
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 13, Number 4, Fall 1983 

ON THE CHARACTER THEORY 
OF FULLY RAMIFIED SECTIONS 

I. M. ISAACS 

1, Introduction. As corollaries of some lengthy and relatively difficult 
arguments one can derive several character theoretic facts which are 
quite often useful in the study of solvable groups. The purpose of this 
paper is to present a method which yields simple and direct proofs for 
some of these. As might be expected, we do not obtain the strongest 
possible results this way, but what we shall prove here is sufficient for 
many applications, some of which are discussed in the final section of the 
paper. 

A configuration which often arises, and which will be our primary 
object of attention, is the following. 

BASIC CONFIGURATION 1.1. Let L i K<\G with L <\G and K/L 
abelian. Let <p e Irr(L) be invariant in G and assume <pK = ed for some 
0 e Irr(AT) and integer e. 

Note that in this situation, 0L = ecp and a computation of ^ ( 1 ) yields 
that e2 = \K: L\. Also, 0 is necessarily G-invariant. We occasionally 
discribe this situation by saying that K/L is a, fully ramified section in G. 

Frequently in these circumstances, we have in mind a particular sub
group H, such that HK = G and H fi K = L. (In other words, H is a 
complement for K in G relative to L.) We would like to obtain information 
which relates the irreducible characters of G which lie over <p with those 
of H which lie over <p. Generally, one must assume some additional 
hypotheses before being able to draw conclusions of the desired type. 

The following is an example of a result of this kind. (We use the nota
tion lrr(X\<p) to denote the set of irreducible constituents of <px where 
<p is an irreducible character of some subgroup of X.) 

THEOREM 1.2. Assume the Basic Configuration (1.1) and in addition suppose 
that at least one of \K: L\ or \G: K\ is odd. Then there exists U Ü G and a 
character (J) of G with K g ker cj) such that 

a) UK= GandU f] K= L, 
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b) if Xe Irr(G | <p), then there exists a unique f 6 Irr(C/ | <p) such that 
Xu = <fo& 

c) if Ce lrr(U \ <p)9 then there exists a unique x e Irr(G | <p) such that 

d) //ze m ^ % ^ 6 ÖW^ f ^ Z defined by the previous two parts are 
inverse bijections between \rv(G \ <p) and Irr(C71 <p), and 

e) \</>(g)\2 = \CK/L(g)\ for all g eG. In particular, ^(1) = e. 

This result, which includes parts of Theorem 9.1 and Corollary 9.2 of 
[3] does not say anything about the characters of an arbitrary complement 
H for K relative to L in G ; it only says that for some complement, good 
conclusions hold. However, when Theorem 1.2 is applied, we often have 
available additional information, sufficient to guarantee that there is a 
unique conjugacy class of relative complements, and in this situation, it 
is no loss to assume that H = U. 

A frequently occurring example of such additional information is given 
by the following lemma. 

LEMMA 1.3. Let L E K < G with L <\G and KjL abelian, as in the 
Basic Configuration. Assume in addition 

(*) there exists M <\ G with K g M and (\K/LU \MjK\) = 1 such that 
CK/L(M) = 1. 

Then there exists a unique conjugacy class of complements for K in G 
relative to L. 

The proof of this result, using the Schur-Zassenhaus Theorem in MjL 
and the Frattini argument, is quite routine and will not be given here. 

A result parallel to Theorem 1.2 which avoids the oddness hypothesis 
of that theorem is this result of Dade. 

THEOREM 1.4. Assume the Basic Configuration and condition (*) of 
Lemma 1.3. Then there exists U E G such that 

a) UK= G,U f) K= L, and 
b) there is a bijection %\ lxv(U\<p) -> Irr(G|̂ >) with £*(1) = ef(l) for 

£elrr(£/|0. 

This is essentially Theorem 5.10 of [1]. A simplified proof in the case 
where M/K is solvable can be found in [5]. Note that condition (*) is not 
being used in Theorem 1.4 merely to guarantee uniqueness (up to con
jugacy) of complement; it is an essential hypothesis. 

