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AN INVERSE PROBLEM FOR A 
PARABOLIC PARTIAL DIFFERENTIAL EQUATION 

WILLIAM RUNDELL 

Introduction. In this paper we shall study the problem of finding the 
coefficient a(x) as well as the temperature u(x, t) in the initial value prob
lem 

(0.1) ut(x, t) - uxx(x, t) + a(x)u(x, t) = 0, 0 < x < 1, 0 < t < T, 

(0.2) w(0, t) = w(l, 0 = 0, 0 ^ t ^ T, 

(0.3) u(x, 0) = /(x), 0 ^x ^ 1, 

(0.4) ux(0, t) = g(f), O ^ ^ r . 

If the coefficient a(x) were known, then (0.1)-(0.3) would constitute 
a well-posed problem for u(x. t), but the indeterminate nature of the dif
ferential equation demands that we impose some additional boundary 
conditions and we have chosen to prescribe the flux, condition (0.4), at 
one end of the region. 

Our methods will lead us to the classical inverse Sturm-Liouville prob
lem, namely that of determining the potential a(x) in the operator 

(0.5) Ly = - / ' ( * ) + a(x)y(x), 0 ^ x ^ 1 

where y satisfies the boundary condition 

(0.6) j(0) = XI) = 0. 

Typically in this problem one is given the spectrum {X»}^ of L (which 
in itself is insufficient to determine a{x)) plus some additional "Tauberian 
condition". This problem has received considerable attention and the 
Tauberian condition has taken a variety of forms. For example in [1], 
[5] a second complete spectrum {fin}™=\, arising from alternative self-
adjoint boundary conditions, linearly independent to (0.6), was given. 
In [4], [5] it was assumed a priori that a(x) is symmetric, that is a(x) = 
a{\ — x). In [3], the spectral function p(X) was specified, that is, that mon
otonie function with jump discontinuities at the points X = X\9 X2, • •, 
Xm . . . with the value of the jumps equal to [J J ^l(x)dx]~1 where <f>n(x) 
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is some suitably chosen eigenfunction for L. All of the above conditions 
are sufficient to reconstruct the operator L. 

Our equations (0.1) and (0.2) will yield the Sturm-Liouville operator with 
its boundary conditions. Condition (0.4) will provide the spectrum {X„}%Li 
and (0.3) will be utilized to give a Tauberian condition rather different 
from any of the above. 

In this paper we shall give conditions on the functions/(x) and g(t) 
that will guarantee the existence of a unique solution to the undetermined 
coefficient problem. Our approach will follow that of Gelfand and Levitan, 
in obtaining a representation for the eigenfunctions of the Sturm-Liou
ville operator (0.5) with the boundary conditions (0.6). We will then use 
the representation to obtain a nonlinear integeral equation for the coeffi
cient a(x). 

We note that uniqueness for the coefficient a(x) can be obtained from 
the Gelfand-Levitan approach quite directly, cf. [6]. Our contribution 
is to show the existence and the continuous dependence of the function 
a(x) on the data. 

Our work also has a similarity with that of Suzuki and Murayama 
[7] and Suzuki [8]. In these papers the authors use the methods of Gelfand 
and Levitan to obtain uniqueness and nonuniqueness results for the 
problem of determining both the coefficient a(x) and the initial function 
f(x) (as well as u(x, t)) from a specification of Cauchy data on each of the 
boundaries x = Oandx = 1. 

Preliminaries. By Ck[a, b] we mean the class of functions whose deriva
tives of order up to and including k are continuous on [a, b]. The supre-
mum norm we shall denote by || || „ , that is supxe[0,1D \f(x)\ = ||/| | TO. 

The pair of functions (a(x), u(x, t)) is said to be a solution of the initial 
value problem (0.1)-(0.4) provided that 

(i) a(x) is continuous on [0, 1], 
(ii) u(x, t) is continuous for 0 ^ x g 1, 0 ^ t g T, 
(iii) \imx^0+ux(x, t) exists for 0 g t ^ T, 
(iv) ut, uxx are continuous for 0 < x < 1, 0 < t < T, and 
(v) (0.1)-(0.4) are satisfied. 

