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CAMPBELL'S CONJECTURE ON A 
MAJORIZATION-SUBORDINATION RESULT 

FOR CONVEX FUNCTIONS 

ROGER W. BARNARD AND CHARLES N. KELLOGG 

Let S denote the set of all normalized analytic univalent functions / , 
f(z) = z 4- • • -, in the open unit disc U. Let/, F, and w be analytic in \z\ 
< r. We say t h a t / is majorized by F, / < F, in \z\ < r, if |/(z)| ^ \F(z)\ in 
\z\ < r. We say that/ is subordinate to F J < F, in \z\ < r if/(z) = F(w(z)) 
where \w(z)\ rg \z\ in \z\ < r. 

Majorization-subordination theory begins with Biernacki who showed 
in 1936 that if/'(0) ^ 0 a n d / < F(FsS), in U, t h e n / < Fin \z\ < 1/4. 
In the succeeding years Goluzin, Tao Shah, Lewandowski and MacGregor 
examined various related problems (for greater detail see [1]). 

In 1951 Goluzin showed that if/'(0) ^ 0 a n d / <F(FeS) then / ' < F ' 
in \z\ < 0.12. He conjectured that majorization would always occur for 
\z\ < 3 — VIT and this was proved by Tao Shah in 1958. 

In a series of papers [1, 2, 3], D. Campbell extended a number of the 
results to the class °ila of all normalized locally univalent (f'(z) # 0) analy
tic functions in U with order ^ a where <%i = K is the class of convex 
functions in S. In particular in [3] he showed that if f'(Q) ^ 0 and / < 
F(Fe<%a) then / ' « F' in \z\ < a + 1 - (a2 4- 2a)1/2 for 1.65 g a < oo 
where a = 2 yields 3 — ^~%. Note that a = 1 yields 2 — V T , the radius 
of convexity for S. Campbell's proof breaks down for 1 g a < 1.65 
because of two different bounds being used for the Schwarz function 
with different ranges of a. Nevertheless, he conjectured that the result 
is true for all a ^ 1. 

In this paper we combine a subordination result of Ruscheweyh's, some 
variational techniques and some tedious computations to verify the con
jecture for a = 1, i.e., we show that if / ' (0) è 0 a n d / < F(FeK) in U 
then / ' < F' for \z\ ^ 2 — -y/T. We note that our method of proof relies 
on the convexity of F in a number of places so that it is unlikely that it 
would extend to larger ct's. 
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THEOREM. Letf<F with / ' (0) ^ 0. Thenf < F' in \z\ ^ 2 - V T / o r 
Û// F I/I Â  and the result is sharp. 

PROOF. Sharpness follows by considering F(z) = z/(l — z) and/(z) = 
z2/(l — z2). A Schwarz function is a function w analytic on U with \w(z)\. g 
|z|. Let \z\ ^ 2 — <v/~3~ = ro anc* H> a fixed but arbitrary Schwarz function 
with w'(0) ^ 0. We must show that 

max mas 
Ul^ro FGÄ" 

F'(w(z)).w'(z) 
F\z) 

< 1. 

Ruscheweyh has proved in [5, p. 277] that if g is in S*9 the normalized 
starlike functions on U, then tg(sz)/sg(tz) < (1 — tzj\ — sz)2 for all \s\ ^ 1, 
|/| g 1. Letting / = 1 it follows that 

max max Izl^r 

SZ 

(1 - JZ)2; 
z 

(1 - Z)2 

for | j | ^ 1. Since Fis convex, zF'(z) is starlike. So, it follows that 

zw' (z) 

max max 
Izl^ro FŒA" 

F'(w(z))w'(z) 
F'(2) = max max 

Izl^ro FeüT 

w(z) 
wF'(w) 

zF\z) 

^ max 
Izl^ro 

zw'(z) 
~wjz) ' (1 

w(z) 1 
-w(zW 

z 
(1 - z ) 2 

Therefore the theorem will be proved if for all \z\ ^ rQ and all Schwarz 
functions w, H>'(0) ^ 0, we have 

(1) 
w\z) (1 - z) < 1. (1 - w(z))2 

This follows from Lemma 1 and concludes the proof of the theorem. 