Observe that in situations where both Theorems 1.2 and 1.4 apply, the 
conclusions of Theorem 1.4 form a proper subset of those of Theorem 
1.2. What is more, the character cjj of Theorem 1.2 can be constructed 
in an invariant way, so that the character bijections it determines are 
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"canonical". In the situation of Theorem 1.4, there is no uniquely defined 
bijection given, and in general, none exists. 

Since Theorem 1.4 is much easier to prove than Theorem 1.2, especially 
if MjK is solvable, and since its conclusions are strong enough for many 
purposes, it probably provides the quicker route to most applications. 
Nevertheless, there is a very useful corollary of Theorem 1.2 which does 
not even mention the character bijections and which is not available 
from the point of view of Theorem 1.4. 

COROLLARY 1.5. Assume the hypotheses of Theorem 1.2 and let U be the 
subgroup given by that theorem. Suppose \K/L\ > 1. 

a) //*£ e Irr (U\<p), then £G is reducible. 
b) Ifx e lrr(G\<p), then Xu & reducible. 

Proof. If either (a) or (b) fails, then the character <j> given by Theorem 
1.2 must be irreducible by (c) or (b) of that theorem, respectively. Thus 
1 = [fa (jj\ = [^fa \G], However, by (1.2) (e), <Jxj) is the permutation 
character of G on KjL, acting by conjugation. Since \KjL\ > 1, this 
action cannot be transitive (since the identity is fixed) and so [<$, 1G] > 1. 
This contradiction completes the proof. 

It is the principal goal of this paper to give a self-contained and ele
mentary proof of Corollary 1.5 (at least in the case where \K: L\ is odd) 
while avoiding the complexities which appear to be necessary to get the 
full strength of Theorem 1.2 (as in [3]). In addition, the present method 
of proof (which incorporates a few of the ideas in [3]) is sufficient to 
obtain the equality of the cardinalities of lrr(G\ç) and Irr(£/|p), though 
it does not construct an explicit correspondence and the author has been 
unable to obtain from this argument the fact that the degrees of the 
characters in the two sets are proportional. Our main result is the following 
theorem. 

THEOREM 1.6. Assume the Basic Configuration with 2 X \K: L\. Then 
there exists U E G such that 

a) UK= GandU f] K= L, 
b) \lrr(G\<p)\ = \lrr(U\<p)\, 
c) // \K/L\ > 1 and £ 6 lrr(U\<p), then £G is reducible, and 
d) if \K/L\ > 1 and x e lrr(G\(p), then xu is reducible. 

Before proceeding with the proof of Theorem 1.6, we mention that it 
definitely can fail if \K: L\ is even. An example is provided by G = 
GL(2, 3) with K = ß 8 and L = Z(K). In this case, condition (*) of (1.3) 
holds, and so there is a unique conjugacy class of relative complements 
and (b) holds by Theorem 1.4. Both (c) and (d) fail. 

2. Character triple isomorphism. The first step in the proof of Theorem 
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1.6 is to use the theory of projective representations in order to reduce 
to the situation where L E Z(G). This can be done without explicit 
reference to projective representations by using the facts about character 
triple isomorphism which are presented in Chapter 11 of [4]. We sum
marize this information briefly here. 

We say that (G, L, <p) is a character triple if L < G and cp e Irr(L) is 
invariant in G. Two triples, (G, L, <p) and(.r, N, 0) are isomorphic provided 
that GIL ^ r/N and that the character theory of G over <p corresponds 
in a certain precise way to the character theory of T over 0. In particular, 
if H/L and K/NSLTQ corresponding subgroups under the given isomorphism 
between G/L and T/N, then there exists a fixed bijection (?H: lrr(H\<p) -+ 
Irr(K\0), and these bijections respect restriction in that if L E F i U E 
G, £ e lrr(U\(D) and 27 s lrr(V\<p), then 

[£F> V] = [<?u(Ç)w> (Tv(y)] 

where W/N corresponds to V/L. (See Definition 11.23 of [4] for more 
details.) 

It follows in the above situation that if £v = TJ, then <Ju(Ow = 0v(y) 
and if, on the other hand, rf = f, then av{rj)x = tf^f), where X/N 
corresponds to U/L. 