Without loss of generality we may assume that a(x) ^ 0 on [0, 1] since 
this can always be achieved by the change of dependent variable v(x, t) = 
u(x, t)e~at in (0.1)-(0.4) provided a is sufficiently large. 

Throughout this paper we shall make the following assumptions on 
the data. 

(Al) The function/(x) e C2[0, 1] is positive for 0 < x < 1 and satisfies 
/(0) = / ( l ) = 0. Also / ' (0) = c0 ± 0, / ' ( l ) = cx ± 0 and / ' W W is 
bounded for 0 g x ^ 1. 

(A2) The function g(t) e e1]*), T] and is analytic on the half plane 
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Re{/} > 0, having Dirichlet series g(t) = £ ^ i #»exp(->U) where {Xn}™=1 

is a positive increasing sequence of real numbers satisfying the asymptotic 
formula 

(1.1) jTHn=nic + o(l/n). 

The compatibility condition g(0) = f'(0) = c0 is also required. 

REMARK l. The assumption Xn > 0 can be made without any loss of 
generality since this can be achieved by the change of dependent variable 
mentioned previously. 

REMARK 2. Since g'(0) exists, the series £%Li anK is convergent. 

REMARK 3. Many of the above conditions can probably be relaxed, in 
particular those in (Al). However for continuous, positive a(x) the 
solution u(x, t) to (0.l)-(0.3) must for each x be analytic in t and with 
an asymptotic behavior precisely that obtained from the conditions im
posed on g(t) by /lw and an. Thus assumption (A2) is essentially sharp. 

For later reference we define the function h(x) by 

°o a 

(I-2) h(x) = 2 ~Tn s i n V%* x. 
n=l VX» 

It follows from Remark 2 that h e C2[0, oo) and in fact 

(1.3) ^ M = c0 + o(x) at x = 0. 

We can relate the function g{t) and h(x) by the following approach. If 
v(.x, t) is defined by 

OO ft 

(1.4) v(x, t) = 2 -73= <r^ siny%, x 
n=l V Aw 

then it is immediate that 

(1.5) vt - vxx = 0, x > 0, t > 0, 

(1.6) v(0, 0 = 0, v,(0, 0 = g(t\ 

(1.7) v(x. t) bounded for x ^ 0, t ^ 0, and 

(1.8) v(x9 0) = h(x). 

Equations (1.5)—(1.7) represent a Cauchy problem for the heat equa
tion and given the assumptions on g{t) it possesses a unique solution. 
The value of this solution at t = 0 is the function h(x). By elementary 
transform techniques we can thus relate h(x) and g(t) by 
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(1-9) J^\>-XyÌthiX)dX = g{t)-\/4xt 

Existence and uniqueness of a solution. We are now in a position to state 
and prove our main theorem. 

THEOREM: Let (Al) and (A2) hold. Then the undetermined coefficient 
problem (0. l)-(0.4) possesses a unique solution. 

PROOF. Corresponding to the sequence {Xn}%Li generated by the func
tion g(t) we define a set sé as follows: sé = {a(x) e C[0, 1]: — <fl'n{x) + 
a(x)$n(x) =

 / ( ^ » W J 0W(O) = <t>JS) = 0 f° r some set of eigenfunctions 
{^W}^=i}' Thus sé consists of those continuous potentials appearing in 
Sturm-Liouville operators of the form (0.5) with Dirichlet boundary 
conditions that have the set {Xn}^=i as spectrum. 

We shall assume that the eigenfunctions possess a common slope at 
x = 0 choosing 

(2.1) &(0) = 1. 

