ON THE PICARD GROUP OF A COMPACT COMPLEX NILMANIFOLD

ROBERT J. FISHER, JR.

1. Introduction. This paper deals with compact complex nilmanifolds. By a nilmanifold we mean a homogeneous space of a nilpotent Lie group. The nilmanifold we consider arises as the compact quotient of a simply connected nilpotent Lie group G by a lattice Γ of G. We write G / Γ to denote such a space. In general, G / Γ is a non-Kähler manifold, and in fact, it is Kähler if and only if it is a complex torus (see [5]). However, G / Γ is a generalization of the torus, and to this end, there is a canonically associated torus T given by

$$
\begin{equation*}
T=G /[G, G] / \pi(\Gamma) \tag{1.1}
\end{equation*}
$$

where $G /[G, G]$ is a vector group and $\pi(\Gamma)$ is a lattice of $G /[G, G], \pi$: $G \rightarrow G /[G, G]$ being the projection map. T plays an important role in the analysis of G / Γ. We point out that there is a holomorphic fibration of G / Γ over T where the fibre is the compact complex nilmanifold $N_{1}=$ $[G, G] / \Gamma_{1}, \Gamma_{1}=\Gamma \cap[G, G]$. We let $\pi: G / \Gamma \rightarrow T$ also denote the bundle map.

Our main purpose is to give a description of the Picard group of G / Γ; that is, $\operatorname{Pic}(G / \Gamma)$, the group of holomorphic isomorphism classes of holomorphic line bundles on G / Γ. To this end, we obtain a partial generalization of the Appell-Humbert Theorem from the case of the complex torus to the case of G / Γ. Sakane [4] has shown that the first Chern class of any holomorphic line bundle \mathscr{L} on $G / \Gamma, c_{1}(\mathscr{L})$, is represented by a unique hermitian form H defined on $G /[G, G]$. As a consequence of the Appell-Humbert Theorem, we know that H corresponds to the first Chern class of a line bundle on the complex torus T if and only if the imaginary part of H, A, is integral on the lattice $\pi(\Gamma)$. Consequently, we can factor \mathscr{L} as

$$
\begin{equation*}
\mathscr{L}=\mathscr{L}_{\lambda} \otimes \pi^{*} \mathscr{L}_{1} \tag{1.2}
\end{equation*}
$$

where \mathscr{L}_{λ} is the line bundle associated to some character λ of the lattice Γ and $\pi^{*} \mathscr{L}_{1}$ is the pullback of a line bundle \mathscr{L}_{1} on T with $c_{1}\left(\mathscr{L}_{1}\right)$ determined by H. See Theorem 3 for details.

Let $\operatorname{Pic}^{\circ}(G / \Gamma)=\{\mathscr{L} \in \operatorname{Pic}(G / \Gamma) \mid \delta(\mathscr{L})=0\}$ where $\delta: H^{1}\left(G / \Gamma, \mathcal{O}^{*}\right)$ $\rightarrow H^{2}(G / \Gamma, Z)$ is the Bockstein map. In $\S 3$ we prove the following theorem.

Theorem 2. $\operatorname{Pic}^{\circ}(G / \Gamma)$ is a compact complex manifold.
In fact, we show that $\operatorname{Pic}^{\circ}(G / \Gamma)$ is a finite sheeted disconnected covering of the dual torus of $T, \operatorname{Pic}^{\circ}(T)$. So $\operatorname{Pic}^{\circ}(G / \Gamma)$ is itself a compact complex manifold whose connected components are each biholomorphic to $\operatorname{Pic}^{\circ}(T)$. We note also that the number of components is dependent upon the order of $\Gamma_{1} /[\Gamma, \Gamma]$, where $\Gamma_{1}=\Gamma \cap[G, G]$ and in fact, if the order is one, then $\operatorname{Pic}^{\circ}(G / \Gamma)$ and $\operatorname{Pic}^{\circ}(T)$ are holomorphically isomorphic. However, this order need not be one, and we present an example at the end of the paper showing this.
2. A review of the classical Appell-Humbert theorem. Let $T=V / \Lambda$ be a complex torus, where V is an n-dimensional complex vector space and Λ a lattice of V. Let H be a hermitian form on V and A its imaginary part. We consider all hermitian forms H on V such that A is integral valued on the lattice Λ. Then to such an H we associate a factor