The key result here is that every character triple (G, L, <p) is isomorphic 
to one, CT, Z, X) where Z E Z(D and A is faithful. (See Theorem 11.28 
and Lemma 11.26 of [4].) It follows that in proving Theorem 1.6, it is 
no loss to assume that L E Z(G) and L is cyclic. 

Observe that in the Basic Configuration, we automatically have 
Z(K) ü L since 0 = (l/e)cpK vanishes on K — L. We may thus assume in 
the Basic Configuration that L = Z(K) e Z(G). 

3. A group theoretic result. Most of the work in the proof of Theorem 
1.6 is contained in the following non-character theoretic result. 

THEOREM 3.1. Let K <\ G and assume that L = Z(K) is cyclic and that 
L E Z(G). Suppose K/L is Abelian of odd order. Then there exists U E G 
such that 

a) UK= GandU f] K= L, 
b) U E CG(K), 
c) ifueU and uk e U for keK, then uk = w, and 
d)ifu9veV^U are conjugate in VK, then they are conjugate in V. 

We begin with some lemmas. 

LEMMA 3.2. Let C = Z(K) where C is cyclic and K/C is abelian. Then 
every automorphism of K which is trivial on C and on K/C is inner. 

PROOF. Let ^ = {«76 Aut(A:) | [K, a] ^ C and [C, a] = 1} and note 
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that lnn(K) g $?. Since |Inn(iO| = \K/C\9 it suffices to show that \tf\ S 
\K/C\. 

For each aestf, there is a well defined map 0a: KjC -* C defined by 
(Ck)da = [k, a], and we have 0a e Hom(K/Q C). The map s/ -> 
Hom(Är/C, C) defined by a *-+ da is injective since if 0, = 0T, then 
[fc? #•] == [k, T] for all À: 6 K. It follows that ka = £ r for all k and so 
<j = v. Thus | j / | ^ |Hom(A:/C, C)\. 

Since C is cyclic, it follows easily from the fundamental theorem of 
abelian groups applied to K/C, that |Hom(A:/C, C)\ ^ \K/C\. The result 
follows. 

LEMMA 3.3. Let C S Z(K) with K/C abelian. Assume that every coset 
ofC in K contains an element of order equal to the order of the coset, viewed 
as an element of KjC. Then there exists a s Aut(AT), trivial on C and inverting 
all elements of K/C. 

PROOF. Write K/C as a direct product (Cu^ x • • • x <Cwr> of cyclic 
subgroups and choose the representatives u{ of the generating cosets so 
that o(ut) — o(Cut). Then every k e Kis uniquely of the form k = xix2 • • • 
xrz with xt- G <w,-> and z e C. Define a: K -• K by 

ka = xjf1*^1 • • • x~lz. 

It is clear that a is a permutation of the elements of K and the proof will 
be complete when we show that a is a homomorphism. To this end, 
let / e K and write / = yxy2 • • • yrt with y{ e <w,-> and t eC. Then 

kl = (x1y1)(x2y2) • • • (xryr)ztc 

where 

t>j 

We have 

w = (^r1)--- (^JV1)^' 

where 

Since [AT1, y1] = [x, y] for x,yeK, we have c' = c and so &"/* = (kl)a 

as desired. 

PROOF OF THEOREM 3.1. Let m = exp(Ä') and let C be a cyclic group of 
order m. Let C0 i C be the subgroup of order equal to \L\ and let AT* 
be the central product of K and C with L and C0 identified. Note that 
C = Z(A:*). 
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If k e K*, let r be the order of the coset Ck in K*/C. Then kreC and 
o(k) = ro{kr). Since o(k) divides m = |C|, we see that o(A:r) divides m/r 
and so there exists ceC with A:r = cr. Thus {kc~l)r = 1 and the coset Ck 
contains an element of order r. By Lemma 3.3, there exists a e Aut(X*) 
such that G inverts K*/C and is trivial on C. 

Every automorphism of K which is trivial on L induces a uniquely 
defined automorphism of K* = KC which is trivial on C. In particular, 
since L g Z(G), the conjugation action of G on AT induces an action of 
G on AT*. We therefore have a homomorphism 0: G -+ A where ,4 = 
{<* e Aut(#*) | [C, a] = 1}. Note that ker 0 = CG(K). 