For any a(x) e sé and a corresponding eigenfunction basis {(j>n(x)}^=1 

the function 

oo 

(2.2) u(x, t) = Tiane-^<t>n{x) 

clearly satisfies the partial differential equation (0.1) together with the 
boundary conditions (0.2), and in view of (2.1), the condition (0.4) also 
holds. We have to prove that for any/(x) satisfying conditions (Al) there 
exists a unique a(x) e sé and an associated basis {<f>n(

x)}™=i s u c n t n a t / 
can be written as 

(2.3) f{x) = t an<f>n(x). 
n=l 

Our approach will be to obtain an expression that relates the function a(x) 
to its associated eigenfunctions, and then use this to obtain a nonlinear 
Volterra integral equation for a(x). 

Following Gelfand and Levitan we consider the relation 

(2.4) <j>n(x) = - ^ = | s i n v X x + j * * ( * , 0 s i n VX t dtj 

and determine conditions on K{x, t) for 0 g t ^ x ^ 1 in order that 
(j)n{x) be a set of eigenfunctions corresponding to an a e sé. 

If we differentiate (2.4) twice with respect to x, we obtain 
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<j>l(x) = —r^l--Xnsm^/Tnx + s i ny%*^^C*> x) 

(2.5) + Vìn cos VJn x K(x, x) + sin VJn * Kx{x, x) 

+ I Kxx(x, ^sinVJnt dty 

Integrating by parts twice gives 

Xn I K(x, t) sin Vkn t dt 

(2 g\ = ~ Vhcos</XixK(x9 x) + VJn~K{x, 0) 

+ ûnVTnx Kt(x, x) 

- J ^ ( * > 0 sin V>lw * dt. 

Thus, 

Ä - ö^M + Xn(j)n 

(2.7) = - * ["^(x, x) + #,(*, *) + J ^ ( x , JC) - * < x ) l s m y ^ x 

+ *(*, 0)+ - j - foK„ -aK- Ktt)sinVTn tdt. 

From the uniqueness of the representation of a function as a Fourier-
Stieltjes integral it follows that — tj>"n + a<f>n = Xn<j)n on (0, 1) if and only 
if K(x, t) satisfies the hyperbolic equation 

(2.8) Ktt = Kxx- aK, 0 ^ t ^ x ^ 1, 

with the conditions K(x9 0) = 0, dK(x, x)/dx = a(x)/2, which can be 
put in the form 

(2.9) K(x, 0) = 0, and 

(2.10) K(x, x) =-^ f*a(s)ds. 

Equations (2.8)-(2.10) represent a Goursat problem for the above hyper
bolic equation. If a(x) is continuously differentiable, then (2.8)-(2.10) 
possesses a unique solution K(x, /)that is twice continuously differentiable 
in x and t. We are however, only assuming a(x) continuous and we must 
therefore take K(x9 t) to be a weak solution of (2.8)-(2.10) that possesses 
only one continuous derivative. This will be sufficient, however, for our 
needs. 

Returning to (2.4) it is clear that ^w(0) = 0 and ç^(0) = 1. To see the 
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boundary condition at x = 1 we need a lemma, the proof of which can 
be found in [3, §11]. 

LEMMA. The functions <j)n(x) defined by {2 A) form a complete orthogonal 
system on the interval (0, 1). 

If we now consider the equations 

- # ( * ) + a(x)#n(x) = An<f>n(x), 

-fifa) + a(x)<j)n(x) = Xm<f>m(x\ 

and multiply the first by <f>m(x), the second by <f>n(x\ and subtract, we 
obtain the identity 

finX*)<l>nfa) - $n(X)$n(x) = Qm - Xn)(f)n{x)([>m{x). 

Integrating this between x = 0 and x = 1 and using the boundary condi
tions at x = 0 we obtain 

(2.11) m)4>JX) - MV4MX) = o. 
Thus (j)n(x) satisfies the boundary condition 

(2.12) <r#(l) + &(1) = 0, « = 1, 2, 3 

for some constant a. Now if (j)n(x) satisfies 

-fin + a<j)n = ln$n, 
(2-13) «o ) = o, a#(i) + &(i) = o, 

with a: ^ 0, then the eigenvalues {Àn}n^=i satisfy the asymptotic estimate 

(2.14) VTn = (n + 1/2)* + o(l/n) 

(see [3], [9]), which is in violation of (A2). 

