ON THE PICARD GROUP OF A COMPACT COMPLEX NILMANIFOLD

ROBERT J. FISHER, JR.

1. Introduction. This paper deals with compact complex nilmanifolds. By a nilmanifold we mean a homogeneous space of a nilpotent Lie group. The nilmanifold we consider arises as the compact quotient of a simply connected nilpotent Lie group G by a lattice Γ of G. We write G/Γ to denote such a space. In general, G/Γ is a non-Kähler manifold, and in fact, it is Kähler if and only if it is a complex torus (see [5]). However, G/Γ is a generalization of the torus, and to this end, there is a canonically associated torus T given by

(1.1)
$$T = G/[G, G]/\pi(\Gamma),$$

where G/[G, G] is a vector group and $\pi(\Gamma)$ is a lattice of G/[G, G], $\pi: G \to G/[G, G]$ being the projection map. T plays an important role in the analysis of G/Γ . We point out that there is a holomorphic fibration of G/Γ over T where the fibre is the compact complex nilmanifold $N_1 = [G, G]/\Gamma_1$, $\Gamma_1 = \Gamma \cap [G, G]$. We let $\pi: G/\Gamma \to T$ also denote the bundle map.

Our main purpose is to give a description of the Picard group of G/Γ ; that is, $Pic(G/\Gamma)$, the group of holomorphic isomorphism classes of holomorphic line bundles on G/Γ . To this end, we obtain a partial generalization of the Appell-Humbert Theorem from the case of the complex torus to the case of G/Γ . Sakane [4] has shown that the first Chern class of any holomorphic line bundle \mathcal{L} on G/Γ , $c_1(\mathcal{L})$, is represented by a unique hermitian form H defined on G/[G, G]. As a consequence of the Appell-Humbert Theorem, we know that H corresponds to the first Chern class of a line bundle on the complex torus T if and only if the imaginary part of H, A, is integral on the lattice $\pi(\Gamma)$. Consequently, we can factor \mathcal{L} as

(1.2)
$$\mathscr{L} = \mathscr{L}_{\lambda} \otimes \pi^* \mathscr{L}_{1},$$

where \mathscr{L}_{λ} is the line bundle associated to some character λ of the lattice Γ and $\pi^*\mathscr{L}_1$ is the pullback of a line bundle \mathscr{L}_1 on T with $c_1(\mathscr{L}_1)$ determined by H. See Theorem 3 for details.

Received by the editors on July 28, 1982.

Copyright © 1983 Rocky Mountain Mathematics Consortium

Let $\operatorname{Pic}^{\circ}(G/\Gamma) = \{ \mathscr{L} \in \operatorname{Pic}(G/\Gamma) \mid \delta(\mathscr{L}) = 0 \}$ where $\delta \colon H^1(G/\Gamma, \mathcal{O}^*) \to H^2(G/\Gamma, \mathbb{Z})$ is the Bockstein map. In §3 we prove the following theorem.

THEOREM 2. Pic[°](G/Γ) is a compact complex manifold.

In fact, we show that $\operatorname{Pic}^{\circ}(G/\Gamma)$ is a finite sheeted disconnected covering of the dual torus of T, $\operatorname{Pic}^{\circ}(T)$. So $\operatorname{Pic}^{\circ}(G/\Gamma)$ is itself a compact complex manifold whose connected components are each biholomorphic to $\operatorname{Pic}^{\circ}(T)$. We note also that the number of components is dependent upon the order of $\Gamma_1/[\Gamma, \Gamma]$, where $\Gamma_1 = \Gamma \cap [G, G]$ and in fact, if the order is one, then $\operatorname{Pic}^{\circ}(G/\Gamma)$ and $\operatorname{Pic}^{\circ}(T)$ are holomorphically isomorphic. However, this order need not be one, and we present an example at the end of the paper showing this.