Now ö" e 4̂ and we let U be the complete inverse image in G of CA(G). 

Thus CG(ÄT) = ker 6 ^ U and (ò) is immediate. 
Let / = Inn(X*) <] A and observe that / = 6{K). Since <7 inverts K*/Q 

it follows that <j inverts / by conjugation. However, |/ | = \K*/C\ = 
|Ä/L| is odd, and thus / fl CA(G) = 1. It follows that K f] U E 
kerfl fi K = Z(£) = L, as desired. 

If <j' e ^ is conjugate to G, it is easy to check that a' also inverts L*/C 
and thus crtf' acts trivially on K/C By Lemma 3.2, we see that <7<7' e / 
and we conclude that I(G} <l 4 . Since |/ | is odd, the Frattini argument 
yields that ICA(G) = A and since / = 0(K) g 0(G), we have 0(G) = 
/(0(G) fl Q(<7)) = d(KU). Since ker fl g £/, we have G = KU and (a) is 
proved. 

Now suppose « e ( / and k eK with w* G U. Then [w, A:] 6 U fl K = L 
and so, working in the holomorph of K*, we have [&, a:] e C, where 
a = fl(w) e Aut(AT*). Thus [<&>, <a:>, <#>] = 1. Also, since ueU, we 
have a e C^Or) and so [<a>, <#->, <&>] = 1. By the three subgroups 
lemma, we conclude that [<(7>, <&>> <a>] = 1 and so a acts trivially on 
[<0*>, <&>]C. This group, however, contains k2 since k° e k~lC, and thus 
it contains k, because \K*/C\ is odd. Thus ka = k and so u centralizes k. 
Part (c) now follows. 

Finally, suppose ug = v for some w, v e K i £/ and g e VK. Write 
g = wk with w e K and keK, and observe that uweU and (w1")* = ve U. 
By (c), v = («»)* = uw and (d) is proved. 

4. A little character theory. In order to prove Theorem 1.6, we need 
some sufficient conditions for induced and restricted characters to be 
reducible. 

LEMMA 4.1. Let H Ü G and let % be any class function ofG. Then (%H)G = 

(i*)G%-

PROOF. Compute, using the definition of induced class functions. 

LEMMA 4.2. Let H < G and suppose % e Irr(G) vanishes on all geG 
not conjugate to elements of H. Then %H is reducible. 
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PROOF. (D. Gluck). We have [%H, %H\ = 1%, (XH)G] = [%, (\H)G%1 Since 
(lH)G(g) à 1 whenever %(g) # 0 (by hypothesis) and (1#)G(1) > 1, we 
have fo//, Xtf] >\x*XÏssl' 

LEMMA 4.3. Let H < G and suppose £ e Irr(Tf) has the property that 
£(A) = £(&) whenever h, keHare conjugate in G. Then £G is reducible. 

PROOF. Define the function a on G by setting a(g) = £(/*) if g is con
jugate to he H and a(g) = 0 if g is not conjugate to any element of H. 
Then a: is a well defined class function on G and aH = £• We have 

[& eq = t£G, fe)Gi = [£G, o*)%] = [ft «ii/)G^f]. 

However, ((li/)0)//^) è 1 for all he H and (1H)G)H(1) > 1. Thus [£<% £S] 
> K, a = i. 

Note that a consequence of Lemma 4.2 is that if % e lrr(G) is induced 
from any class function of H < G, then %H is reducible. Similarly, by 
(4.3) if £ G Irr(i/) is the restriction of any class function of G, then £G is 
reducible. 

5. The proof. 

PROOF OF THEOREM 1.6. By the remarks of §2, we may assume that 
L = Z(K) E Z(G) and L is cyclic. Since we are assuming that \K/L\ is 
odd, Theorem 3.1 applies and provides us with a certain subgroup U E G. 
Part (a) of Theorem 1.6 is now immediate. Part (c) follows from Lemma 
4.3 since if u, v e U are conjugate in G, then they are conjugate in U by 
(3.1) (d), and thus £(w) = £(v) for all £ G lrr(U\<p). 

