CAMPBELL'S CONJECTURE ON A MAJORIZATION-SUBORDINATION RESULT FOR CONVEX FUNCTIONS

ROGER W. BARNARD AND CHARLES N. KELLOGG

Let S denote the set of all normalized analytic univalent functions f, $f(z)=z+\cdots$, in the open unit $\operatorname{disc} U$. Let f, F, and w be analytic in $|z|$ $<r$. We say that f is majorized by $F, f \ll F$, in $|z|<r$, if $|f(z)| \leqq|F(z)|$ in $|z|<r$. We say that f is subordinate to $F, f<F$, in $|z|<r$ if $f(z)=F(w(z))$ where $|w(z)| \leqq|z|$ in $|z|<r$.

Majorization-subordination theory begins with Biernacki who showed in 1936 that if $f^{\prime}(0) \geqq 0$ and $f \prec F(F \in S)$, in U, then $f \ll F$ in $|z|<1 / 4$. In the succeeding years Goluzin, Tao Shah, Lewandowski and MacGregor examined various related problems (for greater detail see [1]).

In 1951 Goluzin showed that if $f^{\prime}(0) \geqq 0$ and $f \prec F(F \in S)$ then $f^{\prime} \ll F^{\prime}$ in $|z|<0.12$. He conjectured that majorization would always occur for $|z|<3-\sqrt{8}$ and this was proved by Tao Shah in 1958.

In a series of papers [1, 2, 3], D. Campbell extended a number of the results to the class \mathscr{U}_{α} of all normalized locally univalent $\left(f^{\prime}(z) \neq 0\right)$ analytic functions in U with order $\leqq \alpha$ where $\mathscr{U}_{1}=K$ is the class of convex functions in S. In particular in [3] he showed that if $f^{\prime}(0) \geqq 0$ and $f \prec$ $F\left(F \in \mathscr{U}_{\alpha}\right)$ then $f^{\prime} \ll F^{\prime}$ in $|z|<\alpha+1-\left(\alpha^{2}+2 \alpha\right)^{1 / 2}$ for $1.65 \leqq \alpha<\infty$ where $\alpha=2$ yields $3-\sqrt{8}$. Note that $\alpha=1$ yields $2-\sqrt{3}$, the radius of convexity for S . Campbell's proof breaks down for $1 \leqq \alpha<1.65$ because of two different bounds being used for the Schwarz function with different ranges of α. Nevertheless, he conjectured that the result is true for all $\alpha \geqq 1$.

In this paper we combine a subordination result of Ruscheweyh's, some variational techniques and some tedious computations to verify the conjecture for $\alpha=1$, i.e., we show that if $f^{\prime}(0) \geqq 0$ and $f \prec F(F \in K)$ in U then $f^{\prime} \ll F^{\prime}$ for $|z| \leqq 2-\sqrt{3}$. We note that our method of proof relies on the convexity of F in a number of places so that it is unlikely that it would extend to larger α 's.

Received by the editors on October 26, 1978 and in revised form on December 2, 1982.

Theorem. Let $f \prec F$ with $f^{\prime}(0) \geqq 0$. Then $f^{\prime} \ll F^{\prime}$ in $|z| \leqq 2-\sqrt{3}$ for all F in K and the result is sharp.

Proof. Sharpness follows by considering $F(z)=z /(1-z)$ and $f(z)=$ $z^{2} /\left(1-z^{2}\right)$. A Schwarz function is a function w analytic on U with $|w(z)| \leqq$ $|z|$. Let $|z| \leqq 2-\sqrt{3}=r_{0}$ and w a fixed but arbitrary Schwarz function with $w^{\prime}(0) \geqq 0$. We must show that

$$
\max _{|z| \leq r_{0}} \operatorname{mas}_{F \in K}\left|\frac{F^{\prime}(w(z)) \cdot w^{\prime}(z)}{F^{\prime}(z)}\right| \leqq 1
$$