2. A review of the classical Appell-Humbert theorem. Let $T = V/\Lambda$ be a complex torus, where V is an *n*-dimensional complex vector space and Λ a lattice of V. Let H be a hermitian form on V and A its imaginary part. We consider all hermitian forms H on V such that A is integral valued on the lattice Λ . Then to such an H we associate a factor

(2.1)
$$e_{\lambda}(z) = \alpha(\lambda)\varepsilon \left[\frac{1}{2i}H(z, \lambda) + \frac{1}{4i}H(\lambda, \lambda)\right]$$

where $\lambda \in \Lambda, z \in V, \varepsilon[\cdot] = \exp 2\pi i [\cdot]$ and $\alpha: \Lambda \to \mathbb{C}_1^* = \{z \in \mathbb{C} \mid |z| = 1\}$ satisfies $\alpha(\lambda_1 + \lambda_2) = \alpha(\lambda_1)\alpha(\lambda_2)\varepsilon[A(\lambda_1, \lambda_2)/2]$; the function α being called a semi-character of Λ for Λ . In fact, the correspondence $\lambda \to e_{\lambda}$ is a group 1-cocycle on Λ with coefficients in H_V^* (see Appendix I of [2]). The factor $e_{\lambda}(z)$ defines a holomorphic action of the lattice Λ on $V \times \mathbb{C}$ via the rule

(2.2)
$$(z, a) \cdot \lambda = (z + \lambda, e_{\lambda}(z)a).$$

The action is free and the quotient of $V \times \mathbb{C}$ by Λ has a natural structure of a holomorphic line bundle over T. We shall denote this bundle by $\mathscr{L}(H, \alpha)$. Note that the map $(H, \alpha) \to \{e_{\lambda}\}$ satisfies the condition that if $\{e_{\lambda}^{(i)}\}$ corresponds to (H_i, α_i) , then $\{e_{\lambda}^{(1)}e_{\lambda}^{(2)}\}$ corresponds to $(H_1 + H_2, \alpha_1\alpha_2)$. Thus, we have an isomorphism of line bundles $\mathscr{L}(H_1, \alpha_1) \otimes$ $\mathscr{L}(H_2, \alpha_2) \cong \mathscr{L}(H_1 + H_2, \alpha_1\alpha_2)$.

The main theorem in the case of complex tori is the following theorem.

THEOREM 1. (APPELL-HUMBERT). Any line bundle \mathcal{L} on the complex torus T is isomorphic to an $\mathcal{L}(H, \alpha)$ for a uniquely determined (H, α) as indicated by the previous paragraph. We have isomorphic exact sequences

PICARD GROUP

where $\operatorname{Pic}(T)$ is the group of line bundles on T, $\operatorname{Pic}^{\circ}(T)$ the subgroup of those which are topologically trivial, \mathscr{H} is the group of hermitian forms $H: V \times V \to \mathbb{C}$ with $A(\Lambda \times \Lambda) \subset \mathbb{Z}$, and the last vertical map is given by $H \to A$ (with the usual identification of $H^2(T, \mathbb{Z})$ with alternating 2-forms on Λ).

REMARK. $\mu(H, \alpha) = \mathcal{L}(H, \alpha)$. Let $\hat{\Lambda} = \text{Hom}(\Lambda, \mathbb{C}_1^*)$. Then for each $\alpha \in \hat{\Lambda}, \alpha \to \mathcal{L}(0, \alpha)$ is the first map in the top sequence. Finally, $c_1(\mathcal{L})$ is the first Chern class of the line bundle \mathcal{L} . See [2] for details.

3. Pic°(G/ Γ). In this section we give a geometric description of Pic°(G/ Γ) (see Theorem 2). To this end let $\alpha \in \hat{\Gamma} := \text{Hom}(\Gamma, \mathbb{C}_1^*)$. Then α is a 1-dimensional holomorphic representation of Γ ; and similar to (2.1), one obtains the group 1-cocycle given by $e_r(g) = \alpha(\gamma)$ for each $\gamma \in \Gamma$. Thus, following (2.2) α defines a holomorphic line bundle \mathscr{L}_{α} over G/Γ . We now have the following proposition.

PROPOSITION 3.1. The map $\beta: \hat{\Gamma} \to \text{Pic}^{\circ}(G/\Gamma)$ defined by $\beta(\alpha) = \mathscr{L}_{\alpha}$ is an isomorphism.

