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ABSTRACT. Traditionally, there have been two major methods 
for the representation of complex, curvilinear shapes. Objects are 
represented by binary trees of set operations upon a restricted set 
of rigid forms, such as cylinders, spheres, etc., or by an explicit 
piecewise definition of the boundary by polygons and patches. 
The former is intuitive for modeling, but lacks generality, partic
ularly in the area of smoothness. The latter, though sufficiently 
general for representation, is often difficult to model in environ
ments where properties such as symmetry are as important as 
interpolatory constraints. This paper presents a functional re
presentation, called Constructive Surface Geometry, which uni
fies both approaches and which possesses advantages of each. 

Introduction. Currently, most solid, animation and simulation produc
tion modeling systems are not based upon a primitive capable of repre
senting smooth, curved surfaces. [5] There are several reasons for this. 

1. It is much more difficult to render smooth shapes than faceted ones. 
The convex planar polygon has a unique property ; its perspective projec
tion is always silhouetted by the projection of its boundary. This is not 
true of any curved surface, where determination of the silhouette after 
perspective projection entails the solution of a non-linear equation. 

2. The increase in computation required to manipulate curved objects 
is very large. Calculation of intersections of faceted objects leads to 
linear systems; calculation of intersections of curved objects requires 
solution of non-linear systems. 

3. While it is well known that any continuous surface can be uniformly 
approximated to within arbitrary e > 0 by a network of patches, this 
says nothing about the ability of a designer to model curved features in 
a particular system. [3] In fact, designing by interpolatory constraints 
alone, even in an interactive graphical environment where dynamic 
rendering of three-dimensional objects is possible, is often difficult. This 
follows from the necessity of modeling through a two-dimensional inter
face and either using several orthographic projections, or a single perspec
tive projection. The limitations of human depth perception are all too 
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apparent in modeling environments developed around the latter, and the 
overhead incurred with the former by requiring several actions to alter 
the position of one point, is often unacceptable. [6] 

Some systems, such as General Motors' GMSOLID, include a patch 
primitive. These systems are not limited by the first two problems; that 
of rendering smooth shapes through the solution of a non-linear equation, 
or the increase in computation required to manipulate curved objects. 
For example, homotopy continuation methods are sufficient for intersec
tions in GMSOLID. [2] But the use of the patch primitive can be con
strained by the third reason ; the ability of a designer to model curved 
features using interpolatory constraints alone. 

General curvilinear geometry will always be more expensive and 
complex than piecewise linear representation. The first two problems 
will always exist. It is only by solving the third problem, that its use 
can be justified. Only when it is possible to design intuitively and efficiently 
in a curved domain is the consequent complexity of the data and programs 
acceptable. 

A representation. For designers to effectively manipulate curved features, 
they must have general and global structures for control as well as the 
necessarily local tool of manipulation of interpolatory constraints. These 
general and global structures must provide greater flexibility than the 
standard affine transformations: rotations, scales and translations. Sym
metry should be handled naturally; the designer should be able to uni
formly affect an arbitrary continguous portion of the surface of an object. 
Further, there should be a method by which portions of common curved 
objects, such as spheres, ellipsoids and cylinders could interact with and 
constitute portions of more complex objects. Constructive Surface 
Geometry is proposed as a means of accomplishing these objectives. 

In this approach, shapes are represented as sets of parametric surfaces 
which may overlap, blend together or meet smoothly. The parametric 
surfaces are traditional winged-edge networks of rectangular and trian
gular patches. The linkages between them form a union of «-ary trees in 
which descendence indicates how one surface has been placed, and perhaps 
blended, into another. More precisely, the branches correspond to two 
related affine mappings : one which associates the domains of the parent 
and descendent and one which associates the range of the parent with 
the graph of the descendent. This method of combination is generalized 
by the inclusion of blending. 