Ruscheweyh has proved in [5, p. 277] that if g is in S^{*}, the normalized starlike functions on U, then $\operatorname{tg}(s z) / \operatorname{sg}(t z) \prec(1-t z / 1-s z)^{2}$ for all $|s| \leqq 1$, $|t| \leqq 1$. Letting $t=1$ it follows that

$$
\max _{|z| \leqq r} \max _{g \in S^{*}}\left|\frac{g(s z)}{g(z)}\right| \leqq \max _{|z| \leqq r} \frac{\left|\frac{s z}{(1-s z)^{2}}\right|}{\left|\frac{z}{(1-z)^{2}}\right|}
$$

for $|s| \leqq 1$. Since F is convex, $z F^{\prime}(z)$ is starlike. So, it follows that

$$
\left.\begin{aligned}
& \max _{|z| \leqq r_{0}} \max _{F \in K}\left|\frac{F^{\prime}(w(z)) w^{\prime}(z)}{F^{\prime}(z)}\right|=\max _{|z| \leqq r_{0}} \max _{F \in K} \left\lvert\, \frac{z w^{\prime}(z)}{w(z)} \cdot w F^{\prime}(w)\right. \\
& z F^{\prime}(z)
\end{aligned} \right\rvert\,
$$

Therefore the theorem will be proved if for all $|z| \leqq r_{0}$ and all Schwarz functions $w, w^{\prime}(0) \geqq 0$, we have

$$
\begin{equation*}
\left|\frac{w^{\prime}(z)(1-z)^{2}}{(1-w(z))^{2}}\right| \leqq 1 \tag{1}
\end{equation*}
$$

This follows from Lemma 1 and concludes the proof of the theorem.
Before we turn to the proof of Lemma 1 we note the parallel between (1) and the ordinary Schwarz's lemma. Schwarz's lemma says that

$$
\frac{\left|w^{\prime}(z)\right|\left(1-|z|^{2}\right)}{1-|w(z)|^{2}} \leqq 1
$$

throughout $|z|<1$. It weighs information about z and $w(z)$ in a uniform manner relative to $|z|=1$. In our case we weigh information about z and $w(z)$ relative to one point of $|z|=1$, namely $z=1$. In such a case we find that inequality (1) holds only for $|z| \leqq 2-\sqrt{3}$.

Lemma 1. Let $w, w^{\prime}(0) \geqq 0$, be a Schwarz function. Let p, with $p(z)=$
$1+2 a z+\cdots, a \geqq 0$, be a function of positive rgal part in U. Then for all $|z| \leqq 2-\sqrt{3}$,
(2)

$$
\begin{gather*}
\left|(1-z)^{2} p^{\prime}(z)\right| \leqq 2 \\
\left|w^{\prime}(z)(1-z)^{2} /(1-w(z))^{2}\right| \leqq 1 \tag{3}
\end{gather*}
$$

and the results are sharp.
Proof. Let $P_{1}=\{p: p(z)=1+2 a z+\cdots, a \geqq 0, \operatorname{Re} p(z)>0\}$. Since a Schwarz function $w, w^{\prime}(0)=a \geqq 0$, is associated with the function $p(z)$ of P_{1} by the relation $p(z)=(1+w(z)) /(1-w(z))$ it is easy to check that (2) and (3) are equivalent.

We first prove that (2) holds for any p in P_{1} with $p^{\prime}(0)=0$. In this case p has the form $p(z)=(1+w) /(1-w)$ with w a Schwarz function satisfying

$$
\begin{equation*}
|w(z)| \leqq|z|^{2}, z \in U \tag{4}
\end{equation*}
$$

It follows from Goluzin's improved Schwarz's estimate given in [4, Lemma 2] with $a=0$ that

$$
\begin{equation*}
\left|w^{\prime}(z)\right| \leqq 2 r\left(1-|w(z)|^{2}\right) /\left(1-r^{4}\right) \tag{5}
\end{equation*}
$$

for $|z| \leqq r$. Thus using (5) and then (4) we have

$$
\begin{aligned}
\left|p^{\prime}(z)(1-z)^{2}\right| & =\left|2 w^{\prime}(z)(1-z)^{2}\right| /|1-w(z)|^{2} \\
& \leqq 4 r\left(1-|w|^{2}\right)(1+r)^{2} /\left(1-r^{4}\right)(1-|w|)^{2} \\
& =4 r(1+|w|)(1+r) /(1-r)\left(1+r^{2}\right)\left(1-|w|^{2}\right) \\
& \leqq 4 r /(1-r)^{2}
\end{aligned}
$$

which is $\leqq 2$ for $0 \leqq r \leqq 2-\sqrt{3}$.
We now prove (2) for functions in P_{1} with $p^{\prime}(0)=2 a>0$. The Pfaltz-graff-Pinchuk result [4, Thm. 7.4] guarantees that a function p_{0} that maximizes for a given z in U the quantity $\left|(1-z)^{2} p^{\prime}(z)\right|$ over all p in P_{1} will have at most three jumps in its representing measure. We apply a variational method to show that for $|z| \leqq 2-\sqrt{3}$ the function can have at most two jumps.