PROOF. Firstly, we can choose a finite cover $\mathscr{U} = \{U_j\}$ of G/Γ such that (1) \overline{U}_j is compact, and (2) U_j is evenly covered by p; i.e., if $U_{j0} \subset p^{-1}(U_j)$ is a connected component, then p maps U_{j0} biholomorphically onto U_j and $p^{-1}(U_j) = \bigcup_{\gamma \in \Gamma} U_{j\gamma}$ is a disjoint union where $U_{j\gamma} = R_{\gamma}(U_{j0}) = \{g_{\gamma} \mid g \in U_{j0}\}$. Let

$$(3.1) \qquad \qquad \rho_j \colon U_j \to U_{j0}$$

be the inverse of $p: U_{j0} \to U_j$. It follows that for each pair of indices (j, k) such that $U_j \cap U_k \neq \emptyset$, there exists a unique $\gamma_{jk} \in \Gamma$ such that

$$(3.2) \qquad \qquad \rho_k(x) = \rho_j(x)\gamma_{jk}$$

for all $x \in U_j \cap U_k$. Note also that the γ_{jk} 's satisfy the cocycle condition $\gamma_{j\prime} = \gamma_{jk}\gamma_{k\prime}$. Then relative to \mathscr{U} , the transition functions of \mathscr{L}_{α} are given by

(3.3)
$$g_{jk}(x) = \alpha(\gamma_{jk})$$

for $x \in U_j \cap U_k$. The collection $\check{g} = \{g_{jk}\} \in \check{Z}'(\mathscr{U}, \mathscr{O}^*)$; i.e., \check{g} is a Čech 1-cocycle. Computing the image of \check{g} under the Bockstein map, we get $(\delta \check{g})_{jk\ell} = \alpha(\gamma_{jk}\gamma_{k\ell}\gamma_{j\ell}^{-1}) = 1$. So $\delta(\mathscr{L}_{\alpha}) \in H^2(G/\Gamma, \mathbb{Z})$ is represented by the Čech 2-cocycle $(\delta \check{g})_{jk\ell} = 1 \in \mathbb{Z}^2(\mathscr{U}, \mathbb{Z})$ which is in fact a Čech 2-coboundary. Thus, it follows that $\delta(\mathscr{L}_{\alpha}) = 0$; i.e., the map β is well defined. Moreover, it is clear that β is a homomorphism.

Next, we show that β is injective. To this end, let $\alpha \in \hat{\Gamma}$ with $\beta(\alpha) \cong 1$, the trivial holomorphic line bundle on G/Γ . In group cocycle language, $\beta(\alpha) \cong 1$ means that $e = \{e_r(g) = \alpha(\gamma)\}$ is cohomologous to the 1-cocycle $e' = \{e'_r(g) = 1\}$. Thus, there exists a nonzero holomorphic function f

on G such that $\alpha(\gamma) = f(g\gamma)/f(g)$ ($\forall g \in G, \forall \gamma \in \Gamma$). We claim that f is a constant function on G. Relative to the cover \mathscr{U} from above, the argument goes as follows. \overline{U}_j compact implies that \overline{U}_{j0} is compact. Moreover, $\overline{U}_{j\gamma} = R_{\gamma}(\overline{U}_{j0})$. Clearly, f is bounded on each \overline{U}_{j0} . Since there is only a finite number of the U_{j0} 's, it follows that f is a bounded entire function on G and hence is constant. Thus, $\alpha(\gamma) = 1$ for each $\gamma \in \Gamma$ implying that β is injective.

Finally, to show that β is surjective, it suffices to show that any $\mathscr{L} \in$ Pic°(G/Γ) can be realized by constant multipliers. In other words, if $\delta(\mathscr{L}) = 0$, then we will show that there is an element $C \in H^1(G/\Gamma, \mathbb{C}^*)$ such that $i^*C = \mathscr{L}$, where $i^* \colon H^1(G/\Gamma, \mathbb{C}^*) \to H^1(G/\Gamma, \mathcal{O}^*)$ is the induced map obtained from the inclusion of the constant sheaves $\mathbb{C}^* \subset \mathcal{O}^*$. Assuming the truth of the latter, we obtain from C a group 1-cocycle e = $\{e_r\}_{r \in \Gamma}$ of constant functions. In turn, we define $\alpha(\gamma) = e_{\gamma}(e)$ where e is the identity of G. The cocycle condition implies that $\alpha \colon \Gamma \to \mathbb{C}^*$ is a homomorphism. Using an argument similar to one in Weil [6, p. 93], we can then adjust C so that $\alpha \in \hat{\Gamma}$.