Thus a = 0 and <f>n satisfies the condition 

(2.15) &(1) = 0, / i « 1,2, . . . . 

By applying McLaurin's Theorem to (j)n{x) and using (2.1) we obtain 

(2.16) M ^ - = 1 + ±xtfn(n„) for 0 ^ , < 1 . 

At the point x = 1 we have the similar asymptotic behavior 

(2.17) i ^ | = Tn + -1(1 - *)#(?„), for 0 £ 7„ < 1, 

and some constant yn, uniformly bounded in /t, cf. [9, p. 10]. 
It will be convenient at this point to obtain some properties of the 

function K(x, t) that will be useful later. 
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The solution to (2.8)-(2.10) can be written in the form 

i r(x+t)/2 c C 
(2.18) K(x9 t) = i - J o a(y)dy + J J ^ a(y)K(y9 s)dyds 

where Dxt is the region bounded by the characteristic lines of slope ± 1 
through the origin and the point (x, t). We may consider (2.18) as an 
integral equation for K(x, t) with free term(l/2)j#H~')/2 a(y)dy and kernel 
a(y)9 both of which are nonnegative. Thus the solution to (2.18) will be 
nonnegative, 

(2.19) K(x9 0 ^ 0 , 0 S t ^ x. 

If we now define co(x9 t) = Kt(x9 t)9 then it follows that 

(2.20) o)it = œxx - a(x)û). 

The initial condition K(x9 0) = 0 and the hyperbolic equation satisfied 
by AT gives o)t(x9 0) = 0 while the condition K(x, 0) = 0 and (2.19) implies 
that <o(x, 0) ^ 0. If we now extend a(x) and hence K(x, t) into the region 
1 <; x ^ 2, t ^ 0 as an even function, then a)t(x, 0) = 0 and co(x, 0) ^ 0 
for 0 ^ x ^ 2. Thus œ(x9 t) is obtained as the solution to the integral 
equation 

a)(x, t) = ^\o)(x - t9 0) + co(x + /, 0)] 

(2.21) 
+ T J J rtyMy* s)dyds' 

where AXtt is the triangle bounded by the line t = 0 and the characteristic 
lines through the point (x, /). Again the free term and kernel of this 
equation are nonnegative for / ^ x and it follows by Picard iteration that 
co(x, t) ^ 0 for 0 S t ^ x S 1. This means that K(x9 t) is increasing in 
/ for each fixed x and thus we have the inequality 

(2.22) 0 ^ K(x9 t) S 4 - [Xa{s)ds, 0 ^ t ^ x S 1. 
^ Jo 

If we now take a{x)9 b(x)estf and denote by K(x9 t); a(x)) and 
K(x, t; b(x)) the solutions of (2.8)-(2.10) with undetermined coefficients 
and boundary conditions determined by a(x) and b(x) respectively, then 
we obtain 

K(x9 t; a(x)) - K(x9 t; b(x)) = i - $\a(y) - b(y))dy 

(2.23) + \ ^ D [a(y) - b(y)]K(y9 s9 a(y))dyds 

+ T JX> , *W[*(j;'*; öW) " K^ s> b(yWdyds> 
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where Dxt is the parallelogram-shaped region as in equation (2.18). Let 
us now restrict a(x) and b(x) so that 0 ^ a(x) ^ M and 0 ^ b(x) S M 
for some fixed M. Also note that the region Dxt is a subset of the trian
gular region 0 ^ t ^ x. We thus obtain from (2.23) the estimate 

\K(x, t\ a(x) - K(x, t\ b(x))\ 

(2A) - iloHy) " b(y)idy+ \M^a{y) " Ky) 'dy 

+ T M f o Jo '*(J' J; a)" ^ *; ò) ' **' 
which in turn yields 

sup \K(x, t; a(x)) - K(x9 t;b(x))\ ^ -1(M + 2) f* \a(y) - b{y)\dy 
(2.25) 0 ^ - * 4 J o 

+ - I M f* sup \K(y, S; a{y)) - K(y,s; b(y))\dy. 
* J 0 O^s^x 

An application of Gronwall's inequality to the above yields for some 
constant C = C(M), 

(2.26) sup \K(x, t; a(x)) - K(x, t\ b(x))\ ^ C sup \a(y) - b{y)\. 