Suppose there were an $a>0$ and a z in $|z| \leqq 2-\sqrt{3}=r_{0}$ such that

$$
\begin{align*}
p_{0}(z)= & \sum_{j=1}^{3} \lambda_{j} \frac{1+z e^{i t_{j}}}{1-z e^{i t_{j}}}, \quad 0 \leqq t_{1}<t_{2}<t_{3}<2 \pi \\
& \sum_{j=1}^{3} \lambda_{j}=1, \sum_{j=1}^{3} \lambda_{j} e^{i t_{j}}=2 a>0 \tag{6}\\
& 0<\lambda_{1}, \lambda_{2}, \lambda_{3},<1
\end{align*}
$$

and for all p in $P_{1},\left|(1-z)^{2} p^{\prime}(z)\right| \leqq\left|(1-z)^{2} p_{0}^{\prime}(z)\right|$.

From (6) we would have $\sum_{j=1}^{3} \lambda_{j} \sin t_{j}=0$ and $\lambda_{3}=1-\lambda_{1}-\lambda_{2}$. Since $0 \leqq t_{1}<t_{2}<t_{3}<2 \pi$, two of the t_{j} 's say t_{1} and t_{3} would be such that $\sin t_{1} \neq \sin t_{3}$. We could then solve for λ_{1} as a linear function of λ_{2}.

$$
\lambda_{1}=\frac{\sin t_{3}}{\sin t_{3}-\sin t_{1}}+\lambda_{2}\left(\frac{\sin t_{2}-\sin t_{3}}{\sin t_{3}-\sin t_{1}}\right)
$$

Letting $k_{j}=\left[(1-z)^{2} / z\right]\left[z e^{i t_{j}} /\left(1-z e^{i t_{j}}\right)^{2}\right], j=1,2$, 3 , we would obtain $(1-z)^{2} p_{0}^{\prime}(z)=2 \lambda_{1} k_{1}+2 \lambda_{2} k_{2}+2 \lambda_{3} k_{3}$. Substituting in for λ_{3} and λ_{1} would yield

$$
\begin{aligned}
(1-z)^{2} p_{0}^{\prime}(z)= & 2 \lambda_{2}\left[\left(k_{1}-k_{3}\right)\left(\frac{\sin t_{2}-\sin t_{3}}{\sin t_{3}-\sin t_{1}}\right)+\left(k_{2}-k_{3}\right)\right] \\
& +\frac{2 k_{1} \sin t_{3}-2 k_{3} \sin t_{1}}{\sin t_{3}-\sin t_{1}} \\
= & A \lambda_{2}+B
\end{aligned}
$$

where A and B are complex constants.
We now prove that $A \neq 0$. If A were 0 then letting $s=\left(\sin t_{2}-\sin t_{3}\right) /$ $\left(\sin t_{3}-\sin t_{1}\right)$ we would have

$$
k_{3}=\frac{s}{1+s} k_{1}+\frac{1}{1+s} k_{2}
$$

that is, k_{3} would lie on the line through k_{1} and k_{2}. We note that k_{1}, k_{2} and k_{3} lie on the curve $h\left(e^{i t}\right), 0 \leqq t \leqq 2 \pi$, where $h\left(e^{i t}\right)=\left[(1-z)^{2} / z\right]$ $\cdot\left[z e^{i t} /\left(1-z e^{i t}\right)^{2}\right]$. However, $h\left(e^{i t}\right), 0 \leqq t \leqq 2 \pi$, is simply the fixed $(1-z)^{2} / z$ scalar multiple of the image of $|\zeta|=r$ under the Köbe function $\zeta(1-\zeta)^{-2}$. The Köbe function maps all circles $|\zeta|=r \leqq 2-\sqrt{3}$ onto convex analytic curves containing no straight line segments. Thus k_{3} can not lie on the line through k_{1} and k_{2}. Consequently A is non-zero.

Since A is non-zero the image of $(0,1)$ under the map $A \lambda+B$ would be a straight line segment containing the point $(1-z)^{2} p_{0}^{\prime}(z)$ in its interior. By continuity we could vary λ to obtain a p_{1} in P_{1} such that $\mid(1-z)^{2}$ $\cdot p_{1}^{\prime}(z)\left|>\left|(1-z)^{2} p_{0}^{\prime}(z)\right|\right.$ contradicting the extremal property of p_{0}. (Note that although the a_{1} of $p_{1}(z)=1+2 a_{1} z+\cdots$ may not equal the a of $p_{0}(z)$, nevertheless, by continuity a_{1} will be real and positive.)