$$
\begin{equation*}
e_{\lambda}(z)=\alpha(\lambda) \varepsilon\left[\frac{1}{2 i} H(z, \lambda)+\frac{1}{4 i} H(\lambda, \lambda)\right] \tag{2.1}
\end{equation*}
$$

where $\lambda \in \Lambda, z \in V, \varepsilon[\cdot]=\exp 2 \pi \mathrm{i}[\cdot]$ and $\alpha: \Lambda \rightarrow \mathbf{C}_{1}^{*}=\{z \in \mathbf{C}| | z \mid=1\}$ satisfies $\alpha\left(\lambda_{1}+\lambda_{2}\right)=\alpha\left(\lambda_{1}\right) \alpha\left(\lambda_{2}\right) \varepsilon\left[A\left(\lambda_{1}, \lambda_{2}\right) / 2\right]$; the function α being called a semi-character of Λ for A. In fact, the correspondence $\lambda \rightarrow e_{\lambda}$ is a group 1-cocycle on Λ with coefficients in H_{V}^{*} (see Appendix I of [2]). The factor $e_{\lambda}(z)$ defines a holomorphic action of the lattice Λ on $V \times \mathbf{C}$ via the rule

$$
\begin{equation*}
(z, a) \cdot \lambda=\left(z+\lambda, e_{\lambda}(z) a\right) \tag{2.2}
\end{equation*}
$$

The action is free and the quotient of $V \times \mathbf{C}$ by Λ has a natural structure of a holomorphic line bundle over T. We shall denote this bundle by $\mathscr{L}(H, \alpha)$. Note that the map $(H, \alpha) \rightarrow\left\{e_{\lambda}\right\}$ satisfies the condition that if $\left\{e_{\lambda}^{(i)}\right\}$ corresponds to $\left(H_{i}, \alpha_{i}\right)$, then $\left\{e_{\lambda}^{(1)} e_{\lambda}^{(2)}\right\}$ corresponds to $\left(H_{1}+H_{2}\right.$, $\alpha_{1} \alpha_{2}$). Thus, we have an isomorphism of line bundles $\mathscr{L}\left(H_{1}, \alpha_{1}\right) \otimes$ $\mathscr{L}\left(H_{2}, \alpha_{2}\right) \cong \mathscr{L}\left(H_{1}+H_{2}, \alpha_{1} \alpha_{2}\right)$.

The main theorem in the case of complex tori is the following theorem.
Theorem 1. (Appell-Humbert). Any line bundle \mathscr{L} on the complex torus T is isomorphic to an $\mathscr{L}(H, \alpha)$ for a uniquely determined (H, α) as indicated by the previous paragraph. We have isomorphic exact sequences

where $\operatorname{Pic}(T)$ is the group of line bundles on $T, \operatorname{Pic}^{\circ}(T)$ the subgroup of those which are topologically trivial, \mathscr{H} is the group of hermitian forms $H: V \times$ $V \rightarrow \mathbf{C}$ with $A(\Lambda \times \Lambda) \subset \mathbf{Z}$, and the last vertical map is given by $H \rightarrow A$ (with the usual identification of $H^{2}(T, Z)$ with alternating 2 -forms on Λ).