Lastly, we prove the existence of $C \in H^1(G/\Gamma, \mathbb{C}^*)$ such that $i^*C = \mathcal{L}$. Classically, it is known that for any complex manifold M one can compute Chern classes of line bundles by using the Bockstein operator δ . In fact, it is a theorem (cf. [7, pp. 106–109]) that the following diagram commutes:

(3.4)
$$H^{1}(M, \mathcal{O}^{*}) \xrightarrow{\delta} H^{2}(M, \mathbb{Z})$$

$$\downarrow^{j}_{c_{1}} \xrightarrow{} H^{2}(M, \mathbb{R}).$$

Moreover, $c_1(H^1(M, \mathcal{O}^*)) = j\delta(H_1(M, \mathcal{O}^*))$, the cohomology classes in $jH^2(M, \mathbb{Z}) \subset H^2(M, \mathbb{R})$ which admit a *d*-closed differential form of type (1,1) as a representative. So let $\mathscr{L} \in \operatorname{Pic}^{\circ}(G/\Gamma)$. Then $c_1(\mathscr{L}) = j\delta(\mathscr{L}) = 0$ in $H^2(G/\Gamma, \mathbb{R})$ and hence by Proposition 3.4 of Sakane [4] there is a connection $\eta = (\eta_j)$ of type (1, 0) relative to \mathscr{U} such that $d\eta_j = 0$ on U_j . Since $d\eta = 0$ on $U_j, \eta_j = df_j$ where $f_j: U_j \to \mathbb{C}$ is a holomorphic function. Thus we have

(3.5)
$$\eta_k - \eta_j = \frac{i}{2\pi} d \log g_{jk}$$

on $U_j \cap U_k \neq \emptyset$ where $\{g_{jk}\}$ is a set of transition functions for \mathscr{L} relative to \mathscr{U} . Define

$$(3.6) C_{jk} = g_{jk} \exp 2\pi i (f_k - f_j) \text{ on } U_j \cap U_k.$$

Then C_{jk} is constant on $U_j \cap U_k$. More importantly, the Čech 1-cocycle $\check{C} = \{C_{jk}\} \in Z^1(\mathscr{U}, \mathbb{C}^*)$ differs from the Čech 1-cocycle $\check{g} = \{g_{jk}\} \in Z^1(\mathscr{U}, \mathscr{O}^*)$ by the Čech coboundary $\check{\delta}(h)$, where $h = \{h_j = \exp 2\pi i f_j\} \in Z^1(\mathscr{U}, \mathscr{O}^*)$

 $\check{C}^{\circ}(\mathscr{U}, \mathscr{O})$. Hence, \check{C} and \check{g} define the same element \mathscr{L} in $H^{1}(G/\Gamma, \mathscr{O}^{*})$ and we have our assertion.

We now state and prove the main theorem of the section.

THEOREM 2. Pic[°](G/Γ) is a compact complex manifold.

As mentioned in the introduction, we show that $\operatorname{Pic}^{\circ}(G/\Gamma)$ is a finite sheeted disconnected covering of $\operatorname{Pic}^{\circ}(T)$, the latter already known to be a complex torus having the same dimension as T. Firstly, we have need of the following lemma.

LEMMA 3.1. Let Λ denote the lattice Γ/Γ_1 . There exists a surjective homomorphism $\hat{D}: \hat{\Gamma} \to \hat{\Lambda}$ having a finite kernel.

PROOF. Firstly, note that $\Gamma/[\Gamma, \Gamma]$ is the direct sum of a free Abelian group of rank 2r and a finite Abelian group. The group $\Gamma_1/[\Gamma, \Gamma]$ where $\Gamma_1 = \Gamma \cap [G, G]$ is finite because $\Gamma/\Gamma_1 \cong (\Gamma/[\Gamma, \Gamma])/(\Gamma_1/[\Gamma, \Gamma])$ is a free Abelian group of rank 2r (cf. [4, p. 206]). Let k be the order of $\Gamma_1/[\Gamma, \Gamma]$. Note also that $\pi(\Gamma) = \Gamma[G, G]/[G, G] \cong \Gamma/\Gamma_1$. We now define a homomorphism $\hat{D}: \hat{\Gamma} \to \hat{\Lambda}$ by