Letting $k(z)=z /(1-z)^{2}$ we have shown for any z in $|z| \leqq 2-\sqrt{3}$ that if $p_{2}(z), p_{2}^{\prime}(o)=2 a>0$, maximizes $\left|z p^{\prime}(z) / k(z)\right|$ over P_{1} then

$$
p_{2}(z)=\lambda \frac{\left(1+e^{i t_{1}} z\right)}{\left(1-e^{i t_{1} z}\right)}+(1-\lambda) \frac{\left(1+e^{i t_{2}} z\right)}{\left(1+e^{i i_{2}} z\right)}, \quad 0 \leqq \lambda \leqq 1
$$

and therefore proving (2) reduces to showing that

$$
\mid \lambda k\left(e^{\left.i t_{1} z\right)}+(1-\lambda) k\left(e^{i t_{z}}\right)\left|\leqq|k(z)|,|z| \leqq r_{0}\right.\right.
$$

for all $0 \leqq \lambda \leqq 1$ and all t_{1}, t_{2} in $[0,2 \pi]$ with $\lambda e^{i t_{1}}+(1-\lambda) e^{i t_{2}}=a$. Letting $\psi_{2}=-\left(t_{1}+t_{2}\right) / 2, \psi_{1}=\left(t_{1}-t_{2}\right) / 2$ and $z=\xi \exp (i \psi)$, we can rewrite the above inequality as

$$
\left|\lambda k\left(e^{i \psi_{1} \xi}\right)+(1-\lambda) k\left(e^{-i \psi_{1}} \xi\right)\right| \leqq\left|k\left(e^{i \psi_{2}} \xi\right)\right|
$$

for all $0 \leqq \lambda \leqq 1$ and all ψ_{1}, ψ_{2} in $[0,2 \pi]$ with $\lambda e^{i \omega_{1}}+(1-\lambda) e^{-i \varphi_{1}}=$ $a e^{i \psi_{2}}$. But

$$
\begin{aligned}
\lambda k\left(e^{i \psi_{1}} \xi\right)+(1-\lambda) k\left(e^{-i \psi_{1}} \xi\right. & =\xi\left[\frac{\lambda e^{i \psi_{1}}}{\left(1-e^{i \psi_{1}} \xi\right)^{2}}+\frac{(1-\lambda) e^{-i \psi_{1}}}{\left(1-e^{-i \psi_{1}} \xi\right)^{2}}\right] \\
& =\frac{\xi\left[a e^{i \psi_{2}}+\xi^{2} e^{-i \psi_{2}}-2 \xi\right]}{\left(1-e^{i \psi_{1}} \xi-e^{-i \psi_{1}} \xi+\xi^{2}\right)^{2}}
\end{aligned}
$$

Thus it suffices to show

$$
\max _{|\xi| \leq r_{0} \mid}\left|\frac{\xi\left(a e^{i \psi_{2}}+\xi^{2} e^{-i \psi_{2}}-2 \xi\right)}{\left(1-e^{i \psi_{1} \xi}-e^{-i \psi_{1} \xi}+\xi^{2}\right)^{2} k\left(e^{i \psi_{2} \xi}\right)}\right| \leqq 1,
$$

a quantity which depends only on the independent variagles a and ψ_{2}. Since the maximum is taken on the boundary we let $\xi=r_{0} e^{i \theta}, r_{0}=2-$ $\sqrt{3}, \psi_{2}=\psi$ and square the above expression to obtain

$$
\frac{\left|a e^{i \psi}-2 \xi+\left(2 a \cos \psi-a e^{i \psi}\right) \xi^{2}\right|^{2}\left[1+r_{0}^{2}-2 r_{0} \cos (\psi+\theta)\right]^{2}}{\left[1+r_{0}^{4}+2 r_{0}^{2} \cos 2 \theta+4 a^{2} r_{0}^{2} \cos ^{2} \psi-4 r_{0} a \cos (\psi+\theta)\right]^{2}}
$$

which, upon noting that $1+r_{0}^{2}=4 r_{0}, 1+r_{0}^{4}=4 r_{0}-2 r_{0}^{2}+4 r_{0}^{3}$, becomes, after a fairly long computation,

$$
\begin{equation*}
\frac{\left[1+a^{2}\left(3+\cos ^{2}(\theta-\psi)\right)-4 a \cos (\theta-\psi)\right][2-\cos (\theta+\psi)]^{2}}{\left[a^{2} \cos ^{2} \psi+3+\cos ^{2} \theta-4 a \cos \theta \cos \psi\right]^{2}} \tag{7}
\end{equation*}
$$