Remark. $\mu(H, \alpha)=\mathscr{L}(H, \alpha)$. Let $\hat{\Lambda}:=\operatorname{Hom}\left(\Lambda, \mathbf{C}_{1}^{*}\right)$. Then for each $\alpha \in \hat{\Lambda}, \alpha \rightarrow \mathscr{L}(0, \alpha)$ is the first map in the top sequence. Finally, $c_{1}(\mathscr{L})$ is the first Chern class of the line bundle \mathscr{L}. See [2] for details.
3. $\mathbf{P i c}^{\circ}(\mathbf{G} / \Gamma)$. In this section we give a geometric description of $\operatorname{Pic}^{\circ}(G / \Gamma)$ (see Theorem 2). To this end let $\alpha \in \hat{\Gamma}=\operatorname{Hom}\left(\Gamma, \mathbf{C}_{1}^{*}\right)$. Then α is a 1 -dimensional holomorphic representation of Γ; and similar to (2.1), one obtains the group 1-cocycle given by $e_{r}(g)=\alpha(\gamma)$ for each $\gamma \in \Gamma$. Thus, following (2.2) α defines a holomorphic line bundle \mathscr{L}_{α} over G / Γ. We now have the following proposition.
Proposition 3.1. The map $\beta: \hat{\Gamma} \rightarrow \operatorname{Pic}^{\circ}(G / \Gamma)$ defined by $\beta(\alpha)=\mathscr{L}_{\alpha}$ is an isomorphism.
Proof. Firstly, we can choose a finite cover $\mathscr{U}=\left\{U_{j}\right\}$ of G / Γ such that (1) \bar{U}_{j} is compact, and (2) U_{j} is evenly covered by p; i.e., if $U_{j 0} \subset$ $p^{-1}\left(U_{j}\right)$ is a connected component, then p maps $U_{j 0}$ biholomorphically onto U_{j} and $p^{-1}\left(U_{j}\right)=\bigcup_{r \in \Gamma} U_{j r}$ is a disjoint union where $U_{j r}:=R_{r}\left(U_{j 0}\right)$ $=\left\{g_{\gamma} \mid g \in U_{j 0}\right\}$. Let

$$
\begin{equation*}
\rho_{j}: U_{j} \rightarrow U_{j 0} \tag{3.1}
\end{equation*}
$$

be the inverse of $p: U_{j 0} \rightarrow U_{j}$. It follows that for each pair of indices (j, k) such that $U_{j} \cap U_{k} \neq \varnothing$, there exists a unique $\gamma_{j k} \in \Gamma$ such that

$$
\begin{equation*}
\rho_{k}(x)=\rho_{j}(x) \gamma_{j k} \tag{3.2}
\end{equation*}
$$

for all $x \in U_{j} \cap U_{k}$. Note also that the $\gamma_{j k}$'s satisfy the cocycle condition $\gamma_{j,}=\gamma_{j k} \gamma_{k}$. Then relative to \mathscr{U}, the transition functions of \mathscr{L}_{α} are given by

$$
\begin{equation*}
g_{j k}(x)=\alpha\left(\gamma_{j k}\right) \tag{3.3}
\end{equation*}
$$

for $x \in U_{j} \cap U_{k}$. The collection $\check{g}=\left\{g_{j k}\right\} \in \breve{Z}^{\prime}\left(\mathscr{U}, \mathcal{O}^{*}\right)$; i.e., \check{g} is a Čech 1 -cocycle. Computing the image of \check{g} under the Bockstein map, we get $(\delta \breve{g})_{j k}=\alpha\left(\gamma_{j k} \gamma_{k c} \gamma_{j /}^{-1}\right)=1$. So $\delta\left(\mathscr{L}_{\alpha}\right) \in H^{2}(G / \Gamma, \mathbf{Z})$ is represented by the Cech 2-cocycle $(\delta \breve{g})_{j k \prime}=1 \in Z^{2}(\mathscr{U}, \mathbf{Z})$ which is in fact a Cech 2-coboundary. Thus, it follows that $\delta\left(\mathscr{L}_{\alpha}\right)=0$; i.e., the map β is well defined. Moreover, it is clear that β is a homomorphism.

