x) < oo 
a.e. Then H^=ign(x) < oo a.e. 

PROOF. Let Y = N = (1, 2, . . . } with the natural measure \{n}\ = I 
and define the kernel k(x, n) = gn(x). The hypothesis means that c0 a @K 

and by (4.1) /°° = cl a Q)K which is the assertion. 

Concerning §*K we need the following easy observation. 

(4.3) fa = pK\tfK. 

THEOREM 4.2. Let K be an integral operator. Then Q}\ == §K. 

PROOF. By Theorem 2.1 §&K = (L°K)C z> (affi, and the statement results 
from the following proposition. 

PROPOSITION 4.1. If K is an integral operator then (9ffi = <3*K. 

PROOF. Let u e §>*K, u £ (§>%)c. There is then a sequence En a Y9 En I 0 
such that PK(XE„U) = PK(XE„U)

 > a f° r a ^ n anc* some a > 0. Since 
PAXE„U) -+ 0 it follows then from (2.5) that there exists a sequence vne 
@Ki \vn\ ^ XE„U s u c h that px(Kvn) > a for all sufficiently large n. We use 
now Prop. 2.1 to conclude that px(^XEn\Em

vn) > <* f° r fixed n and all 
sufficiently large w and to replace {En}, {v„} be sequences with the prop
erty that |vw| < XE„\E„+I \U\

 anc* px(Kvn) > & f° r all n, in particular vn - s 
have disjoint supports. We show next that for every sequence {£„} with 
£ff-*0 we have £™=i %nvn e §K. In fact for any m9 n we have \Jl%n | / v / | ^ 
m a x ^ ^ J ^ I l E ^ v ^ and, since E ^ v , e (£^)„, for every e > 0 there 
is a A>0 such that pjr(AE7=»v/)<e and pK(H%m £•?/)<$ provided 
max w^/^„ (£,[ g ^. It follows that the series J^^/v/ is convergent in L° 
and since its partial sums are in ^ , t h e sum is in Q)K. We now apply Prop. 
2.4 to the function TÌ£/V/&@K

 a n d the sequence Çnv„ ^ XEn\E„+iHÇ/v/ to 
conclude that £"\$A2\K*/(x)\2 < ooa.e. and by(4.2) Ë\Kv/x)\2 < oo a.e. 
This contradicts the property that px(Kvn) > a for all n. 

Similarly to (4.1) we have the corollary. 

(4.4) If A is as in (4.1) and A czcêK then A% <^cêK-

We also give an example similar to (4.2). 

(4.5) Suppose that {gn} a L° is such that £&*&(*) is convergent a.e. 
(or in IP) for every {£n} ec 0 . Then ££„£„ is convergent in L° for every 
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To check this statement we notice that with k(x, n) as in (4.2) 3>K f| c0 

contains all sequences with finitely many terms different from 0 and 
@K H cols dense in c0. Also, by Banach-Steinhaus principle T: {£ n} e c0 -* 
2£»£n(*) G ^° is continuous and on ^ f) c0, T = K. Since c0 is solid 
(2.6)(b) implies that c0 c c J ^ a n d by (4.4) /°° = c$ ^C@K- Since for 
{£.} e /~ , {ft, f2, . . . , 0, 0 . . . } -+9K {£„} (2.6) (a) implies that ££„gw(x) 
is convergent in measure (on subsets of finite measure). 

Added in proof: The author is indebted to Iwo Labuda for the fol
lowing remark. The operation of enlargement # has been considered for 
normed spaces by Yu.A. Abramovic, On maximal normed extension of 
partially ordered normed spaces, Vestnik Leningradsk. Univ., 26, 1 (1970), 
7-17, (English translation 3 (1976), 1-12), by Iwo Labuda, Completeness 
type properties of locally solid Riesz spaces, preprint, and by W. Wnuk, 
The maximal solid extension of a locally solid Riesz space with Fatou 
property. 
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