Since the denominator of (7) is $(a \cos \psi-2 \cos \theta)^{2}+3\left(1-\cos ^{2} \theta\right)$, we see that it never vanishes. Therefore, the quantity in (7) being $\leqq 1$ is equivalent upon cross multiplication to

$$
\begin{align*}
h(a)= & \left(-\cos ^{4} \psi\right) a^{4}+\left(8 \cos ^{3} \psi \cos \theta\right) a^{3} \\
& +\left[R P-2\left(\cos ^{2} \psi\right) Q-16 \cos ^{2} \theta \cos ^{2} \psi\right] a^{2} \\
& +[8 Q \cos \theta \cos \psi-4 P \cos (\theta-\psi)] a+\left[P-Q^{2}\right] \tag{8}\\
= & A_{4} a^{4}+A_{3} a^{3}+A_{2} a^{2}+A_{1} a+A_{0} \leqq 0
\end{align*}
$$

where $R \equiv 3+\cos ^{2}(\theta-\psi), P \equiv(2-\cos (\theta+\psi))^{2}, Q \equiv 3+\cos ^{2} \theta$, and $M \equiv \cos ^{2} \psi+3+\cos ^{2} \theta-4 \cos \theta \cos \psi$.

Factoring out the P and expanding M^{2} we see that

$$
\begin{aligned}
h(1)= & -\cos ^{4} \psi+8 \cos ^{3} \psi \cos \theta+R P-2 Q \cos ^{2} \psi-16 \cos ^{2} \theta \cos ^{2} \psi \\
& +8 Q \cos \theta \cos \psi-4 P \cos (\theta-\psi)+P-Q^{2} \\
= & -M^{2}+P(2-\cos (\theta-\psi))^{2} .
\end{aligned}
$$

Since $M=(2-\cos (\theta-\psi))(2-\cos (\theta+\psi))$, we conclude that $h(1)=0$. Thus $h(a)=(1-a)(H(a)$ where

$$
\begin{aligned}
H(a)= & {\left[\left(\cos ^{4} \psi\right) a^{3}+\left(\cos ^{4} \psi-8 \cos ^{3} \psi \cos \theta\right) a^{2}\right.} \\
& +\left(\cos ^{4} \psi-8 \cos ^{3} \psi \cos \theta-R P+2 Q \cos ^{2} \psi\right. \\
& \left.\left.+16 \cos ^{2} \theta \cos ^{2} \psi\right) a+P-Q^{2}\right] \\
= & \left(\cos ^{4} \psi\right)\left(a^{3}+B_{2} a^{2}+B_{1} a+B_{0}\right)=\left(\cos ^{4} \psi\right) h_{1}(a) .
\end{aligned}
$$

It suffices to show $H(a) \leqq 0$. Note that

$$
\begin{aligned}
H(0) & =P-Q^{2}=(2-\cos (\theta+\psi))^{2}-\left(3+\cos ^{2} \theta\right)^{2} \\
& =\left(5-\cos (\theta+\psi)+\cos ^{2} \theta\right)\left(-1-\cos (\theta-\psi)-\cos ^{2} \theta\right) \leqq 0
\end{aligned}
$$

while

$$
\begin{aligned}
H(1)= & 3 \cos ^{4} \psi-16 \cos ^{3} \psi \cos \theta-R P+2 Q \cos ^{2} \psi+16 \cos ^{2} \psi \cos ^{2} \theta \\
& +P-Q^{2}=2\left[\cos ^{4} \psi-4 \cos ^{3} \psi \cos \theta+P-Q^{2}-2 P \cos (\theta-\psi)\right. \\
& +4 Q \cos \theta \cos \psi]+\left[\cos ^{4} \psi-8 \cos ^{3} \psi \cos \theta-P+Q^{2}\right. \\
& +4 P \cos (\theta-\psi)-8 Q \cos \theta \cos \psi-R P+2 Q \cos ^{2} \psi \\
& \left.+16 \cos ^{2} \theta \cos ^{2} \psi\right] .
\end{aligned}
$$