Next, we show that β is injective. To this end, let $\alpha \in \hat{\Gamma}$ with $\beta(\alpha) \cong 1$, the trivial holomorphic line bundle on G / Γ. In group cocycle language, $\beta(\alpha) \cong 1$ means that $e=\left\{e_{r}(g)=\alpha(\gamma)\right\}$ is cohomologous to the 1-cocycle $e^{\prime}=\left\{e_{r}^{\prime}(g)=1\right\}$. Thus, there exists a nonzero holomorphic function f
on G such that $\alpha(\gamma)=f(g \gamma) / f(g)(\forall g \in G, \forall \gamma \in \Gamma)$. We claim that f is a constant function on G. Relative to the cover \mathscr{U} from above, the argument goes as follows. \bar{U}_{j} compact implies that $\bar{U}_{j 0}$ is compact. Moreover, $\bar{U}_{j r}=R_{r}\left(\bar{U}_{j 0}\right)$. Clearly, f is bounded on each $\bar{U}_{j 0}$. Since there is only a finite number of the $U_{j 0}$'s, it follows that f is a bounded entire function on G and hence is constant. Thus, $\alpha(\gamma)=1$ for each $\gamma \in \Gamma$ implying that β is injective.

Finally, to show that β is surjective, it suffices to show that any $\mathscr{L} \in$ $\operatorname{Pic}^{\circ}(G / \Gamma)$ can be realized by constant multipliers. In other words, if $\delta(\mathscr{L})=0$, then we will show that there is an element $C \in H^{1}\left(G / \Gamma, \mathbf{C}^{*}\right)$ such that $i^{*} C=\mathscr{L}$, where $i^{*}: H^{1}\left(G / \Gamma, \mathbf{C}^{*}\right) \rightarrow H^{1}\left(G / \Gamma, \mathcal{O}^{*}\right)$ is the induced map obtained from the inclusion of the constant sheaves $\mathbf{C}^{*} \subset \mathcal{O}^{*}$. Assuming the truth of the latter, we obtain from C a group 1-cocycle $e=$ $\left\{e_{r}\right\}_{r \in \Gamma}$ of constant functions. In turn, we define $\alpha(\gamma)=e_{r}(e)$ where e is the identity of G. The cocycle condition implies that $\alpha: \Gamma \rightarrow \mathbf{C}^{*}$ is a homomorphism. Using an argument similar to one in Weil [6, p. 93], we can then adjust C so that $\alpha \in \hat{\Gamma}$.

Lastly, we prove the existence of $C \in H^{1}\left(G / \Gamma, \mathbf{C}^{*}\right)$ such that $i^{*} C=\mathscr{L}$. Classically, it is known that for any complex manifold M one can compute Chern classes of line bundles by using the Bockstein operator δ. In fact, it is a theorem (cf. [7, pp. 106-109]) that the following diagram commutes:

Moreover, $c_{1}\left(H^{1}\left(M, \mathcal{O}^{*}\right)\right)=j \delta\left(H_{1}\left(M, \mathcal{O}^{*}\right)\right)$, the cohomology classes in $j H^{2}(M, \mathbf{Z}) \subset H^{2}(M, \mathbf{R})$ which admit a d-closed differential form of type $(1,1)$ as a representative. So let $\mathscr{L} \in \operatorname{Pic}^{\circ}(G / \Gamma)$. Then $c_{1}(\mathscr{L})=j \delta(\mathscr{L})=0$ in $H^{2}(G / \Gamma, \mathbf{R})$ and hence by Proposition 3.4 of Sakane [4] there is a connection $\eta=\left(\eta_{j}\right)$ of type $(1,0)$ relative to \mathscr{U} such that $d \eta_{j}=0$ on U_{j}. Since $d \eta=0$ on $U_{j}, \eta_{j}=d f_{j}$ where $f_{j}: U_{j} \rightarrow \mathbf{C}$ is a holomorphic function. Thus we have

$$
\begin{equation*}
\eta_{k}-\eta_{j}=\frac{i}{2 \pi} d \log g_{j k} \tag{3.5}
\end{equation*}
$$

on $U_{j} \cap U_{k} \neq \varnothing$ where $\left\{g_{j k}\right\}$ is a set of transition functions for \mathscr{L} relative to \mathscr{U}. Define

$$
\begin{equation*}
C_{j k}=g_{j k} \exp 2 \pi i\left(f_{k}-f_{j}\right) \text { on } U_{j} \cap U_{k} \tag{3.6}
\end{equation*}
$$