Specifically, let {f{}, i = 1, « be a set of functions, each of which maps 
a piecewise linearly bounded subset of the plane into R3. Denote the 
domain of f{ by Dt and the graph in R3 of f{ by Et. Let y{j denote an 
affine mapping from Dt to Dj and ftj denote an affine mapping from E{ 



DESIGN OF CURVED SURFACES 153 

into R3. Then the representation consists of a function G defined with a 
set B = {£>,, £,, Dj, Eh j - ^ , 71,;}, i # j , which describes the linkages of 
the tree structures. More intuitively, a particular representation might 
be thought of in terms of the following graph, where the arrows denote 
the direction of the affine embeddings. 

* 1 2 ' r i 2 / T13' r i3 

D2'E3 , D 3' E 3 

D4,E4 D5,E5 D6,E6 

The function G is defined recursively. Descendents are combined with 
their parents one level at a time, beginning at the leaves of the tree and 
proceeding upwards towards the root. The result supersedes the parent 
in the next iteration and the descendent is deleted. The recursion is com
plete when only one node remains. 

Thus, if (Dt, Et, Dj, E j , y0-, rtj) is an element of B, then at some point 
f is replaced by 

Ms, t)fi(s, t) + OiAnAs, 0) / W / T V A 0)), 
where ç^7 is a univariate blending function based on distance to the 
boundary of the projection of Dj in Dt-, 0,7 is a univariate blending func
tion based on distance from the inside to the boundary of Dj, and (s, t) 
resides in D{. The blending functions, which are described later, are 
chosen so that 

1. <f>ij + 0,7 = 1, for all s and /, 
2. (f>tj is identically one outside of an open set in Dt containing the 

projection under 7̂ 7 of Dj, and 
3. 0,7 is identically one on a closed set in Dj. 
In the particular case of the graph above, f6 and/3 would be combined, 

then f5 and f3, followed by f and f3. Function f3 would then be blended 
into/! and g would be defined by the final combination of/2 and/j . The 
advantages of this type of representation are the following three reasons. 

1. Surfaces, though more general than patch networks, are still defined 
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as functions. Traversing the domains of the top nodes traverses the 
complete surface. 

2. There is greater generality at boundaries. 
3. Assembly and blending of surfaces is natural. 

An example. There are, of course, a large number of affine maps and 
univariate blending schemes. The following simple and specific example 
shows how the structure can be used in a natural way to define complex, 
curved geometries. It demonstrates, and the photographs from an ex
perimental implementation in the concluding section allude to the repre
sentation's generality and applicability to a large variety of surface 
construction problems. 

In the example we consider the problem of placing some surface, such 
as a hemisphere or a fin like that swept from the spline in photograph 1, 
in the midst of another, such as a plane or a rounded box shape. We 
assume that both domains are starlike; that is, every ray emanating from 
the centroid of a domain passes through its boundary only once. The 
graph associated with the set B is then very simply 

I ri2> A2 

D2,E2 

and G(s, t) can be written explicitly as 

G(s, t) = (j)h2(s, o/ite 0 + Mn.2fa 0)A,2(/2(ri,2(^ 0))-
In this example, and in those from the experimental implementation, 
Yij is defined by a translation which identifies two points from the two 
domains Dx and D2 and an arbitrary rotation which orients the second 
domain, (and later the graph of the second function), relative to the first. 
Thus, 7X2 = (0, t)-(a, b))R + (c, d) where (j, t)9 (a, b) e DÌ9 (e, d) s D2 

and 

_Tcos(0) -sin(0)1 

"" |_sin(0) cos(0)J 

It follows from substitution that 7-1,2(0, b) = (c, d). The particular form 
was chosen because it lends itself naturally to an interactive graphics 
environment. One can easily imagine a designer orienting one surface 
relative to another by associating two points, one on each surface and, 
consequently, one in each domain. By implication, rit2, the corresponding 
map in the range which associates the graphs of fx and/2> has the following 
form : 
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ri,Âx,y,z) = 
cos(Ö) -sin(ö) 0" 

sin(ö) cos(0) 0 

Lw l n2 nZ. 