Before we turn to the proof of Lemma 1 we note the parallel between 
(1) and the ordinary Schwarz's lemma. Schwarz's lemma says that 

W(z)\(\ - |zl2) 
1 - |w(z)|2 < 1 

throughout |z| < 1. It weighs information about z and w(z) in a uniform 
manner relative to \z\ = 1. In our case we weigh information about z and 
w(z) relative to one point of \z\ = 1, namely z — 1. In such a case we find 
that inequality (1) holds only for |z| ^ 2 — ^/T. 

LEMMA 1. Let w, w'(0) ^ 0, be a Schwarz function. Let p, with p{z) = 
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1 + 2az + • • -, a ^ 0, be a function of positive rgal part in U. Then for all 
\z\*2- V T , 

(2) 1(1 - z)2p'(z)\ è 2, 

(3) |w'(z)(l - z)2/(l - w(z))2| è 1 

and the results are sharp. 

PROOF. Let Px = {p:p(z) = 1 + 2az + • • -, « :> 0, Re p(z) > 0}. Since 
a Schwarz function w, u>'(0) = a ^ 0, is associated with the function 
p(z) of Pi by the relation /?(z) = (1 + w(z))/(\ — w(z)) it is easy to check 
that (2) and (3) are equivalent. 

We first prove that (2) holds for any p in Pl with p'(Q) = 0. In this case 
p has the form p(z) = (1 + w)/(l — w) with w a Schwarz function satisfy
ing 

(4) \w(z)\ ^ |z|2, z 6 U. 

It follows from Goluzin's improved Schwarz's estimate given in [4, Lemma 
2] with a = 0 that 

(5) \w\z)\ ^ 2r(l - |w(z)|2)/(l - r*) 

for |z| ^ r. Thus using (5) and then (4) we have 

\P\Z)(\ - Z)2| = |2 w ' ( z ) ( l - Z)2|/|l - W(Z)|2 

^ 4r(l - |uf)(l + r)2/(l - r4)(l - M) 2 

= 4r(l + M)(l + r)/(l - r)(l + r2)(l - \w\2) 

S 4r/(l - r)2 

which is S 2 for 0 ^ r ^ 2 - y^X 
We now prove (2) for functions in Px with p'(0) = 2a>0. The Pfaltz-

graff-Pinchuk result [4, Thm. 7.4] guarantees that a function pQ that 
maximizes for a given z in U the quantity |(1 - z)2p'(z)\ over all /> in Px 

will have at most three jumps in its representing measure. We apply a 
variational method to show that for |z| g 2 - ^ T the function can have 
at most two jumps. 

Suppose there were an a > 0 and a z in \z\ g 2 — .yX = /*o such that 

Po(z) = L Vf^-~fä7 » 0 ^ tx < t2 < t3 < 2TU 

(6) S A y = 1, S V ' - = 2tf>0, 

0 < kl9 *2, *3> < U 

and for all/? in Px, |(1 - z)2p\z)\ ^ |(1 - z)2p'0(z)\. 
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From (6) we would have £?=i Ay sin tj = 0 and A3 = 1 - Ai - A2. 
Since 0 g tx < t2 < h < 2n> two of the tfs say tx and t3 would be such 
that sin tx ^ sin f 3. We could then solve for Ai as a linear function of A2. 

^ = sin f3 + ^ / sijnj2_r_ sin_/3 \ 
1 sin f3 — sin tx

 2 \ sin f3 - sin tx ) ' 

Letting kj = [(1 - z)2/z][z^/(l - ze*i)\ j = 1, 2, 3, we would obtain 
(1 - z)2 /?ó(z) = 2Ai^i + 2A2&2 + 2A3&3. Substituting in for A3 and X\ 
would yield 

(1 - z)2p'0(z) = 2A2 » • - « ^ ^ • È ^ ) + f t - « ] 
2^1 sin /3 — 2&3 sin /j 

sin r3 — sin ^ 

= AX2 + B, 

where .4 and B are complex constants. 
We now prove that A # 0. If A were 0 then letting s = (sin t2 — sin f3)/ 

(sin /3 — sin fx) we would have 

1 
1 + s 'V1 ' 1 '+ s ^3 = , T V * i + -f-7~--*2» 

that is, A:3 would lie on the line through /^ and A:2. We note that kx, k2 

and k3 lie on the curve h(eü), 0 ^ t ^ 2x, where A(e'') = [(1 — z)2/z] 
>[ze"/(l - ze")2]. However, A(e*0,0 ^ t ^ 27zr, is simply the fixed (1 - z)2/z 
scalar multiple of the image of |£| = runder the Kobe functional — O -2-
The Kobe function maps all circles \Z\ = r g 2— y ' T onto convex analy
tic curves containing no straight line segments. Thus k3 can not lie on the 
line through kx and k2. Consequently A is non-zero. 