Then $C_{j k}$ is constant on $U_{j} \cap U_{k}$. More importantly, the C ech 1-cocycle $\breve{C}=\left\{C_{j k}\right\} \in Z^{1}\left(\mathscr{U}, \mathbf{C}^{*}\right)$ differs from the Cech 1-cocycle $\breve{g}=\left\{g_{j k}\right\} \in$ $Z^{1}\left(\mathscr{U}, \mathcal{O}^{*}\right)$ by the Cech coboundary $\check{\delta}(h)$, where $h=\left\{h_{j}=\exp 2 \pi i f_{j}\right\} \in$
$\check{C}^{\circ}(\mathscr{U}, \mathcal{O})$. Hence, \check{C} and \check{g} define the same element \mathscr{L} in $H^{1}\left(G / \Gamma, \mathcal{O}^{*}\right)$ and we have our assertion.

We now state and prove the main theorem of the section.

THEOREM 2. $\operatorname{Pic}^{\circ}(G / \Gamma)$ is a compact complex manifold.

As mentioned in the introduction, we show that $\operatorname{Pic}^{\circ}(G / \Gamma)$ is a finite sheeted disconnected covering of $\operatorname{Pic}^{\circ}(T)$, the latter already known to be a complex torus having the same dimension as T. Firstly, we have need of the following lemma.

Lemma 3.1. Let Λ denote the lattice Γ / Γ_{1}. There exists a surjective homomorphism $\hat{D}: \hat{\Gamma} \rightarrow \hat{\Lambda}$ having a finite kernel.

Proof. Firstly, note that $\Gamma /[\Gamma, \Gamma]$ is the direct sum of a free Abelian group of rank $2 r$ and a finite Abelian group. The group $\Gamma_{1} /[\Gamma, \Gamma]$ where $\Gamma_{1}=\Gamma \cap[G, G]$ is finite because $\Gamma / \Gamma_{1} \cong(\Gamma /[\Gamma, \Gamma]) /\left(\Gamma_{1} /[\Gamma, \Gamma]\right)$ is a free Abelian group of rank $2 r$ (cf. [4, p. 206]). Let k be the order of $\Gamma_{1} /[\Gamma, \Gamma]$. Note also that $\pi(\Gamma)=\Gamma[G, G] /[G, G] \cong \Gamma / \Gamma_{1}$. We now define a homomorphism $\hat{D}: \hat{\Gamma} \rightarrow \hat{\Lambda}$ by

$$
\begin{equation*}
\hat{D}(\alpha)(\bar{\gamma})=\alpha(\gamma)^{k} \tag{3.7}
\end{equation*}
$$

where $\alpha \in \hat{\Gamma}, \gamma \in \bar{\gamma} \in \Gamma / \Gamma_{1}$. That \hat{D} is well defined follows immediately from the fact that k is the order of $\Gamma_{1} /[\Gamma, \Gamma]$. It is also clear that \hat{D} is a homomorphism. To see that \hat{D} has finite kernel, note that Ker $\hat{D}=\{\alpha \in$ $\Gamma \mid$ image α is a subgroup of K, the k-th roots of unity group $\}$. Secondly, the lattice Γ is generated by a set of $2 n=\operatorname{dim}_{\mathrm{R}} G$ elements (cf. [3, p. 42]) and K is a finite cyclic subgroup of \mathbf{C}_{1}^{*}. The cardinality of Ker \hat{D} is the number of homomorphisms from Γ into K and this number is finite by the previous sentence.

To show that \hat{D} is surjective, we use that Γ / Γ_{1} is a free Abelian group of finite rank. Let $e_{1}, \ldots, e_{2 r}$ be a Z-basis for Γ / Γ_{1}. Then each $\gamma \in \Gamma / \Gamma_{1}$ can be expressed uniquely as $\bar{\gamma}=\sum_{i} \lambda_{i} e_{i}$. Let $\alpha \in \hat{\Lambda}$. Then

$$
\alpha(\bar{\gamma})=\prod_{i} \alpha\left(e_{i}\right)^{\lambda_{i}} ; \alpha\left(e_{i}\right) \in \mathbf{C}_{1}^{*} .
$$