(x, y, z) + fx(a9 b) 

where (nh n2, ns) = (dfjds x dfJdO/WtffJds x dfJdOW lc,0=c*», the unit 
normal to fx at (a, b). 

As stated above, ^1>2 and 01>2 are blending functions. In this case, they 
are one of the univariate, cubic Hermite basis functions composed with 
functions measuring distance to the boundary from the exterior in the 
case of the former, and from the interior in the case of the latter. Speci
fically, 0i,2(w, v) = h0(a2(u, v)), (w, v) G D2 and fat2£s9 t) = 1 -
01,2(7*1,2 fo 0)> fa 0 e ^ i - Ö"2 is defined as follows. Let ôD2 = {(1 — a) 
(w*\i> V«M) + a(w*\2> v*,2)}> i = 1» w and 0 ^ a ^ 1. For every (w, v) e i ) 2 , 
the centroid, (uc, vc) of Z)2 and (w, v) uniquely defines a ray which intersects 
3D2 at one point, (up, vp), on the /-th segment. Let z-(>, 0 denote the 
ratio of the length of the segment (w, v), (up, vp) to that of the segment 
(uc, vc), (up, vp). By Cramer's rule, z can be written explicitly as 

,„ vx __ 1 (^,2 - ^ M ) ( V C - 0 - (v,-t2 - V « M ) ( ^ - *) 

(W,',2 ~ Ui,l)(yc " Vf-,i) - (V,.f2 - V,.fl)(l/C - Uitl) 

Then tf-2(w, V) = JJ r(w, v)Jw */v, where the limits of integration are from 
v — e to v + e, and from u — e to u 4- a respectively. Since z is a con
tinuous function, (72 i

s C1. 0*1 is defined similarly. Over all of D2, G2 can 
be explicitly integrated since it is piecewise linear in s and t. 

An implementation: towards an evaluation. The use of tree structures 
for the representation of geometry is not a new idea; it is at the heart of 
the constructive solid geometric approach to modeling. [4] There, complex 
objects are represented as binary trees where the leaves are simple objects, 
such as spheres and cubes, and the nodes are set operations such as union 
and intersection. The representation described above is derived from 
that idea, and is an attempt to bring the advantages of constructive solid 
geometry to free form surface modeling. 

The approach has been implemented, on a limited scale, in an interac
tive computer graphics environment consisting of a VAX 11-780 computer 
and an Evans and Sutherland Picture System. In the program, symmetry 
can be specified at two levels. Initially, symmetric curves can be created 
by automated reflection about a center line. Later, a primitive surface 
may be instanced in two symmetric positions simultaneously. Both of 
those features were used in the definition of the object shown in the series 
of photographs. The symmetric i?-spline in Figure 1 was swept along a 
linear path to create a fin-shaped open surface. Then, the box shape shown 
in Figures 3 and 4 was contructed from curves, such as the one shown in 
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i—i—i—i—i—\-h——\Y-\—i—i—i—i—i 

1 Add Vrtx 

I [Poly ds 

1 Oelete V 1 

1 Sy—try 1 

1 Change V 1 

1 Exit J 

FIGURE 1 

\—I—l I i i i 

Delete V | 

1 S y i t r y 1 

1 Change V . 

1 Exit J 

1 1 
1 Gra^n s t 

1 Gra\n ds 

1 Add Vrtx 1 

[Poly, ds 

FIGURE 2 
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FIGURE 3 

FIGURE 4 

V:;V'|: 

FIGURE 5 
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FIGURE 6 

Figure 2. Lastly, the fin was instanced and blended into the box surface. 
The result is represented by the following graph and depicted in Figures 
5 and 6. 

D-,E.| (box surface) 

*12 ' r i2 *13 ' r i3 

D2 /E3 (left fin) D3,E3 (right fin) 

Finally, it is felt that the value of this approach to a particular problem 
can be measured in terms of the simplicity of the primitive surfaces that 
are blended and combined. Further research is planned with the goal of 
a comprehensive evaluation over a variety of objects. 
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