Since A is non-zero the image of (0, 1) under the map AX + B would 
be a straight line segment containing the point (1 — z)2 p'0(z) in its interior. 
By continuity we could vary A to obtain a px in Px such that |(1 — z)2 

'Pi(z)\ > 10 - ^)2/?o(z)l contradicting the extremal property of p0. (Note 
that although the ax of px(z) = 1 + 2axz + • • • may not equal the 0 of 
/?0(z), nevertheless, by continuity ax will be real and positive.) 

Letting k(z) = z/(l — z)2 we have shown for any z in |z| g 2— ̂ /~T 
that if p2(z), p2(o) = 2a > 0, maximizes |z/?'(z)/£(z)l over i^ then 

and therefore proving (2) reduces to showing that 

| U ( A ) + (1 - X) k{e''z)\ g \k(z)\, \z\ ^ /•„, 
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for all 0 ^ X S 1 and all th t2 in [0, 2%\ with le* 4- (1 - X)eü* = a. 
Letting (l)2 = - ( * ! + f2)/2, ^i = ('i - h)/2 and z = £ exp(/^), we can 
rewrite the above inequality as 

\Xk{e^) + (1 - A)/ ; (<r^) | ^ | * ( ^ f ) | 

for all 0 S A ^ 1 and all 0 b 02 in [0, 2%\ with A^1 4- (1 - X) e~^ = 
ae^. But 

We*0 + (1 - A) k(e-H = e [ (T^i + fl-^SjJ 
= gfc*^2 4- g2e~^ - 2g] 

(1 - <*£ - e-*hÇ 4- | 2 ) 2 ' 

Thus it suffices to show 

max 
£(ag^2 4- g2e-^2 - 2g) 

(1 _ _ ^ i | ~ " e - « j + f2)2 k(e^j 

a quantity which depends only on the independent variagles a and 02. 
Since the maximum is taken on the boundary we let ç = r0e

id, r0 = 2 — 
A / 7 , ^2 = ^ a n d square the above expression to obtain 

J^„~_2i_±i2*c o s^ "~ ae^2\2[l + ro - 2ro c o î # + g)l2 

which, upon noting that 1 + r2, = 4r0, 1 4- r4, = 4r0 - 2rg -f 4rg, be
comes, after a fairly long computation, 

[1+ ^ (3 +cos2(fl-0)) - 4acos (0 -0 ) ] [2 -cos (0 + <j>)]2. 
[of2cos20 4- 3 4- cos20 — 4a coso cos^]2 

Since the denominator of (7) is (a cos <f> — 2 cos 0)2 4- 3(1 — cos2 0), we 
see that it never vanishes. Therefore, the quantity in (7) being ^ 1 is 
equivalent upon cross multiplication to 

h(a) = (-cos40)tf4 4- (8cos30cos0)tf3 

4- [RP - 2(cosV)Ô - 16cos20 cos20]a2 

(8) 
4- [8ßcos0 COS0 - 4Pcos(0 - <ß)]a 4- [P-Q2] 

= AAa* 4- A3a
3 4- /42a

2 + A& + A0£0 

where /* = 3 + cos2(0 -</>), P = (2 - cos(0 4- 0))2, ß = 34- cos2 0, 
and M = cos2^ 4- 3 4- cos20 - 4cos0 cos^. 

Factoring out the P and expanding M2 we see that 

A(l) = - cos4^ 4- 8cos30cos0 + RP - 2Qcos2c/> - 16cos20cos2^ 

4- 8£cos0 COS0 - 4/>cos(0 - cjj) + P - Q2 

= - A/2 4- P(2 - cos(0 - 0))2. 
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Since M = (2 - cos(0 - <fi))(2 - cos(0 + (fi)), we conclude that h{\) = 0. 
Thus h(a) = (1 - a)Ctf(tf) where 

77(a) = [(cosV)^3 + (cosY - 8cos30 COS0)O2 

+ (cos4^ - 8cos3^ coso - RP + 2Qcos2(fi 

+ 16cos2ÖcosV)ö + P - Q2] 

= (cosV)(tf3 + B2a
2 + îtìf + B0) = (cos40) hx(a). 