So choose a k-th root of $\alpha\left(e_{i}\right)$, say $\alpha\left(e_{i}\right)^{1 / k}$, and fix it. Define

$$
(\alpha(\gamma))^{1 / k}=\prod_{i}\left(\alpha\left(e_{i}\right)^{1 / k}\right)^{\lambda_{i}}
$$

for each $\gamma \in \Gamma$. Then $\alpha^{1 / k} \in \hat{\Gamma}$ and $\hat{D}\left(\alpha^{1 / k}\right)=\alpha$.
Using the previous lemma and Proposition 3.1 we proceed with the proof of the theorem by constructing a holomorphic homomorphism $D: \operatorname{Pic}^{\circ}(G / \Gamma) \rightarrow \operatorname{Pic}^{\circ}(T)$ which forces the following diagram to commute:

that is, $D=\beta \circ D \circ \beta^{-1}$. Explicitly, if $\mathscr{L}=\mathscr{L}_{\alpha} \in \operatorname{Pic}^{\circ}(G / \Gamma)$, then $D(\mathscr{L})=$ $\mathscr{L}(0, \hat{D}(\alpha))$ and the result is now clear.

Corollary 3.1. Let $\mathscr{L}_{\alpha} \in \operatorname{Pic}^{\circ}(G / \Gamma)$. Then $\mathscr{L}_{\alpha}^{k}=\mathscr{L}_{\alpha} \otimes \cdots \otimes \mathscr{L}_{\alpha}$ $=\mathscr{L}_{\alpha^{k}} \cong \pi^{*} \mathscr{L}(0, \hat{D}(\alpha))$.
4. $\operatorname{Pic}(\mathbf{G} / \Gamma)$. In this section we establish the factorization given by (1.2). To this end, let \mathfrak{g} denote the Lie algebra of right invariant vector fields on $G ; I$ denotes the complex structure of \mathfrak{g}, and \mathfrak{g}^{+}(resp. \mathfrak{g}^{-}) denotes the vector space of $\sqrt{-1}$ (resp. $-\sqrt{-1}$) eigenvectors of I in the complexification g^{c}. Next, identify g with the complex Lie algebra (\mathfrak{g}, I). From Proposition 3.6 in [4] we can choose a basis $\left\{X_{1}, \ldots, X_{n}\right\}$ of g^{+}such that $\left\{X_{r+1}, \ldots, X_{n}\right\}$ is a basis for $\left[\mathrm{g}^{+}, \mathrm{g}^{+}\right]$and also such that the canonical coordinates of the second kind with respect to $\left\{X_{1}, \ldots, X_{n}\right\}$, denoted by z_{1}, \ldots, z_{n}, define a biholomorphic mapping $\Phi: G \rightarrow \mathbf{C}^{n}$ given by $\Phi(g)=$ $\left(z_{1}(g), \ldots, z_{n}(g)\right)$, where z_{1}, \ldots, z_{r} are homomorphisms from G to \mathbf{C}, $r=\operatorname{dim} \mathfrak{g}^{+} /\left[\mathfrak{g}^{+}, \mathfrak{g}^{+}\right]$. Letting $H=\left(h_{j k}\right) \in M(r, \mathbf{C})$ be a hermitian matrix, we define a hermitian bihomomorphism $H: G \times G \rightarrow \mathbf{C}$ by

$$
\begin{equation*}
H\left(g_{1}, g_{2}\right)=\sum_{j, k=1}^{r} h_{j k} z_{j}(g) \bar{z}_{j}\left(g_{2}\right) \quad \forall g_{1}, g_{2} \in G \tag{4.1}
\end{equation*}
$$

Similarly, letting $e_{j}(j=1, \ldots, r)$ denote the standard basis of C^{r} and $e_{j}^{*}(j=1, \ldots, r)$ the corresponding dual basis, we obtain a hermitian form \hat{H} on \mathbf{C}^{r}. Moreover, the map $\Phi_{r}(g)=\left(z_{1}(g), \ldots, z_{r}(g)\right)$ is a holomorphic homomorphism of G to C^{r} with $\operatorname{ker} \Phi_{r}=[G, G] . \Phi_{r}$ then descends to a biholomorphism of $G /[G, G]$ onto \mathbf{C}^{r}. It is clear then that $\Phi_{r}^{*} \hat{H}\left(g_{1}\right.$, $\left.g_{2}\right)=H\left(g_{1}, g_{2}\right)$ and that the correspondence $\hat{H} \rightarrow H$ is injective.