The term in the last set of square brackets is $M^{2}-P(2-\cos (\theta-\dot{\psi}))^{2}$ $\equiv 0$ exactly as before. Note that we can rewrite what is left as

$$
\begin{aligned}
& -\cos ^{4} \psi+4 \cos ^{3} \psi \cos \theta+2 P \cos (\theta-\psi)-P+Q^{2}-4 Q \cos \theta \cos \psi \\
& =-\left(1-\sin ^{2} \psi\right)^{2}+4\left(1-\sin ^{2} \psi\right) \cos \psi \cos \theta+(2 \cos \theta \cos \psi+\sin \theta \sin \psi-1) \\
& \cdot(2-\cos \theta \cos \psi+\sin \theta \sin \psi)^{2}+\left(4-\sin ^{2} \theta\right)^{2}-4\left(4-\sin ^{2} \theta\right) \cos \theta \cos \psi \\
& =15+2 \sin ^{2} \psi-\sin ^{4} \psi-8 \sin ^{2} \theta+\sin ^{4} \theta-12 \cos \theta \cos \psi+4 \sin ^{2} \theta \cos \theta \cos \psi \\
& -4 \sin ^{2} \psi \cos \psi \cos \theta+(2 \cos \theta \cos \psi+2 \sin \theta \sin \psi-1) \cdot\left(5-\sin ^{2} \theta\right. \\
& \left.-\sin ^{2} \psi+2 \sin ^{2} \theta \sin ^{2} \psi-4 \cos \theta \cos \psi+4 \sin \theta \sin \psi-2 \cos \theta \cos \psi \sin \theta \sin \psi\right) \\
& =10+3 \sin ^{2} \psi-\sin ^{4} \psi-7 \sin ^{2} \theta+\sin ^{4} \theta+2 \cos \theta \cos \psi \\
& +2 \sin ^{2} \theta \cos \psi \cos \theta-6 \sin ^{2} \psi \cos \theta \cos \psi-4 \cos ^{2} \theta \cos ^{2} \psi \sin \theta \sin \psi \\
& -8 \cos ^{2} \theta \cos ^{2} \psi+6 \sin \theta \sin \psi-2 \sin ^{3} \theta \sin \psi-2 \sin ^{3} \psi \sin \theta \\
& +4 \sin ^{3} \theta \sin ^{3} \psi+6 \sin ^{2} \theta \sin ^{2} \psi+2 \cos \theta \cos \psi \sin \theta \sin \psi=2+11 \sin ^{2} \psi \\
& -\sin ^{4} \psi+\sin ^{4} \theta+(2 \cos \theta \cos \psi) \cdot\left(1+\sin ^{2} \theta-3 \sin ^{2} \psi+\sin \theta \sin \psi\right) \\
& +2 \sin \theta \sin \psi\left(1-\sin \theta \sin \psi+\sin ^{2} \theta+\sin ^{2} \psi\right)+\left[8-8 \sin ^{2} \psi-8 \sin ^{2} \theta\right. \\
& \left.-8 \cos ^{2} \theta \cos ^{2} \psi+8 \sin ^{2} \theta \sin ^{2} \psi\right]+\left[4 \sin \theta \sin \psi-4 \sin ^{3} \theta \sin \psi\right. \\
& \left.-4 \sin ^{3} \psi \sin \theta-4 \cos ^{2} \theta \cos ^{2} \psi \sin \theta \sin \psi+4 \sin ^{3} \theta \sin ^{3} \psi\right] \text {. }
\end{aligned}
$$

Since each of the terms in square brackets is identically zero, we can
conclude $H(1)$ is nonpositive upon noting the expansion of the following nonnegative expression.