It suffices to show H(a) ^ 0. Note that 

H(Q) = P-Q2 = (2-cos(0 + (/>))2-(3 + cos2d)2 

= (5 - cos(0 + </)) + cos20)( - 1 - cos(0 - (fi) - cos20) g 0 

while 

H(\) = 3cos4^-16cosVcos0"/?P + 20cos2^+16cos2^cos20 

+ P - Q2 = 2[C0S4^ - 4coS3^ COS0 + P-Q2- 2PCOS(0 - <£) 

+ 4gcos 0 COS0] -h [cos4^ - 8cos3^ cos0 -P + Q2 

+ 4Pcos(6 -(fi)- 8£eos0 COS0 - RP + 2Qcos2(fi 

+ 16cos20 cos2^]. 

The term in the last set of square brackets is M2 — P(2 — cos(0 — (fi))2 

= 0 exactly as before. Note that we can rewrite what is left as 

— cos40 4- 4cos3^ cos0 + 2Pcos(0 - (fi) - P + Q2 - 40cos0 cos^ 

= — ( 1 — sin2^)2 + 4( 1 — sin20)cos0 cos0 + (2cos0 cos0 + sin0 üvufi — I ) 

• (2 — COS0 cos^ + sin0 sin^)2 + (4 — sin20)2 — 4(4 — sin20)cos0 cos^ 

= 15 + 2 sin20 - sin4^ - 8 sin20 + sin40 - 12cos0 cos^+4 sin20 cos0 cos0 

— 4 sin20 cos^ COS0 + (2cos0 cos0 + 2 sin0 sir\(fi — 1 ) • (5 — sin20 

— sin2^ + 2 sin20 sin2^ — 4cos0 cos0 + 4 sin0sin^> — 2cos0 co$(fi sin0 sin^) 

= 10 + 3 sin2^j-sin4^-7 sin20 + sin40 + 2cos0 cos0 

+ 2 sin20 coscfi COS0 - 6 sin20 cos0 cos^ - 4cos20 cos2^ sin0 sin^ 

— 8cos20 cos2^ + 6 sin0 sin^ — 2 sin30 sin^ - 2 sin3^> sin0 

+ 4 sin30 sin3^ + 6 sin20 sin2^ + 2cos0 cos0 sin0 sin^ = 2+11 sin20 

— sin40+sin40 + (2cos0 cos^) • (1 + sin20 - 3 sin2^ + sin0 sin^) 

+ 2 sin0 sin^( 1 - s i^sin^ + sin20 + sin2^) + [8 - 8 sin20 - 8 sin20 

-8cos20 cos2^ + 8 sin20 sin2^] + [4 sin0 s i n ^ - 4 sin30 sin0 

— 4 sin3^ sin0 —4cos20 cos2^ sin0 sin^ + 4 sin30 sin30]. 

Since each of the terms in square brackets is identically zero, we can 
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conclude H(l) is nonpositive upon noting the expansion of the following 
nonnegative expression. 

3 sin2^+(sin^ + sin30)24-(l + cos2/?) sin40 + 2(l -cos0 cos^) sin2^ 

+ 2[1 --cos(0 + ^)] sin2^4-[l 4-cos(0-^)]24- (cos0-cos^)2 sin2^ 

+ (cos0-f-cos^)2sin204- 2sin2^cos20 = l + lOsin2ç!; + cos20sin2^ 

4- 2 sin40 + cos20 sin20 4- [cos20 sin2^ + cos2^ sin20 4- cos20cos20 

4- sin2^ sin20] — 2 sin2^ sin20 4- 2 sin̂ > sin30 4- 2 sin0 sin3^ 

+ 2 sin0 sin^ —6cos0 cos0 sin2^+2 sin0 sin0 cos0 cos^ 

4- 2cos0 cos^ sin20 + 2cos0 coŝ >. = 2+11 sin2^—sin4^ 

+ sin40 + sin20 + 2 sin0 sin^( 1 4- sin2^ + sin20 - sin̂ > sin0) 

+ 2 COS0COS9X1 -f sin20 —3 sin2^4sin0 sin^) 

where in the second equality we observe that sin40 4- sin20 cos20 = sin20, 
while the term in brackets is identically 1. 