We are interested in those hermitian bihomomorphisms H on G whose imaginary part A, difined by $A\left(g_{1}, g_{2}\right)=\left(H\left(g_{1}, g_{2}\right)-\overline{H\left(g_{1}, g_{2}\right)}\right) / 2 i$, is integral valued on the lattice Γ. We note that A is integral valued on Γ if and only if the imaginary part of \hat{H}, \hat{A}, is integral valued on the lattice $\Phi_{r}(\Gamma)$ in \mathbf{C}^{r}. Note also that via Φ_{r} we can identify the complex torus $T=G /[G, G] / \pi(\Gamma)$ with $\mathbf{C}^{r} / \Phi_{r}(\Gamma)$ holomorphically and the lattice $\Lambda=$ Γ / Γ_{1} with $\Phi_{r}(\Gamma)$.

Let $\mathscr{L} \in \operatorname{Pic}(G / \Gamma)$. Then from Propositions 3.4 and 3.5 of [4] there exists a unique real right invariant 2 -form $\alpha \in \Lambda^{2} \mathrm{~g}^{*}$ of type (1, 1) representing $c_{1}(\mathscr{L})$, and it is given by

$$
\begin{equation*}
\alpha=\frac{1}{2 i} \sum_{j, k=1}^{r} h_{j k} d z_{j} \Lambda d \bar{z}_{k} \tag{4.2}
\end{equation*}
$$

where $\left(h_{j k}\right)$ is an $r \times r$ hermitian matrix and $r=\operatorname{dim} \mathfrak{g}^{+} /\left[\mathfrak{g}^{+}, \mathfrak{g}^{+}\right]$. Let \hat{H} be the corresponding hermitian form on \mathbf{C}^{r} as indicated above. Since \hat{A} comes from an \hat{H}, it follows from the Appell-Humbert Theorem that \hat{A} represents the Chern class of a holomorphic line bundle over T if and only if it is integral on the lattice $\Phi_{r}\left(\Gamma^{r}\right)$. Assuming that this is the case there exists $\mathscr{L}_{1} \in \operatorname{Pic}(T)$ such that $c_{1}\left(\mathscr{L}_{1}\right)$ is represented by \hat{A}. Since $\pi^{*} c_{1}\left(\mathscr{L}_{1}\right)=c_{1}\left(\pi^{*} \mathscr{L}_{1}\right)$, it follows by an argument similar to the one in Proposition 3.1 showing the surjectivity of β that $\mathscr{L} \otimes\left(\pi^{*} \mathscr{L}_{1}\right)^{-1} \in$ $\operatorname{Pic}^{\circ}(G / \Gamma)$. Hence, from Proposition 3.1 we obtain $\mathscr{L}=\mathscr{L}_{\lambda} \otimes \pi^{*} \mathscr{L}_{1}$ for some $\lambda \in \hat{\Gamma}$. Summarizing, we state the following theorem.

Theorem 3. Let $\mathscr{L} \in \operatorname{Pic}(G / \Gamma)$ and let α, as in (4.2), represent the Chern class of $\mathscr{L}, c_{1}(\mathscr{L})$. Then \mathscr{L} can be expressed as

$$
\begin{equation*}
\mathscr{L}=\mathscr{L}_{\lambda} \otimes \pi^{*} \mathscr{L}_{1} \tag{4.3}
\end{equation*}
$$

where $\lambda \in \hat{\Gamma}$ and $\mathscr{L}_{1} \in \operatorname{Pic}(T)$ if and only if the imaginary part A of the hermitian bihomomorphism H defined by (4.1) is integral on the lattice Γ.