(3.7)
$$\hat{D}(\alpha)(\bar{\gamma}) = \alpha(\gamma)^{k}$$

where $\alpha \in \hat{\Gamma}$, $\gamma \in \bar{\gamma} \in \Gamma/\Gamma_1$. That \hat{D} is well defined follows immediately from the fact that k is the order of $\Gamma_1/[\Gamma, \Gamma]$. It is also clear that \hat{D} is a homomorphism. To see that \hat{D} has finite kernel, note that Ker $\hat{D} = \{\alpha \in \Gamma \mid \text{ image } \alpha \text{ is a subgroup of } K$, the k-th roots of unity group}. Secondly, the lattice Γ is generated by a set of $2n = \dim_{\mathbb{R}} G$ elements (cf. [3, p. 42]) and K is a finite cyclic subgroup of \mathbb{C}_1^* . The cardinality of Ker \hat{D} is the number of homomorphisms from Γ into K and this number is finite by the previous sentence.

To show that \hat{D} is surjective, we use that Γ/Γ_1 is a free Abelian group of finite rank. Let e_1, \ldots, e_{2r} be a Z-basis for Γ/Γ_1 . Then each $\gamma \in \Gamma/\Gamma_1$ can be expressed uniquely as $\bar{\gamma} = \sum_i \lambda_i e_i$. Let $\alpha \in \hat{A}$. Then

$$\alpha(\bar{\gamma}) = \prod_i \alpha(e_i)^{\lambda_i}; \, \alpha(e_i) \in \mathbf{C}_1^*.$$

So choose a k-th root of $\alpha(e_i)$, say $\alpha(e_i)^{1/k}$, and fix it. Define

$$(\alpha(\gamma))^{1/k} = \prod_i (\alpha(e_i)^{1/k})^{\lambda_i}$$

for each $\gamma \in \Gamma$. Then $\alpha^{1/k} \in \hat{\Gamma}$ and $\hat{D}(\alpha^{1/k}) = \alpha$.

Using the previous lemma and Proposition 3.1 we proceed with the proof of the theorem by constructing a holomorphic homomorphism $D: \operatorname{Pic}^{\circ}(G/\Gamma) \to \operatorname{Pic}^{\circ}(T)$ which forces the following diagram to commute:

R.J. FISHER, JR.

(3.7)
$$\begin{array}{c} \hat{\Gamma} \xrightarrow{D} \hat{A} \\ \beta \downarrow & \beta \downarrow \\ \operatorname{Pic}^{\circ}(G/\Gamma) \xrightarrow{D} \operatorname{Pic}^{\circ}(T); \end{array}$$

that is, $D = \beta \circ D \circ \beta^{-1}$. Explicitly, if $\mathcal{L} = \mathcal{L}_{\alpha} \in \text{Pic}^{\circ}(G/\Gamma)$, then $D(\mathcal{L}) = \mathcal{L}(0, \hat{D}(\alpha))$ and the result is now clear.

COROLLARY 3.1. Let $\mathscr{L}_{\alpha} \in \operatorname{Pic}^{\circ}(G/\Gamma)$. Then $\mathscr{L}_{\alpha}^{k} = \mathscr{L}_{\alpha} \otimes \cdots \otimes \mathscr{L}_{\alpha}$ = $\mathscr{L}_{\alpha^{k}} \cong \pi^{*} \mathscr{L}(0, \hat{D}(\alpha))$.

4. Pic(G/I'). In this section we establish the factorization given by (1.2). To this end, let g denote the Lie algebra of right invariant vector fields on G; I denotes the complex structure of g, and g⁺ (resp. g⁻) denotes the vector space of $\sqrt{-1}$ (resp. $-\sqrt{-1}$) eigenvectors of I in the complexification g^C. Next, identify g with the complex Lie algebra (g, I). From Proposition 3.6 in [4] we can choose a basis $\{X_1, \ldots, X_n\}$ of g⁺ such that $\{X_{r+1}, \ldots, X_n\}$ is a basis for [g⁺, g⁺] and also such that the canonical coordinates of the second kind with respect to $\{X_1, \ldots, X_n\}$, denoted by z_1, \ldots, z_n , define a biholomorphic mapping $\Phi: G \to \mathbb{C}^n$ given by $\Phi(g) = (z_1(g), \ldots, z_n(g))$, where z_1, \ldots, z_r are homomorphisms from G to C, $r = \dim g^+/[g^+, g^+]$. Letting $H = (h_{jk}) \in M(r, \mathbb{C})$ be a hermitian matrix, we define a hermitian bihomomorphism $H: G \times G \to \mathbb{C}$ by