$$
\begin{aligned}
3 \sin ^{2} \psi & +\left(\sin \psi+\sin ^{3} \theta\right)^{2}+\left(1+\cos ^{2} \theta\right) \sin ^{4} \theta+2(1-\cos \theta \cos \psi) \sin ^{2} \psi \\
& +2[1-\cos (\theta+\psi)] \sin ^{2} \psi+[1+\cos (\theta-\psi)]^{2}+(\cos \theta-\cos \psi)^{2} \sin ^{2} \psi \\
& +(\cos \theta+\cos \psi)^{2} \sin ^{2} \theta+2 \sin ^{2} \psi \cos ^{2} \theta=1+10 \sin ^{2} \psi+\cos ^{2} \theta \sin ^{2} \psi \\
& +2 \sin ^{4} \theta+\cos ^{2} \theta \sin ^{2} \theta+\left[\cos ^{2} \theta \sin ^{2} \psi+\cos ^{2} \psi \sin ^{2} \theta+\cos ^{2} \psi \cos ^{2} \theta\right. \\
& \left.+\sin ^{2} \psi \sin ^{2} \theta\right]-2 \sin ^{2} \psi \sin ^{2} \theta+2 \sin \psi \sin ^{3} \theta+2 \sin \theta \sin ^{3} \psi \\
& +2 \sin \theta \sin \psi-6 \cos \theta \cos \psi \sin ^{2} \psi+2 \sin \theta \sin \psi \cos \theta \cos \psi \\
& +2 \cos \theta \cos \psi \sin ^{2} \theta+2 \cos \theta \cos \psi .=2+11 \sin ^{2} \psi-\sin 4 \\
& +\sin ^{4} \theta+\sin ^{2} \theta+2 \sin \theta \sin \psi\left(1+\sin ^{2} \psi+\sin ^{2} \theta-\sin \psi \sin \theta\right) \\
& +2 \cos \theta \cos \psi\left(1+\sin ^{2} \theta-3 \sin ^{2} \psi+\sin \theta \sin \psi\right)
\end{aligned}
$$

where in the second equality we observe that $\sin ^{4} \theta+\sin ^{2} \theta \cos ^{2} \theta=\sin ^{2} \theta$, while the term in brackets is identically 1 .

Recall $h_{1}(a)=a^{3}+B_{2} a^{2}+B_{1} a+B_{0}$ where

$$
\begin{aligned}
& B_{2}=1-8 \sec \psi \cos \theta \\
& B_{1}=1-8 \sec \psi \cos \theta-R P \sec ^{4} \psi+2 Q \sec ^{2} \psi+16 \cos ^{2} \theta \sec ^{2} \psi
\end{aligned}
$$

and $B_{0}=\sec ^{4} \psi\left(P-Q^{2}\right)$.
Now, $h_{1}(0)=B_{0}=\sec ^{4} \psi\left[(2-\cos (\theta+\psi))^{2}-\left(3+\cos ^{2} \theta\right)^{2}\right]$. So $B_{0} \leqq 0$
if and only if $(2-\cos (\theta+\psi))^{2} \leqq\left(3+\cos ^{2} \theta\right)^{2}$
if and only if $2-\cos (\theta+\psi) \leqq 3+\cos ^{2} \theta$
if and only if $\quad-\cos (\theta+\psi) \leqq 1+\cos ^{2} \theta$
which certainly holds as $-\cos (\theta+\psi) \leqq 1 \leqq 1+\cos ^{2} \theta$. Hence

$$
h_{1}(0) \leqq 0 .
$$

Now, we will assume that $h_{1}(1) \leqq 0$. This will be proved later. Then, from the properties of a cubic, h_{1} will have 3 roots, r_{1}, r_{2}, and r_{3}, with $r_{1} \geqq 1$. Since $r_{1}+r_{2}+r_{3}=-B_{2}=8 \sec \psi \cos \theta-1$, we consider two cases.

CASE I. $B_{2} \geqq-1$. Then $-B_{2} \leqq 1$ and $1 \geqq-B_{2}=r_{1}+r_{2}+r_{3} \geqq$ $1+r_{2}+r_{3}$ and so $r_{2}+r_{3} \leqq 0$. Since $h_{1}(0) \leqq 0$ and $h_{1}(1) \leqq 0$, we conclude that h_{1} has no roots in $(0,1)$. Therefore $h_{1}(a) \leqq 0$ for $0 \leqq a \leqq 1$ and we are done.

Case II. $B_{2}<-1$. Assume that $r_{2} \in(0,1)$. Then $r_{2}\left(r_{2}^{2}+B_{2} r_{2}+B_{1}\right)=$ $-B_{0}$ and $r_{2}^{2}+B_{2} r_{2}+B_{1}=-B_{0} / r_{2}>-B_{0}$. Hence $0<B_{0}+B_{1}-r_{2}+$ r_{2}^{2} and thus

$$
\begin{equation*}
B_{0}+B_{1}>r_{2}\left(1-r_{2}\right)>0 \tag{9}
\end{equation*}
$$