Remark. Whether or not every $\mathscr{L} \in \operatorname{Pic}(G / \Gamma)$ can be written as in (4.3) is not known to the author.
5. An example. As mentioned in the introduction, $\Gamma_{1}=\Gamma \cap[G, G] \supset$ [$\left.\Gamma, \Gamma^{\prime}\right]$ gives rise to $\Gamma_{1} /[\Gamma, \Gamma]$, a finite Abelian group of order possibly greater than one. Hence, it is possible to show the existence of a character λ on Γ which does not descend directly to a character on $\Lambda=\Gamma / \Gamma_{1}$. So in general, $\hat{\Gamma} \neq \hat{\Lambda}$ and hence $\operatorname{Pic}^{\circ}(G / \Gamma) \neq \operatorname{Pic}^{\circ}(T)$. In the language of exact sequences,

$$
1 \rightarrow \Gamma_{1} \xrightarrow{i} \Gamma \xrightarrow{\phi_{r}} \Lambda \rightarrow 1
$$

is exact, while

$$
1 \rightarrow \hat{\Lambda} \xrightarrow{\Phi_{r}^{*}} \hat{\Gamma} \xrightarrow{i^{*}} \Gamma_{1}
$$

is left exact. We provide an example showing that Φ_{r}^{*} is not surjective.
Example. Let G be the simply connected complex nilpotent Lie group defined by

$$
G=\left[\left.\left[\begin{array}{lll}
1 & z_{12} & z_{13} \\
0 & 1 & z_{23} \\
0 & 0 & 1
\end{array}\right] \right\rvert\, z_{i j} \in \mathbf{C}, i<j\right]
$$

and Γ be the lattice of G defined by

$$
\Gamma=\left[\left.\left[\begin{array}{lll}
1 & 2 x & z \\
0 & 1 & 2 y \\
0 & 0 & 1
\end{array}\right] \right\rvert\, x, y, z \in \mathbf{Z} \oplus i \mathbf{Z}\right]
$$

One can show easily that $\Gamma_{1} /[\Gamma, \Gamma] \cong(\mathbf{Z} \oplus i \mathbf{Z}) / 4(\mathbf{Z} \oplus i \mathbf{Z})$. Next, define $\lambda: \Gamma \rightarrow \mathbf{C}_{1}^{*}$ by $\lambda(\gamma)=\varepsilon[(\operatorname{Re} c+\operatorname{Im} c) / 4]$ where

$$
\gamma=\left[\begin{array}{lll}
1 & 2 a & c \\
0 & 1 & 2 b \\
0 & 0 & 1
\end{array}\right]
$$

and $c=\operatorname{Re} c+i \operatorname{Im} c$. Clearly, λ is a homomorphism. Further, if $c \in$ $(\mathbf{Z}+i \mathbf{Z}) \backslash 4(\mathbf{Z}+i \mathbf{Z})$, then $\lambda(\gamma) \neq 1$ where

$$
\gamma=\left[\begin{array}{lll}
1 & 0 & c \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Thus, $\left.\lambda\right|_{\Gamma_{1}} \neq 0$ and so $\Phi_{r}^{*}: \hat{\Lambda} \rightarrow \hat{\Gamma}$ is not surjective.

Bibliography

1. Y. Matsushima, On the intermediate cohomology group of a holomorphic line bundle over a complex torus, Osaka J. Math. 16 (1979), 617-631.
2. D. Mumford, Abelian varieties, Tata Inst. Studies in Math. Oxford Univ. Press, 1970.
3. M.S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der math. und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York, 1972.
4. Y. Sakane, On compact complex parallelisable solvmanifolds, Osaka J. Math. 13 (1976), 187-212.
5. H.C. Wang, Complex parallelisable manifolds, Proc. Amer. Math. Soc. 5 (1954).
6. A. Weil, Introduction à l'étude des variétés Kählériennes, Hermann, Paris, 1958.
7. R. Wells, Jr., Differential analysis on complex manifolds, Prentice-Hall, Englewood Cliffs, N.J., 1973.