Now, for each subgroup X9 with K E X E G, let F(Z) be the 
complex vector space of class functions of X spanned by Irr(A"|̂ >), and 
similarly, i f L i 7 i ( / , let W(Y) be the span of Irr(y|p). Suppose 
Y = X fi £/. Since # r G W{Y) for all # G \n(X\(p), restriction clearly maps 
V(X) into W(Y). Similarly, if £ G Irr( Y \<p), then (£*)* = (£L)* = oqp 
for some integer a. Thus (l~x)L = a(<pK)L = a\K: L\<p. Thus £* G HX) and 
so induction maps W(Y) into V(X). Obviously, the restriction and in
duction maps between V(X) and W(Y) are linear transformations. 

Suppose we knew that induction defined a vector space isomorphism 
from W(U) onto V(G). Then |Irr(G|p)| = dim V(G) = dim W(U) = 
|Irr(£/|p)| and (b) would follow. Also, if ^ G Irr(G|p), then ^ e V{G\ 
and so ^ is induced from some class function of U. Thus % vanishes on 
elements of G which are not conjugate to elements of U, and (d) follows 
by Lemma 4.2. 

We work now toward proving that induction does define an isomor
phism of W(U) onto V(G). First we argue that for every X with K E X E 
(7, restriction maps F(Jir)onto W(y) where Y = X fi U. To see this, let 
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ß G W(Y) and define a on X by a(x) = 0, if x is not conjugate in Xto an 
element of Y, and a(x) = ß(y), if * is conjugate in X to ye Y. Note that 
a: is a well defined class function of X by (3.1) (d). Write a = ai + a2 

where a\ G F(Z) and a2 is a linear combination of ^ G Irr(T) with 0 £ 
\w(X\(p). Then /3 = <xr = (ai)Y + (tf2)r

 a n d so 

(a2)Y = ß-(a1)YeW(Y). 

However, by the definition of a2 we see that (a2)Y is a linear combination 
of rj $ lrr(Y\<p). We conclude that (a2)Y = 0 and thus ß = (ai)Y. It follows 
that restriction maps V(X) onto W(7), as claimed. 

With X and F as above, we show next that the induction map from 
W(Y) to V(X) has trivial kernel. Let ßeW(Y) and suppose ßx = 0. Then 
0 = [ßx, cß\ = [ß, ([)Y] for all $ G ln{X\(p). Since these characters 0 span 
V(X) which maps by restriction onto W(Y), it follows that [/3, 7*] = 0 for 
all y G W(r). In particular, [ß, ß] = 0 and so /3 = 0. 

To complete the proof of the theorem, it now suffices to show that 
dim V(G) ^ âimW(U), and to this end, we show that the restriction map 
V(G) -• W(U) has trivial kernel. Suppose then a G V(G) and av = 0. 
Let g G G. We must show that a(g) = 0. 

Let X = (K, g} so that Z/̂ T is cyclic. Then 6 extends to X (see, for 
instance, Corollary 11.22 of [4]) and there is a bijective correspondence 
between lrr(X\d) and Irr(X/K). (This result of Gallagher is Corollary 
6.17 or [4].) Since Irr(X|0) = I r r ( A » and \lrr(X/K)\ = \X/K\, we con
clude that dim V(X) = \X/K\. Similarly, if Y = X H U, then Y/L is 
cyclic, <p extends to L and dim W(Y) = \Y/L\ = \X/K\ = dim K(^). 

Since we already know that the restriction map V(X) -• PF(F) is sur-
jective, it follows that it has trivial kernel. However, (ax)Y = (au)Y = 0 
and thus a:̂  = 0 since ax e f ( I ) . In particular, a(g) = 0, and the proof 
is complete. 

6. Applications. A number of results in the literature have been proved 
by appeals to [1], [3] or [5]. For many of these, Theorem 1.6 is sufficient, 
and for some others, Theorem 1.6 provides a quick route to a similar, but 
somewhat less precise result. Consider, for example, the following theorem. 

THEOREM 6.1. Let G be solvable of odd order and let A act on G with 
{\A\, \G\) = 1. Let C = CG(A). Then the number of A-fixed irreducible 
characters of G is equal to the total number of irreducible characters ofC. 