Let us now return to the representation (2.4). If we multiply both sides 
by an and sum from n = 1 to infinity using the properties of {tfw}£Li to 
justify the interchange of summation and integration, we obtain 

(2.27) f(x) = h(x) + VK(X, t; a(x))h(t)dt. 

As it stands (2.27) is a Volterra integral equation of the first kind for the 
unknown a(x). We shall convert this to an equation of the second kind 
by differentiating (2.27) twice, using equations (2.8)-(2.10) and then 
integrating by parts twice to obtain 

(2.28) f"(x) - h\x) =f(x)a{x) + V K(x, U a{x))h"{t)dt. 
Jo 

Since f(x) > 0 for 0 < x < 1, the only possible degeneracies are at 
x = 0 and x = 1. 

From condition 041), f"(x)jf{x) remains bounded at both endpoints. 
From (2.4) and the definition of h(x) we have 

(2.29) h"(x) + K(x, t)h"(t)dt = - £ VX*nfa(x)-
JO „= i 

since 2^=i VXM < oo, it follows from (2.16) and (2.17) that 
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(2.30) h"(x) + \XK(x9 t)h"(t)dt = ß0x + o(x\ 

and 

(2.31) h"{x) + [XK(x, t)h"(t)dt = /3i(l - *) + o(l - JC). 

Equations (2.30) and (2.31) along with the fact that / ' (0) and f'{\) are 
nonzero, show that the equation (2.28) is nonsingular in the range 0 ^ 
JC ^ 1. 

The contraction mapping theorem and the estimate (2.26) gives the 
existence of a unique solution a(x) to (2.28) in the space C[0, d] for ô 
sufficiently small. Indeed the Lipschitz estimate (2.26) is sufficient to 
guarantee uniqueness in the range 0 ^ x ^ 1. To get existence for all 
x in 0 ^ x ^ 1 we have to obtain a global bound on a(x) for this range, 
but this follows directly by using the estimate (2.22) in the integral equa
tion (2.28) to obtain 

(2.32) f(x)a(x) g \f\x) - h\x)\ + ^ { £ |A"(0 | <fr} J* a{s)ds. 

The required bound on a(x) is now a consequence of GronwalPs inequality 
applied to the inequality (2.32). 

This completes the proof of the theorem. 

A natural question is whether the coefficient a(x) depends continuously 
on the data/(x) and g(t). Our Volterra equation (2.28) would yield the 
continuous dependence of a(x) on the functions f(x), f"(x) and h"(x) 
in the supremum norm. From §1 it is easy to see that h"(x) represents the 
value of v(x, t)att = 0 where v(x, t) satisfies v, = vxx, 0 < x < oo, t > 0; 
v(0, 0 = 0, vx(0, 0 = g'(t), and where v(x, 01 ^ EZ=i VX^^n = M < oo. 
Under this a priori bound on v the non-characteristic Cauchy problem 
for the heat equation is well-posed in the sense of Hadamard [2], and one 
can obtain Holder continuity of v(x, t) in terms of the data g'{t). Thus 
we have that 

sup|A"(*)| ^C{sup |g ' (0 l £ 

for some s = s(M) > 0. However it seems unlikely that the inverse 
problem (0.1)-(0.4) is sufficiently ill-posed to require control on two 
derivatives of the initial data, and one on the boundary data in order to 
obtain control on the supremum norm of a(x). 
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