Recall hi(a) = a* 4- B2a
2 + Bxa 4- B0 where 

B2 = l — 8sec0 COS0 

Bi = 1 - 8sec^cos0 - ÄPsecty + 2ßsec2^ 4- 16cos20sec2^ 

and B0 = sec^P - Q2). 
Now, hx(0) = B0 = secty[(2 - cos(0 + (fi))2 - (3 + cos20)2]. So B0 g 0 

if and only if (2 - cos(0 4- </,))2 ^ (3 + cos20)2 

if and only if 2 - cos(0 4- (p) g 3 4- cos20 

if and only if — cos(0 4- cß) S 1 4- cos20 

which certainly holds as -cos(0 4 cjj) ^ 1 ^ 1 4- cos20. Hence 

*i(0) ^ 0. 

Now, we will assume that hi(l) S 0. This will be proved later. Then, 
from the properties of a cubic, hx will have 3 roots, r b r2, and r3, with 
/*! = 1. Since r! + /*2 + r3 = — Z?2 = 8sec^ cos0 — 1, we consider two 
cases. 

CASE I. B2 ^ - 1 . Then - £ 2 ^ 1 and U - J? 2 = rx + r2 + r3 = 

1 4- r2 + r3 and so r2 4- r3 ^ 0. Since /^(O) ^ 0 and /^(l) g 0, we con
clude that hx has no roots in (0, 1). Therefore hi(a) ^ 0 for 0 ^ a ^ 1 
and we are done. 

CASE II. £ 2 < - 1- Assume that r2 e (0, l).Then r2(r| 4- B2r2 4- £i) = 
-B0 and r | 4- £2r2 4- Bx = -B0/r2 > -B0. Hence 0 < i?0 4- 2?i - r2 4-
r\ and thus 



338 R. W. BARNARD AND C. N. KELLOGG 

(9) B0 + Bx> r2(l - r2) > 0. 

However, using (8) and the fact that h(l) = 0 we can solve for 2?0 4- Bx to 
obtain BQ 4- Bx = ~(AX 4- 2v40)M4 = (2sec*</>)T where T = P - Q2 -
2Pcos(0 — ci) 4- 4gcos0 cosci. Now, if we expand the expression for 
— Tand express most of the quantities in terms of sino and sinçi, we obtain 

- T = [3 4- sin20 + 9sin2çi 4- sin40 + 2sin0 sincri - sin0 sinçi + sin20 

4- sin2ci)] 4- 2(cos0 cosçi)[- 1 4- sin0 sinçi 4- sin20 — sin2çi]. 

Upon performing the same expansion of the nonnegative expression 

4sin2çi 4- (sinçi 4- sin30)2 4- sin40 cos20 4- (l — cos0 cosci)2 

4- 2[1 - cos(0 4- çi)](l 4- sin2çi 4- cos0 cosci) + cos20 sin2çi 

4- (1 4- sin0 cosci sin20) 

we see that they are the same. Hence — T ^ 0 and this contradicts (9) so 
that B2 cannot be < — 1. Hence only Case I holds. 

Upon proving /^(l) ^ 0, we will have h^a) ^ 0 for 0 g a g 1 as 
claimed. Accordingly we note that 

hx(l) = 1 4- B2 4- Bx 4- B0 

= 2 - 8secçi COS0 4- B1 4- B0 

= 2sec4çi[cos4çi — 4cos3çicos0 4- T]. 

Letting S = cos4çi — 4cos3çicos0 4- Tand expanding as before we see that 

5 = 2 + sin20 4- llsin2çi 4- sin40 - sin4çi + 2(1 - sin0 sinçi 4- sin20 

4- sin2çi) sin0 sinçi 4- 2(1 4- sin0 sinçi 4- sin20 — 3sin2çi) cos0 cosci. 

Likewise, upon expanding the nonnegative expression 

3sin2çi 4- (sinçi 4- sin30)2 4- (1 4- cos20)sin40 + 2(1 - cos0 cosci) sin2çi 

4- 2[1 - cos(0 4- ci)]sin2ci 4- [1 4- cos(0 - ci)]2 4- (cos0 - cosci)2 sin2ci 

4- (cos0 4- cosci)2 sin20 4- 2sin2ci cos20, 

we see that — S^Q and hence hi(l) ^ 0 as we claimed. 
The sharpness result of the lemma follows by choosing w = z2. 
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