In [3], this result was proved as an example of an application of the 
techniques of that paper. In fact a specific and uniquely defined bijection 
was constructed between the two sets of characters. In [5], this result was 
reproved, without constructing a specific bijection, but without the 
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necessity of assuming that \G\ is odd. This latter proof works just as well 
to derive Theorem 6.1 from part (b) of Theorem 1.6. 

Another application occurs as Theorem 3.1 of [6]. 

THEOREM 6.2. Let G be psolvable with p ^ 2 and let H be a maximal 
subgroup of index divisible by p. Suppose % e Irr(G) is induced from a 
character of H. Let N < G and write L = coveG(H f) N). If %L & homo
geneous, then H f] N < G. 

In [6] this result is proved by appeal to [3]. All that is actually used, 
however is Corollary (1.5) (a) and so Theorem 1.6 part (c) provides a 
far more elementary proof. 

The two remaining applications which we shall discuss both concern the 
following situation. 

HYPOTHESIS 6.3. Assume the Basic Configuration with \K: L\ odd. 
Let R E G have the following properties : 

(i) (|tf|, \K: L\) = 1, 
(ii) CK/L(R) = 1, and 

(iii) RK < G. 
Assume H g G with H ü RL, 

The following is essentially Lemma 4.4 of Dade's paper [2]. A version 
of it was also found by T. R. Berger. 

THEOREM 6.4. Assume Hypothesis 6.3. Let £ e lrr(H\®) and suppose 
£G e Irr(G). Let X = K fl H and assume £x is a multiple of a e Irr(lr). 
Then aK = 6 and \K: X\ S \X: L\. 

PROOF. We may assume that KH = G and thus X < G. Let T = IG(a), 
the inertia group, so that T 2 H. Write Y = T fi K = IK(a) and note 
that Y < G, Y fi H = X and YH = T. 

Since Y = lK(a)9 induction defines a bijection (for instance, by Theorem 
6.11 of [4]) from Irr(y|a) onto Irr (K\a) E ln(K\y>) = {ö}.It follows that 
Irr(F|ct) is also a singleton set, say Irr(y|a) = {ß}. Then ßK = 0 and 
a r = #/3 for some integer a. We therefore have the Basic Configuration 
reproduced, with (T, Y, X, ß, a, a) in place of (G, K, L, 0, <p, e). 

Let M = RY. Then M = T fl UK < Tsince RK <\ G and the hypo
theses of Lemma 1.3 are satisfied, and / f i s a representative of the uni
que conjugacy class of complements for y in T relative to X. 

Since £ e lrr(H\a) and £ r is irreducible, we conclude by Theorem 1.6, 
part (c), that Y = X. Thus ß = a and a:* = 0 as claimed. Also, 

^ (1 ) = 0(1) = |tf: X| a(l) è |tf: A>(1) 

so that \K: X\ ^ e. Since \K: L\ = e2, it follows that \K: X\ ^ e ^ |JT: L|. 

Next, we present our final application of Theorem 1.6. 
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THEOREM 6.5. Assume Hypothesis 6.3. Let % e Irr(G|̂ >) and suppose 
XH e lrr(H). Then H 2 K. 

PROOF. Again we may assume that HK = G and we write X = H f| 
K < G. Since C^CR) = 1 and (|7?|, |Ä/Z|) = 1, it follows that 0X has a 
unique ^-invariant irreducible constituent a. (See Corollary 2.4 of [5] 
or Theorem 13.27 and Corollary 13.9 of [4].) Since RX <\ H9 the uni
queness of a guarantees that a is invariant in H. 

Now i e Irr(G|0) and so a is a constituent of %X- Because %H is irreduci
ble, we see that %x ^

s a multiple of a and so a is invariant in G. Reasoning 
as in the proof of Theorem 6.4 (except that here we know that Y = K 
and T = G), we see that the Basic Configuration is reproduced with X 
replacing L and a replacing <p. Also, H represents the unique conjugacy 
class of complements for Kin G relative to X. 

Since XH *S irreducible, we have \K/X\ = 1 by part (d) of Theorem 1.6 
and the result follows. 
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