(4.1)
$$H(g_1, g_2) = \sum_{j,k=1}^r h_{jk} z_j(g) \bar{z}_j(g_2) \quad \forall g_1, g_2 \in G.$$

Similarly, letting e_j (j = 1, ..., r) denote the standard basis of C^r and e_j^* (j = 1, ..., r) the corresponding dual basis, we obtain a hermitian form \hat{H} on \mathbb{C}^r . Moreover, the map $\Phi_r(g) = (z_1(g), ..., z_r(g))$ is a holomorphic homomorphism of G to \mathbb{C}^r with ker $\Phi_r = [G, G]$. Φ_r then descends to a biholomorphism of G/[G, G] onto \mathbb{C}^r . It is clear then that $\Phi_r^* \hat{H}(g_1, g_2) = H(g_1, g_2)$ and that the correspondence $\hat{H} \to H$ is injective.

We are interested in those hermitian bihomomorphisms H on G whose imaginary part A, difined by $A(g_1, g_2) = (H(g_1, g_2) - \overline{H(g_1, g_2)})/2i$, is integral valued on the lattice Γ . We note that A is integral valued on Γ if and only if the imaginary part of \hat{H} , \hat{A} , is integral valued on the lattice $\Phi_r(\Gamma)$ in C^r . Note also that via Φ_r we can identify the complex torus $T = G/[G, G]/\pi(\Gamma)$ with $C^r/\Phi_r(\Gamma)$ holomorphically and the lattice $\Lambda = \Gamma/\Gamma_1$ with $\Phi_r(\Gamma)$.

Let $\mathcal{L} \in \operatorname{Pic}(G/\Gamma)$. Then from Propositions 3.4 and 3.5 of [4] there exists a unique real right invariant 2-form $\alpha \in \Lambda^2 \mathfrak{g}^*$ of type (1, 1) representing $c_1(\mathcal{L})$, and it is given by

(4.2)
$$\alpha = \frac{1}{2i} \sum_{j,k=1}^{r} h_{jk} dz_j \Lambda d\bar{z}_k$$

636

PICARD GROUP

where (h_{jk}) is an $r \times r$ hermitian matrix and $r = \dim \mathfrak{g}^+/[\mathfrak{g}^+, \mathfrak{g}^+]$. Let \hat{H} be the corresponding hermitian form on \mathbb{C}^r as indicated above. Since \hat{A} comes from an \hat{H} , it follows from the Appell-Humbert Theorem that \hat{A} represents the Chern class of a holomorphic line bundle over T if and only if it is integral on the lattice $\Phi_r(\Gamma)$. Assuming that this is the case there exists $\mathcal{L}_1 \in \operatorname{Pic}(T)$ such that $c_1(\mathcal{L}_1)$ is represented by \hat{A} . Since $\pi^*c_1(\mathcal{L}_1) = c_1(\pi^*\mathcal{L}_1)$, it follows by an argument similar to the one in Proposition 3.1 showing the surjectivity of β that $\mathcal{L} \otimes (\pi^*\mathcal{L}_1)^{-1} \in \operatorname{Pic}^\circ(G/\Gamma)$. Hence, from Proposition 3.1 we obtain $\mathcal{L} = \mathcal{L}_\lambda \otimes \pi^*\mathcal{L}_1$ for some $\lambda \in \hat{\Gamma}$. Summarizing, we state the following theorem.

THEOREM 3. Let $\mathcal{L} \in \text{Pic}(G|\Gamma)$ and let α , as in (4.2), represent the Chern class of \mathcal{L} , $c_1(\mathcal{L})$. Then \mathcal{L} can be expressed as

$$(4.3) \qquad \qquad \mathscr{L} = \mathscr{L}_{\lambda} \otimes \pi^* \mathscr{L}_{1}$$

where $\lambda \in \hat{\Gamma}$ and $\mathscr{L}_1 \in \operatorname{Pic}(T)$ if and only if the imaginary part A of the hermitian bihomomorphism H defined by (4.1) is integral on the lattice Γ .