However, using (8) and the fact that $h(1)=0$ we can solve for $B_{0}+B_{1}$ to obtain $B_{0}+B_{1}=-\left(A_{1}+2 A_{0}\right) / A_{4}=\left(2 \sec ^{4} \psi\right) T$ where $T=P-Q^{2}-$ $2 P \cos (\theta-\psi)+4 Q \cos \theta \cos \psi$. Now, if we expand the expression for $-T$ and express most of the quantities in terms of $\sin \theta$ and $\sin \psi$, we obtain

$$
\begin{aligned}
-T= & {\left[3+\sin ^{2} \theta+9 \sin ^{2} \psi+\sin ^{4} \theta+2 \sin \theta \sin \psi\left(1-\sin \theta \sin \psi+\sin ^{2} \theta\right.\right.} \\
& \left.\left.+\sin ^{2} \psi\right)\right]+2(\cos \theta \cos \psi)\left[-1+\sin \theta \sin \psi+\sin ^{2} \theta-\sin ^{2} \psi\right] .
\end{aligned}
$$

Upon performing the same expansion of the nonnegative expression

$$
\begin{aligned}
& 4 \sin ^{2} \psi+\left(\sin \psi+\sin ^{3} \theta\right)^{2}+\sin ^{4} \theta \cos ^{2} \theta+(1-\cos \theta \cos \psi)^{2} \\
& +2[1-\cos (\theta+\psi)]\left(1+\sin ^{2} \psi+\cos \theta \cos \psi\right)+\cos ^{2} \theta \sin ^{2} \psi \\
& +\left(1+\sin \theta \cos \psi \sin ^{2} \theta\right)
\end{aligned}
$$

we see that they are the same. Hence $-T \geqq 0$ and this contradicts (9) so that B_{2} cannot be <-1. Hence only Case I holds.
Upon proving $h_{1}(1) \leqq 0$, we will have $h_{1}(a) \leqq 0$ for $0 \leqq a \leqq 1$ as claimed. Accordingly we note that

$$
\begin{aligned}
h_{1}(1) & =1+B_{2}+B_{1}+B_{0} \\
& =2-8 \sec \psi \cos \theta+B_{1}+B_{0} \\
& =2 \sec ^{4} \psi\left[\cos ^{4} \psi-4 \cos ^{3} \psi \cos \theta+T\right]
\end{aligned}
$$

Letting $S=\cos ^{4} \psi-4 \cos ^{3} \psi \cos \theta+T$ and expanding as before we see that

$$
\begin{aligned}
S= & 2+\sin ^{2} \theta+11 \sin ^{2} \psi+\sin ^{4} \theta-\sin ^{4} \psi+2\left(1-\sin \theta \sin \psi+\sin ^{2} \theta\right. \\
& \left.+\sin ^{2} \psi\right) \sin \theta \sin \psi+2\left(1+\sin \theta \sin \psi+\sin ^{2} \theta-3 \sin ^{2} \psi\right) \cos \theta \cos \psi .
\end{aligned}
$$

Likewise, upon expanding the nonnegative expression

$$
\begin{aligned}
& 3 \sin ^{2} \psi+\left(\sin \psi+\sin ^{3} \theta\right)^{2}+\left(1+\cos ^{2} \theta\right) \sin ^{4} \theta+2(1-\cos \theta \cos \psi) \sin ^{2} \psi \\
& +2[1-\cos (\theta+\psi)] \sin ^{2} \psi+[1+\cos (\theta-\psi)]^{2}+(\cos \theta-\cos \psi)^{2} \sin ^{2} \psi \\
& +(\cos \theta+\cos \psi)^{2} \sin ^{2} \theta+2 \sin ^{2} \psi \cos ^{2} \theta
\end{aligned}
$$

we see that $-S \geqq 0$ and hence $h_{1}(1) \leqq 0$ as we claimed.
The sharpness result of the lemma follows by choosing $w=z^{2}$.

References

1. D. Campbell, Majorization-Subordination theorems for locally univalent functions, Bull. AMS, 78 (1972), 535-538.
2. -, Majorization-Subordination theorems for locally univalent functions II, Can. J. Math., Vol. XXV, No. 2, (1973), 420-425.
3. -, Majorization-Subordination theorems for locally univalent functions III,

Trans. AMS 198 (1974), 297-306.
4. J.A. Pfaltzgraff and B. Pinchuk, A variational method for classes of meromorphic functions, Jnl. De Anal. 24 (1971), 101-150.
5. S. Ruscheweyh, A subordination theorem for Φ-like functions, J. London Math. Soc. (2), 13 (1973), 275-280.

Mathematics Department, Texas Tech University
Lubbock, Texas 79409