REMARK. Whether or not every $\mathscr{L} \in \operatorname{Pic}(G/\Gamma)$ can be written as in (4.3) is not known to the author.

5. An example. As mentioned in the introduction, $\Gamma_1 = \Gamma \cap [G, G] \supset [\Gamma, \Gamma]$ gives rise to $\Gamma_1/[\Gamma, \Gamma]$, a finite Abelian group of order possibly greater than one. Hence, it is possible to show the existence of a character λ on Γ which does not descend directly to a character on $\Lambda = \Gamma/\Gamma_1$. So in general, $\hat{\Gamma} \neq \hat{\Lambda}$ and hence $\operatorname{Pic}^{\circ}(G/\Gamma) \neq \operatorname{Pic}^{\circ}(T)$. In the language of exact sequences,

$$1 \to \varGamma_1 \stackrel{i}{\longrightarrow} \varGamma \stackrel{\phi_r}{\longrightarrow} \Lambda \to 1$$

is exact, while

$$1 \to \hat{\Lambda} \xrightarrow{\phi_r^*} \hat{\Gamma} \xrightarrow{i^*} \Gamma_1$$

is left exact. We provide an example showing that Φ_r^* is not surjective.

EXAMPLE. Let G be the simply connected complex nilpotent Lie group defined by

$$G = \left[\begin{bmatrix} 1 & z_{12} & z_{13} \\ 0 & 1 & z_{23} \\ 0 & 0 & 1 \end{bmatrix} | z_{ij} \in \mathbb{C}, i < j \right]$$

and Γ be the lattice of G defined by

$$\Gamma = \left[\begin{bmatrix} 1 & 2x & z \\ 0 & 1 & 2y \\ 0 & 0 & 1 \end{bmatrix} | x, y, z \in \mathbf{Z} \oplus i\mathbf{Z} \right].$$

One can show easily that $\Gamma_1/[\Gamma, \Gamma] \cong (\mathbb{Z} \oplus i\mathbb{Z})/4(\mathbb{Z} \oplus i\mathbb{Z})$. Next, define $\lambda: \Gamma \to \mathbb{C}_1^*$ by $\lambda(\gamma) = \varepsilon[(\operatorname{Re} c + \operatorname{Im} c)/4]$ where

$$\gamma = \begin{bmatrix} 1 & 2a & c \\ 0 & 1 & 2b \\ 0 & 0 & 1 \end{bmatrix}$$

and c = Re c + i Im c. Clearly, λ is a homomorphism. Further, if $c \in (\mathbb{Z} + i\mathbb{Z}) \setminus 4(\mathbb{Z} + i\mathbb{Z})$, then $\lambda(\gamma) \neq 1$ where

$$\gamma = \begin{bmatrix} 1 & 0 & c \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Thus, $\lambda \mid_{\Gamma_1} \neq 0$ and so $\Phi_r^* \colon \hat{\Lambda} \to \hat{\Gamma}$ is not surjective.

BIBLIOGRAPHY

1. Y. Matsushima, On the intermediate cohomology group of a holomorphic line bundle over a complex torus, Osaka J. Math. 16 (1979), 617–631.

2. D. Mumford, *Abelian varieties*, Tata Inst. Studies in Math. Oxford Univ. Press, 1970.

3. M.S. Raghunathan, *Discrete subgroups of Lie groups*, Ergebnisse der math. und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York, 1972.

4. Y. Sakane, On compact complex parallelisable solvmanifolds, Osaka J. Math. 13 (1976), 187-212.

5. H.C. Wang, Complex parallelisable manifolds, Proc. Amer. Math. Soc. 5 (1954).

6. A. Weil, Introduction à l'étude des variétés Kählériennes, Hermann, Paris, 1958.

7. R. Wells, Jr., *Differential analysis on complex manifolds*, Prentice-Hall, Englewood Cliffs, N.J., 1973.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OKLAHOMA, NORMAN, OK 73019